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Abstract— This paper presents some recent results concerning
a class of continuous-time Markov processes called “stochastic
hybrid systems”1. These processes describe the evolution of
a multidimensional hybrid-state dynamical system subjectto
Gaussian white noise inputs. After a brief recall of the formalism,
we state the generalized Fokker-Planck equation, which is a
partial differential equation satisfied by the probability density
function of the system. As an illustration, we consider a variable-
speed wind turbine, with a switching controller that combines
stall regulation and pitch control. For a given value of the mean
wind speed, the stationary distribution of the state variables
is computed numerically. This truly dynamical analysis of the
system yields a complete probabilistic characterization of the
uncertain power output, which is much more accurate than the
usual static analysis.

I. I NTRODUCTION

The dynamical behaviour of a power system typically
involves a complex combination of continuous and discrete
dynamics [2], the discrete part usually coming from the pres-
ence of a switching controller or from an idealized modeling
of strong non-linearities. The theory of hybrid dynamical
systems [1], [3] is therefore a natural framework for power sys-
tems modeling and control, since it allows to simultaneously
capture both kinds of behaviour. Although the conventional
formulation is deterministic, there have been many attempts
to introduce randomness in the theory, in order to cope with
the inherent uncertainty in many practical problems (see [4]
and the references therein for a survey).

This paper focuses on one class of stochastic hybrid models,
called stochastic hybrid systems [5], that we believe potentially
useful in the field of power systems. The basic idea is to
replace the differential equations in the deterministic model by
stochastic differential equations (SDEs) [6]. Roughly, this is
tantamount to considering a deterministic hybrid system with
Gaussian white noise inputs. An early example of a stochastic
hybrid system in the field of power systems can be found in
[6]. More generally, such models appear in various application
fields [7], [8], [9], notably as the result of stochastic control
problems.

1In this context, the word “hybrid” indicates a mixture of continuous and
discrete state-variables (as in [1], [2] for instance) and has nothing to do with
the notion of “hybrid power system”.

Our aim is to provide power system practitioners with a
short introduction to this modern framework, and especially
to a useful mathematical result: the generalized Fokker-Planck
Equation (FPE). This is a partial differential equation (PDE)
satisfied by the probability density function of the state vari-
ables, which provides an alternative to Monte-Carlo techniques
for the computation of various probabilistic characteristics of
the model.

The paper is organized as follows: in the first part, an
abstract definition of stochastic hybrid systems is given and
the associated generalized FPE is stated. Then the theory is
applied to a variable-speed wind turbine model, yielding a
probabilistic characterization of the uncertain power output of
the system—for a given mean wind speed. Numerical results
are given, that support the usefulness of the approach.

II. STOCHASTIC HYBRID PROCESSES

A. Definition

A “stochastic hybrid process” is a Markov processz(t), t ∈
R+, that is made up of two components: a discrete component
q(t), that takes its values in a countable setQ, and aR

n-valued
componentx(t). When the discrete component (sometimes
called the mode) is fixed to some valueq0 ∈ Q, the continuous
component evolves in a set denoted byX q0

, whereXq0
is

an open subset ofRn and X q0
= Xq0

∪ ∂Xq0
its closure.

Therefore, the processz(t) takes its values in a hybrid state
spaceZ ⊂ Q× R

n, defined by

Z = ∪q∈Q {q} × X q. (1)

Various classes of stochastic hybrid processes have been
studied in the literature, depending on the kind of jumps and
continuous dynamics that are allowed [4]. In this paper, it is
assumed thatz(t) satisfies the followings:

• there exists an increasing sequence of Markov times
(τn)n≥0, with τ0 = 0 andτn < τn+1 for eachn (unless
τn = +∞), such that over each interval[τn; τn+1), q(t)
is constant andx(t) solves a Stratonovich SDE [6]:

dx(t) = f(qn,x(t)) dt + g(qn,x(t)) dB(t), (2)

where qn = q(τn) and B(t) is a standard Brownian
motion;



• there exists a subsetG of the boundary ∂Z =
∪q∈Q {q}×∂Xq, called the guard set, such that the jump
timesτn satisfy the recursive relation:

τn = inf
{

t > τn−1 | z(t
−) ∈ G

}

, (3)

for all n ≥ 1, i.e. τn is the time where the processz(t)
first reaches the guard set afterτn−1;

• there exists a functionΦ : G → Z \ G, called the reset
map, such that the state of the process after a jump at
time τn, n ≥ 1, is given byz(τn) = Φ(z(τ−

n )).

The reader is referred to [6] for the basic definitions concern-
ing Markov processes and SDEs. The class of processes under
consideration is very close to the stochastic hybrid systems of
[5], with some minor modifications.

Formally, the SDE (2) can also be written as

ẋ(t) = f(qn,x(t)) + g(qn,x(t))w(t), (4)

wherew(t) = Ḃ(t) is a Gaussian white noise. The whiteness
assumption is not as restrictive as it seems. Indeed, colored
noises can be considered as well in this framework, using a
shaping filter withw(t) as an input. An example of this is
provided in section III-B.

B. The generalized Fokker-Planck equation

The statez(t) of the process at timet ≥ 0 is a hybrid
random variable, which is fully characterized by the joint
probability law ofx(t) andq(t). In this section, it is assumed
that a pdf℘(q0, x0, t) exists, such that

P { q(t) = q0, x(t) ∈ B } =

∫

B

℘(q0,x0, t) dx0 , (5)

for any measurableB ⊂ R
n.

The dynamics oft 7→ ℘(q0, x0, t) is given by the general-
ized Fokker-Planck equation, which will be stated below. The
equation extends the usual FPE [10, chap. 5], [6, pp 168–169],
which applies to diffusion processes defined by SDEs like (2),
to the class of stochastic hybrid processes defined in II-A.

a) Generalized FPE, local part:the first part of the result
is that, onZ \ (G ∪ Φ(G)), the pdf satisfies the usual FPE:

∂℘

∂t
+ div(j) = 0 , (6)

wherediv denotes the divergence operator with respect to the
continuous variables of the state space, andj is the so-called
probability current, defined componentwise by:

jkt = fk ℘t −
1

2
gk div(℘t g) . (7)

Equation (6) is a local conservation equation, which accounts
for the fact that, between its jumps, the process evolves
continuously according to the SDE (2). Note that this single
equation actually hides a system of PDEs—one for each mode.

b) Generalized FPE, non-local part:the jumping be-
haviour of the processz(t) translates to the pdf level as a
discontinuity in the probability currentj(t) on H = Φ(G). To
express this, the outward and inward probability currents are
defined—respectively onG andH—by:

jout
t = jt .n , (8)

jin
t = (j

(2)
t − j

(1)
t ) .n12 , (9)

wheren is the outward-pointing unit normal onG, andn12

the unit normal onH directed from side1 to side2. Then,
assuming thatΦ is a bijection betweenG andH , the following
relation holds:

jout(z0, t) = |Φ′| jin(Φ(z0), t) , (10)

for all z0 ∈ G, with |Φ′| the Jacobian determinant ofΦ.
This equation has a nice physical interpretation: the probability
currentjout flows out of the state space through the “sink”G,
and is instantaneously reinjected by the “source”H .

c) Generalized FPE, boundary conditions:let G∗ and
H∗ be the subsets ofG andH where the vector fieldg is not
tangential. Then the pdf℘t is continuous onH∗ and vanishes
on G∗.

A proof of the generalized FPE can be found in [11] for the
one-dimensional case, and more recently [12] for the multi-
dimensional case. Both rely on the a priori assumption that a
smooth enough pdf exists—a very reasonable assumption in
most practical applications.

III. A PPLICATION

As an application, the generalized Fokker-Planck equation
will now be used to assess the uncertainty in the power output
of a variable-speed wind turbine. The system is modeled
as a hybrid dynamical system whose input and output are
respectively the wind speedv(t) and the generator power
outputPG(t). The model is presented in sections III-A and III-
B. Then the Fokker-Planck equation is stated in III-C, and the
stationarity assumption is discussed in section III-D. Finally,
numerical results are obtained and compared to brute-force
Monte-Carlo simulations in section III-E.

A. Modeling the wind turbine and its hybrid controller

The dynamics of the wind turbine is given by the angular
momentum theorem:

J
dω

dt
=

Pdrive − Pbrake

ω
(11)

whereω is the rotor speed,J the moment of inertia,Pdrive the
aerodynamic power captured by the wind turbine andPbrake

the braking power from the generator. The generator power
output is related to the braking power by the simple relation
PG = η Pbrake, whereη is assumed constant. The aerodynamic
power is given by the algebraic relation

Pdrive =
π

2
ρ R2 cp(λ, θ) v3, (12)

where ρ is the air density,R the rotor radius,θ the pitch
angle,λ = Rω/v the tip speed ratio (TSR) andcp the power
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Fig. 1. Power coefficient versus TSR

coefficient. A numerical approximation ofcp is provided in
[13]. Fig. 1 depicts theλ 7→ cp(λ, θ) characteristic, for several
values of the pitch angleθ. We denote bycp,opt the maximum
of cp(λ, 0), which is attained for a unique optimal TSRλopt.

The turbine is operated by a switched controller inspired
from [14], with two discrete modes. In modeA (lower to
medium wind speed region), the rotor speed is controlled
by adjusting the generator power outputPG, following a
given power schedulePG = S(ω) that is explained below.
It is assumed that the generator can respond to the power
command almost instantaneously. In modeB (higher wind
speed region), the output power is kept constant to its nominal
value PG,nom, and the aerodynamic powerPdrive is adjusted
using pitch control, in order to maintainω around its nominal
valueωnom. The controller switches from modeA to modeB
whenω = ωnom, and back to modeA whenω = ωBA < ωnom.
The strict inequality defines a hysteretic behaviour, whichis
necessary in order to prevent chattering betweenA andB.

In mode A, the turbine is operated to stay as close as
possible to the optimal TSRλopt. To achieve that, the power
schedule is set to

S(ω) = Sopt(ω) =
π

2
η ρ R2 cp,opt

(

Rω

λopt

)3

. (13)

This ensures that, for fixedθ and v, the rotor speedω =
λoptv/R is a stable equilibrium (in fact, there are only two
stable equilibrium points, the other one beingω = 0). For a
smooth transition between modesA andB, the output power is
raised progressively toPG,nom betweenωBA andωnom, thereby
driving the turbine into the aerodynamic stall region. The
resulting power schedule is shown on Fig. 2.

In modeB, following [13], a proportional controller is used
for the pitch angle:

dθ

dt
=







0 if θ = 0 andω ≤ ωnom,
0 if θ = θmax andω ≥ ωnom,
h (K (ω − ωnom)) otherwise,

(14)
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Fig. 2. Power scheduleω 7→ S(ω)

whereh is the limiter function

h(θ̇) = min
(

θ̇max, max
(

θ̇min, θ̇
))

.

B. Modeling the wind speed

Realistic wide band models of the horizontal wind speed
v(t) have to account for a wide range of time scales, rang-
ing from high frequency turbulent phenomena to daily and
monthly fluctuations [15]. Consequently, our analysis willbe
carried over short time intervals of about an hour, wherev(t)
can be modeled [16] as a stationary Gaussian process with
hourly meanv̄ and standard deviationσ = κv̄. The factorκ
depends on the geographical location of the wind turbine site.

Several power spectral densities (PSD) have been proposed
in the literature for the short-term turbulent component ofthe
wind speed, among which Von Karman’s spectrum [15], [17]
and Kaimal’s spectrum [13], [17]. Both decay likef−5/3 at
infinity, a feature that cannot be reproduced by Brownian-
driven stochastic differential equations2. Therefore, we use a
simple one-dimensional SDE [18] to decribev(t):

dv(t) = −
v(t) − v̄

T
dt + κ v̄

√

2/T dB(t) (15)

whereT = L/v̄, with L the turbulence length scale. Higher
order SDEs, such as the one proposed in [15], could be
used to obtain a better approximation of the forementioned
PSDs. However, this does not seem necessary in the problem
under consideration, since the highest frequency fluctuations
are very local and therefore even out over the rotor surface
[13]. Furthermore, it would increase the number of continuous
variables, making the numerical solution of the PDE much
more difficult if not impossible.

The SDE (15) defines a stochastic process that can take
negative values. A reflecting boundary is added atv = 0 to
ensure that the process stays positive at all times.

2SDE driven by fractional Brownian motions can produced thiskind of
PSDs but are outside the scope of our method.



C. The generalized Fokker-Planck equation

Except for the presence of the reflecting barrier atv = 0, the
stochastic model just defined belongs to the class of stochastic
hybrid systems described in II-A:

• the continuous component is the vector-valued process
x(t) = (ω(t), θ(t), v(t)), whose dynamics is given by
equations (11), (14) and (15);

• the discrete component is the stateq(t) ∈ {A, B} of the
switching controller;

• and the reset mapΦ toggles the discrete component
between modesA andB without affecting the continuous
components, i.e.Φ(x0, A) = (x0, B) and vice versa (the
corresponding state space is depicted on Fig. 3).

The generalized FPE of section II-B will now be made
explicit for this model. The probability current (7) simplifies
to







jωt = fω ℘t

jθt = fθ ℘t

jvt = fv ℘t − D ∂℘t

∂v

where D = κ2v̄2/T and f is the deterministic part in the
right-hand sides of (11), (14) and (15). Therefore, according
to II-B.a, the usual FPE

∂℘

∂t
= D

∂2℘

∂v2
− div(f℘)

holds on the four components of the state space, denoted by
X 1

A, X 2
A, X 1

B andX 2
B on Fig. 3. Furthermore, by II-B.b, the

pdf has a discontinuity on the setH = Φ(G). Indeed, for
z0 = (x0, B) ∈ G, equation (10) becomes

− fω(z0)℘(z0, t) = fω(z1)
[

℘(z+
1 , t) − ℘(z−1 , t)

]

,

wherez±1 = (ω±
0 , θ0, v0, A). A similar equation holds for the

other part of the guard—i.e. forz0 = (x0, A) ∈ G. The
boundary conditions II-B.c do not apply here, since the sets
G∗ and H∗ are empty (the vector fieldg is parallel to the
v-axis and therefore is tangential toG and H). Finally, the
reflecting barrier for the wind speedv translates as a no-flux
boundary conditionjvt = 0 on the surface{v = 0}.

Remark: a careful study of the dynamics actually reveals
that the probability law ofxt is “degenerate” in this model,
because there can be a non-zero probability thatθt = 0 or θt =
θmax. Therefore, the first assumption of section II-B—that a pdf
exists—is not totally fulfilled. However, slight modifications
of the theory (omitted here for the sake of conciseness) allow
to write a generalized FPE anyway.

D. Stationary regime

The generalized FPE can be used to study the stochastic
system either in transient regime—i.e. on a time interval[0; T ],
for a given initial distribution℘0—or in stationary regime. In
the problem under consideration, which is the assessment of
the power output uncertainty as a function of the mean wind
speedv̄, the latter approach seems more appropriate since no
relevant initial distribution can be specified. In practice, this
will lead to the computation of a time-independent distribution

ω

ωωBA

ωBA

ωAB

ωAB

θ,v

θ,v

X 1
A X 2

A

X 1
B X 2

B

modeA

modeB

Fig. 3. State space for the wind turbine model. The curved arrows indicate the
action of the reset mapΦ. The bold and dashed lines symbolize respectively
the guardG and the setH = Φ(G).

℘(z|v̄), which is the stationary distribution for a fixed̄v. This
method is justified by the fact that̄v(t) is a “slow” variable
with respect to the “fast” variablez(t): as a response to a
small changēv0 → v̄′0 of the mean wind speed, the distribution
of z(t) conditionally to v̄(t) relaxes quickly from℘(z|v̄0) to
℘(z|v̄′0), and therefore can be approximated by℘(z|v̄(t)) at
all times.

Unfortunately, the only exact stationary distribution in this
model corresponds to the wind turbine being almost surely
stopped (ω(t) = 0). Indeed, extreme wind gusts of arbitrarily
large magnitude and duration are theoretically possible inthe
wind model (15). In modeA, this can take the system into the
unstable region [18] and consequently force the turbine to stop.
However, such an event is extremely rare and is in fact just
a consequence of the simplified modeling of the system. The
“interesting” behaviour of the system—when the wind turbine
is working properly—is only a quasi-stationary solution, i.e.
a probability distribution that is almost invariant and relaxes
very slowly to the exact stationary solution3. Numerically, a
well-chosen truncation of the computational domain allowsto
find the quasi-stationary solution, which is of practical interest,
instead of the undesirable exact one.

E. Numerical results

The numerical results presented in this section are computed
for a 2 MW variable speed wind turbine, the characteristics
of which are given in [13]. The thresholds for the switching
controller are set toωAB = ωnom = 18 RPM and ωBA =
0.95 ωAB (see Fig. 2). The PDE is discretized in space using
a finite volume scheme [20]. The stationary distribution is
computed directly using Arnoldi’s method4, as the positive
and normalized eigenvector corresponding to the eigenvalue

3This can be made more rigourous using the concepts of metastable sets
and exit rates, see [19] for instance.

4This algorithm allows to compute a few eigenvalues of a largesparse
matrix. It is implemented in ARPACK [21] and available in Matlab’s eigs
function.
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Fig. 4. Joint pdf of the rotor speedω(t) and the wind speedv(t), obtained
by marginalization over the pitch angleθ(t) and the modeq(t).

zero. This approach is very efficient since—contrary to MC-
based methods—no time-marching is required. The resulting
joint pdf of the rotor speedω(t) and the wind speedv(t),
obtained by marginalization over the pitch angleθ(t) and the
modeq(t), is shown on Fig. 4 for two differerent values of the
mean wind speed̄v. Other marginal pdf’s could be obtained
as well.

The generator power outputPG(t) is a function of the
rotor speedω(t) and the discrete modeq(t). Therefore,
its probability law can be deduced from the joint pdf of
the state variables. Since the random variablePG(t) has a
mixed probability measure, involving an absolutely continuous
component coming from mode A, and a discrete component
from mode B, it is more convenient to consider its distribution
function:F (PG,0) = P {PG(t) ≤ PG,0}. Fig. 5 shows a good
agreement between the result obtained by the Fokker-Planck
equation and a reference cumulative histogram obtained by
Monte-Carlo simulation of the system (using the Euler scheme
with approximately5.106 time steps of durationδt = 0.01 s).
Then, solving the PDE repeatedly with varyingv̄, it becomes
possible to characterize the uncertainty in the power output
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Fig. 5. Distribution function of the power outputPG, for a mean wind speed
v̄ = 12m/s: result obtained with the generalized FPE (full line), compared
to a reference Monte-Carlo simulation (cumulative histogram).
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Fig. 6. Distribution function of the power outputPG, for several values of
the mean wind speed̄v. The discontinuity atPG = PG,nom for high wind
speeds indicates thatP {q(t) = B} > 0.

as a function of the mean wind speed (see Fig. 6 and 7).
This a truly dynamical result, much more accurate than the
usual static analysis: indeed, both the fluctuations of the wind
speed and the switchings of the controller are taken into
account here, whereas the static analysis assumes the steady-
state relationship between̄v andPG.

Computationally speaking, the PDE-based method seems
faster than MC-based methods for this problem. The main
reason is that, as mentionned earlier, the stationary distribution
can be computed directly with the PDE approach, whereas
MC techniques require the simulation of the system until the
stationary regime takes place. Using Matlab on a Pentium IV
(2.8 GHz, 1 Go of memory), the pdf’s of Fig. 4 are obtained
in approximately 1 minute; comparatively, a basic MC method
takes about 10 minutes to produce a “stable” approximation
of the distribution function shown on Fig. 5. A more precise
comparison is out of the scope of this paper, since both
approaches involve the tuning of many parameters (moreover,
the convergence of a MC-based method can be improved by
variance reduction techniques).

More generally, the use of PDE-based methods is restricted
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to models of low dimension—approximatelyn ≤ 4 at the
present time—by memory requirements and complexity issues.
Whenn ≤ 3, they can be more efficient that MC-based meth-
ods, especially when the stationary regime is to be computed.
On the opposite, whenn ≥ 5, the numerical solution of the
PDE becomes unfeasible.

IV. CONCLUSION

The generalized Fokker-Planck equation for stochastic hy-
brid systems has been presented and applied to a variable-
speed wind turbine model. From a methodological point
of view, this shows that PDE-based methods can profitably
replace Monte-Carlo simulation for the dynamical analysis
of stochastic hybrid models—at least when the number of
continuous variables and discrete states allows the numerical
solutions of the PDE. Concerning the wind turbine application,
the distribution function of the generator power output has
been computed, for a wide range of mean wind speeds. A
similar approach could be used with virtually any kind of
wind turbine and control strategy, therefore providing power
systems operators with an efficient numerical tool to assess
a priori the uncertainty in the power output of a wind power
plant. On a larger scale, this approach could hopefully provide
some assistance for the network integration of wind parks.
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