Intrinsic exploration-motivation in cultural knowledge evolution
Résumé
In cultural knowledge evolution simulated by multi-agent simulations, agents can improve the accuracy of their knowledge by interacting with other agents and adapting their knowledge with the aim of agreeing. But their knowledge might be confined to specific areas because they do not have the capacity to explore the world around them. Since intrinsic motivation to explore in artificial agents has already proven to increase exploration, it was researched whether and how agents in simulations of cultural knowledge evolution can be motivated to explore. Moreover, it was tested how far this improves and changes their knowledge. Three different kinds of motivation were investigated: curiosity, creativity and non-exploration. Moreover, intrinsic motivation was modelled with and without reinforcement learning. Agents either explored on their own or picked specific interaction partner(s). It has been shown that it is possible to model agents with intrinsic motivation to explore in cultural knowledge evolution, and that this has a significant effect on the agents’ knowledge. Contrary to the expectations and other studies, this did not lead to an increase in knowledge completeness. Out of all intrinsic motivations, curiosity had the highest accuracy and completeness. Models with reinforcement learning performed similar to direct models. As expected, intrinsic motivation led to faster convergence of the agents’ knowledge, especially with social agents. Heterogeneously motivated agents only had a higher accuracy and completeness than homogeneously motivated agents in specific cases. This thesis can be regarded as a foundation for further investigation into the role of intrinsic motivation in cultural knowledge evolution. Different forms of intrinsic motivation or different
reinforcement learning techniques could be tested. Additionally, intrinsic motivation at different stages of the experiment or in different ratios, for example curious agents and agents with no motivation, could be investigated in more detail. Lastly, agents could teach other agents things they explored a lot.
Origine | Fichiers produits par l'(les) auteur(s) |
---|