Around the asymptotic properties of a two-dimensional parametrized Euler flow - Institut de Recherche Mathématiques de Rennes
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2024

Around the asymptotic properties of a two-dimensional parametrized Euler flow

Résumé

We study the two-dimensional Euler flow solution to ∂ t X(•, x) = b(X(•, x)) for x in the torus T 2 := R 2 /2πZ 2 , where b is the vector field defined on T 2 by b(x) = b(x 1 , x 2) := (− A cos x 1 − B sin x 2 , A sin x 1 + B cos x 2) with A, B ∈ R \ {0}. We derive for any x ∈ T 2 , the asymptotics of X(t, x) as t tends to ∞, depending on whether |A| = |B| or |A| = |B|. In the first case, the orbits of the flow are all bounded. In the second case, it turns out that one of the coordinates of X(t, x) is bounded with an explicit bound, while the other one is equivalent to a(x) t. The function a does not vanish in T 2 and satisfies uniform bounds which depend on parameters A, B. When |A| = |B|, we also prove that for any global first integral u of the flow X with a periodic gradient, ∇u has at least a cluster point of roots in T 2. This shows the complexity as well as the interest of this two-dimensional Euler flow.
Fichier principal
Vignette du fichier
Asy-2D-Euler-flow_Briane_11-2023.pdf (478.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04285793 , version 1 (14-11-2023)

Identifiants

Citer

Marc Briane. Around the asymptotic properties of a two-dimensional parametrized Euler flow. Discrete and Continuous Dynamical Systems - Series A, 2024, 44 (7), pp.1864-1877. ⟨10.3934/dcds.2024012⟩. ⟨hal-04285793⟩
109 Consultations
44 Téléchargements

Altmetric

Partager

More