Filter your results
- 101
- 33
- 1
- 50
- 41
- 16
- 8
- 7
- 6
- 2
- 2
- 2
- 1
- 5
- 2
- 102
- 72
- 32
- 22
- 13
- 12
- 11
- 2
- 1
- 1
- 3
- 2
- 13
- 19
- 21
- 9
- 10
- 9
- 11
- 10
- 8
- 4
- 11
- 2
- 1
- 1
- 1
- 129
- 6
- 135
- 115
- 18
- 9
- 5
- 4
- 4
- 4
- 4
- 3
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 19
- 11
- 10
- 10
- 10
- 9
- 9
- 9
- 8
- 7
- 7
- 7
- 6
- 5
- 5
- 5
- 5
- 5
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
|
Learning To Run a Power Network CompetitionCiML Workshop, NeurIPS, Dec 2018, Montréal, Canada
Conference papers
hal-01968295v1
|
||
|
Noisy Supervision for Correcting Misaligned Cadaster Maps Without Perfect Ground Truth DataIGARSS 2019 - IEEE International Geoscience and Remote Sensing Symposium, Jul 2019, Yokohama, Japan
Conference papers
hal-02065211v1
|
||
|
Towards Automated Computer Vision: Analysis of the AutoCV Challenges 2019Pattern Recognition Letters, 2020, 135, pp.196-203
Journal articles
hal-02386805v1
|
||
|
Introduction to multivariate discriminationIN2P3 School of Statistics (SOS2012), May 2012, Autrans, France. pp.022001, ⟨10.1051/epjconf/20135502001⟩
Conference papers
in2p3-00846125v1
|
||
|
The Fundamental Diagram on the Ring Geometry for Particle Processes with Acceleration/Braking AsymmetryTGF'11 - Traffic and Granular Flow, Sep 2011, Moscou, Russia
Conference papers
hal-00646988v1
|
||
|
Solving the inverse Ising problem by mean-field methods in a clustered phase space with many statesPhysical Review E , 2016, ⟨10.1103/PhysRevE.94.012112⟩
Journal articles
hal-01250824v1
|
||
|
Per instance algorithm configuration of CMA-ES with limited budgetGECCO 2017 - Proceedings of the Genetic and Evolutionary Computation Conference , Jul 2017, Berlin, Germany. pp. 681-688
Conference papers
hal-01613753v1
|
||
|
Systematics aware learning: a case study in High Energy PhysicsESANN 2018 - 26th European Symposium on Artificial Neural Networks, Apr 2018, Bruges, Belgium
Conference papers
hal-01715155v1
|
||
|
Learning Functional Causal Models with Generative Neural NetworksExplainable and Interpretable Models in Computer Vision and Machine Learning, Springer International Publishing, 2018, Springer Series on Challenges in Machine Learning, 978-3-319-98131-4. ⟨10.1007/978-3-319-98131-4⟩
Book sections
hal-01649153v1
|
||
|
Fast Power system security analysis with Guided Dropout, supplemental material2017
Preprints, Working Papers, ...
hal-01649938v1
|
||
Estimation of nonparametric dynamical models within Reproducing Kernel Hilbert Spaces for network inferenceParameter Estimation for Dynamical Systems - PEDS II, Bart Bakker, Shota Gugushvili, Chris Klaassen, Aad van der Vaart, Jun 2012, Eindhoven, Netherlands
Conference papers
hal-01084145v1
|
|||
|
CMA-ES: A Function Value Free Second Order Optimization MethodPGMO COPI 2014 - Gaspard Monge Program for Optimization and operations research Conference on Optimization and Practices in Industry, Oct 2014, Saclay, France
Conference papers
hal-01110313v1
|
||
The Higgs machine learning challengeHiggs Machine Learning Challenge visits CERN, May 2015, Geneve, Switzerland
Conference papers
in2p3-01154176v1
|
|||
|
Collective Mind: cleaning up the research and experimentation mess in computer engineering using crowdsourcing, big data and machine learning[Technical Report] Inria Saclay Ile de France; LRI, Université Paris-Sud. 2013
Reports
hal-00850880v1
|
||
|
GMRF Estimation under Topological and Spectral Constraints7th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2014, Nancy, France. pp.370-385, ⟨10.1007/978-3-662-44851-9_24⟩
Conference papers
hal-01065607v1
|
||
|
Collaborative hyperparameter tuning30th International Conference on Machine Learning (ICML 2013), Jun 2013, Atlanta, United States. pp.199-207
Conference papers
in2p3-00907381v1
|
||
|
Collective mind: Towards practical and collaborative auto-tuningScientific Programming, 2014, Automatic Application Tuning for HPC Architectures, 22 (4), pp.309-329. ⟨10.3233/SPR-140396⟩
Journal articles
hal-01054763v1
|
||
|
HiPEAC Internship report: Machine Learning for Compilation and Architecture2013
Preprints, Working Papers, ...
hal-00907143v1
|
||
|
Detection of Cheating by Decimation AlgorithmJournal of the Physical Society of Japan, 2015, 84, pp.024801. ⟨10.7566/JPSJ.84.024801⟩
Journal articles
hal-01105415v1
|
||
|
Fast Inference of Individual Admixture Coefficients Using Geographic DataAnnals of Applied Statistics, 2018, 12 (1), pp.586-608. ⟨10.1214/17-AOAS1106⟩
Journal articles
hal-01676712v1
|
||
|
LEAP nets for power grid perturbationsESANN 2019 - 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Apr 2019, Bruges, Belgium
Conference papers
hal-02268886v1
|
||
|
Fast Power system security analysis with Guided Dropout26th European Symposium on Artificial Neural Networks, Apr 2018, Bruges, Belgium
Conference papers
hal-01695793v1
|
||
|
Analysis of the AutoML Challenge series 2015-2018Frank Hutter; Lars Kotthoff; Joaquin Vanschoren. AutoML: Methods, Systems, Challenges, Springer Verlag, In press, The Springer Series on Challenges in Machine Learning
Book sections
hal-01906197v1
|
||
|
An Ising Model for Road Traffic InferenceXavier Leoncini and Marc Leonetti. From Hamiltonian Chaos to Complex Systems: a Nonlinear Physics Approach, Springer, 2012
Book sections
hal-00743351v1
|
||
|
Advances in Artificial Intelligence3501, Springer, 2005, Lecture Notes in Computer Science. Lecture Notes in Artificial Intelligence, ⟨10.1007/b136277⟩
Proceedings
in2p3-00935523v1
|
||
The Boltzmann Machine: when the Ising model meet Machine LearningIthaca: Viaggio nella Scienza, 2020
Journal articles
hal-03143397v1
|
|||
|
The mighty force: statistical inference and high-dimensional statisticsSpin Glass Theory & Far Beyond - Replica Symmetry Breaking after 40 Years, World Scientific, In press, ⟨10.48550/arXiv.2205.00750⟩
Book sections
hal-03795572v1
|
||
|
Generative Neural networks to infer Causal Mechanisms: Algorithms and applicationsMachine Learning [stat.ML]. Université Paris Sud (Paris 11) - Université Paris Saclay, 2019. English. ⟨NNT : ⟩
Theses
tel-02435986v1
|
||
|
Unifying the framework of Multi-Layer Network and Visual AnalyticsVisual Analytics of Multilayer Networks Across Disciplines, 9 (2), pp.19-23, 2019, Dagstuhl Reports
Book sections
hal-02185272v1
|
||
|
Interpreting a Penalty as the Influence of a Bayesian Prior2020
Preprints, Working Papers, ...
hal-02466702v1
|