Filtrer vos résultats
- 7
- 2
- 5
- 2
- 1
- 1
- 7
- 2
- 2
- 9
- 9
- 8
- 8
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 3
- 3
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
9 résultats
|
|
triés par
|
|
Combining Weight Approximation, Sharing and Retraining for Neural Network Model CompressionACM Transactions on Embedded Computing Systems (TECS), 2024, 23, pp.1 - 23. ⟨10.1145/3687466⟩
Article dans une revue
hal-04764621v1
|
||
|
A PAC-Bayesian Link Between Generalisation and Flat Minima2024
Pré-publication, Document de travail
hal-04455639v1
|
||
|
Approximate Fault-Tolerant Neural Network SystemsETS 2024 - 29th IEEE European Test Symposium, May 2024, La Haye, Netherlands. pp.1-10, ⟨10.1109/ETS61313.2024.10567290⟩
Communication dans un congrès
hal-04674818v1
|
||
|
Learning Structural Causal Models through Deep Generative Models: Methods, Guarantees, and ChallengesIJCAI 2024 - Thirty-Third International Joint Conference on Artificial Intelligence, Aug 2024, Jeju, South Korea. pp.8207-8215, ⟨10.24963/ijcai.2024/907⟩
Communication dans un congrès
hal-04706985v1
|
||
|
AdaQAT: Adaptive Bit-Width Quantization-Aware TrainingIEEE 6th International Conference on AI Circuits and Systems (AICAS), 2024, Abu Dhabi, United Arab Emirates
Communication dans un congrès
hal-04549245v1
|
||
|
Tighter Generalisation Bounds via Interpolation2024
Pré-publication, Document de travail
hal-04456925v1
|
||
|
Probabilistic error analysis of limited-precision stochastic roundingUniversity of Leeds; Inria Rennes - Bretagne Atlantique. 2024, pp.1-21
Rapport
hal-04665809v2
|
||
|
A Stochastic Rounding-Enabled Low-Precision Floating-Point MAC for DNN TrainingDATE 2024 - 27th IEEE/ACM Design, Automation and Test in Europe, Mar 2024, Valencia, Spain. pp.1-6
Communication dans un congrès
hal-04380270v3
|
||
|
Graph Coarsening with Message-Passing GuaranteesAdvances in Neural Information Processing Systems (NeurIPS), Dec 2024, Vancouver, Canada
Communication dans un congrès
hal-04617519v1
|