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Initialization of the BIMBO self-test method
using binary inputs and outputs

Jérome Juillard, Eric Colinet

Abstract— This paper deals with the initialization of the
BIMBO method, a deterministic identification method based on
binary observation, for the (self-) test of integréed electronic and
electromechanical systems, such as MEMS. Finding adequate
starting point for the parameter estimation algorithrm may be
crucial, depending on the chosen model parameteritian. We
show how this starting point may be obtained usingnly binary
inputs and outputs and a few straightforward calcuétions. The
practical implementation of this method only requires a one-bit
digital-to-analog converter (DAC) and a one-bit ankbg-to-digital
converter (ADC). This makes the proposed approach ery
amenable to integration and leads to no additionatost compared
to the BIMBO method. We describe the method from a
theoretical point of view, discuss its implementatin and illustrate
it in some idealized cases.

Index Terms— Parameter estimation, self-test, binary data
processing, microsystems, integrated electronics.

I. INTRODUCTION

As the characteristic dimensions of electronic deviand
systems become smaller, the performances of thegieed
become more dispersed. Typical sources of disperaie
variations in the fabrication process or changes the
operating conditions, such as temperature. As aemprence,
the capacity to self-test and self-adjust is a veegirable
feature for microfabricated devices. However, mesisting
system identification methods [1-2] do not easitple down
to the micro- or nano-world. This is due to thetfdmat these
methods rely on a high-resolution digital measungneg the
system output. Their integration requires the impatation
of a high-resolution analog-to-digital converterD@s) and,
thus, results in longer design times as well agelasilicon
areas. These issues have been addressed in [3ie v
Basic Identification Method using Binary Observato
(BIMBO) is presented and its basic properties atal#dished.
The principle of BIMBO is the following (Fig. 1):

1. generate a spectrally rich signal, such as a

white noise.
2. measure the system’s outpyi using a one bit
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ADC, i.e. measures, =sign(yk).

3. using a discrete parametric model of the unknown
system, compute the estimated time respopse

and § =sign(y,) .
4. adjust the parametric model so that a correct
estimationy, is produced.

Because of its very low integration cost and itsde
practical implementation, it provides designershwét very
simple tool for the built-in self-test of micro-eteomechanical
systems (MEMS) and microelectronic devices. We sbin
[3] that the criterion used in the parameter edionaroutine
(3“ and 4" step) becomes convex in a neighbourhood of the
minimum, when the number of samples goes to iyfirdis a
consequence, it is possible to find the optimaltesys
parameters using the gradient algorithm descrilme{B], or
any other convex optimization method, provided thigal
parameters are correctly chosen. Depending on hiosen
parameterization and on the regularity of the systan
inadequate starting point may result in the nonveagence of
the optimization algorithm. For example, it is velificult to
identify the parameters of an ARX model of a systeith a
large quality factor without sufficient prior infaation.

In the present paper, we describe a method foimiinthese
initial parameters in two cases:

« the input signal is a binary white noise.

« the input signal is a gaussian white noise.
The former case is of special practical interestabse its
practical implementation requires only a one-bigitdi-to-
analog converter (DAC).

The rest of the paper is organized as follows:t,firge
describe the initialization method when a binargittion is
used (section 1l) and when a gaussian excitatiorussd
(section IlI). In section IV, we discuss the vatdiof the
proposed approach from a mathematical standpoirat
establish the statistical properties of our appnode section
V, we describe the practical implementation of thethod.
Finally, in section VI, we use simulated exampleslitistrate
our method and we discuss and explain the results.

an

II.  INITIALIZATION IN THE CASE OF A BINARY INPUT
Consider the setup of Fig. 2, wherg is a symmetric
binary white noise with meam, and standard deviation 1, so

that:



W, = Uy, —m, =sign(u, —m,) (1) 1 H h, EH
and Py, >0)=> d+erfd , (11)
28 o2 if
P =1)= Plw, =-1)=> @ "
K K 2" where erf is the error function, so that
We suppose thab, is a noise (not necessarily white), with E h E
Cq(p)=erfz—" (12)

zero mean and standard deviatiop. We also suppose the

following two quantities are defined:

Zh:Zhl : (3

Uh2=zh|2, (@)
=

where the hy are the coefficients of the system’s impuls

response, i.e. that the system under considerististable.

The cross-covariance function of, and s, may be written

as:
Ca(P) = Elsuy-p )~ Elsic) Elu)
= Efsy (Up ~m, )= Elscwip)
where E()
we have:
SkWk-p = Sigr‘(Yk )Wk—p

= Sign(Yk )Sign(Wk— p ) = Sign(Yka—p ) '
Equation (5) can then be reformulated in termsrobabilities
as:

Calp)= P(yka—p > O)“ P(yka-p s O)

®)

(6)

7
= 2P(y, wy_, >0)-1 ()
Now, we have:

Y = by +Z hu
RO , 8)

=b,+m,Z, + hwi +hyw_p

1=0,I#p
and thus:

00
YiWi—p = bW p + My Zpwi_p + 3 hyw Wy, +hy o (9)

1=0#p

P24

Finally, letting erf™ denote the inverse error function, we
have:

hp :0\/5

erf*(Cq (p))

\/1+ z(erf 2(Ccy, (p)))2

(13)

An estimation of the system’s impulse response tben be
found by replacing in (134, by an empirical estimation, for

example:

- 1N
Csu(p):ﬁ Z SkUk-p -
=1

The statistical properties of this estimation aiscwaksed in
section IV, along with the applicability of the CLT

(14)

denotes the mathematical expectation. Using (1),

[ll.  INITIALIZATION IN THE CASE OF A GAUSSIAN INPUT
When u, is a gaussian white noise, it is difficult to appl
the approach described in section Il unless equals 0. Let
us then suppose that it is the case and/ebe the sign ot .
Then, it is simple to show that:
Co (p)= 2Ply, Uy, >0)-1. (15)
The joint probability density function o, andu,_, can be

written:
_ 2
fy.u)=—7 ex’% = %*“2 -2WH (16)
2ma'N1-r? 2(1—r ) g

where it is supposed that the input has variance 1,

hp
r=2 (17)
and
o?=0,>+0,°. (18)

Now, the first term on the right-hand side is ad@m variable ~.q can then integrate (16) @h% O to find a closed-form
with zero mean and standard deviatigy, the second term is expression of (15). This leads to [5]:

a Bernouilli random variable with zero mean andhdéad

deviation m,Z, and the third term is a weighted sum oflp :a'sin%cw(p)g

Bernouilli random variables with zero means anchddad
deviations 1. All these variables are independehts,
provided the conditions of the central limit theoréCLT) [4]

(19)

This result can also be used to initialize the BB
algorithm. However, its practical implementatiomuees a
high-resolution DAC and, thus, it is less amenalxe

are met, y, W, can be approximated by a gaussian randofRiegration than the method proposed in sectionO. the

variable with meamp and standard deviatioap , where:
o, =0y’ +m*5, 2 +0,° -h > =0? -h ?. (10)

The probability that appears in (7) is then:

other hand, this approach can be applied regardiesbe
properties of the unknown system.

IV. VALIDITY OF THE PROPOSED APPROACH

In this section, we look more deeply into the ctinds of
applicability of the CLT and we establish the stital



properties of (14) in the case of binary inputs antputs. (A 2) 1 NN
EIC, |=—

A. Applicability of the CLT N2 Zl Z Elovti-pti-) "

Intuitively, the applicability conditions of the JLare met 2 NN ' (26)
in many cases, provided none of the random valsr',ablezmz Z P(ykuk—pylul—p >0)_1
appearing in (9) dominates too much. In case tpatinoise ==
has zero mean and the measurement noise is gausgmn
reduces to the condition that the system’'s impuésponse
does not vanish quickly. correlation length oh, i.e.

More accurately, a sufficient condition for applyithe CLT Cg, (p) =0. (27)
is the Lindeberg condition [4]. Lettin®, be the distribution |t s then simple to verify that:

Finding a closed-form expression for (26) is feksibut
tedious, except in the case whegnis large compared to the

n 11
of X, =hw, w,_, ands,*= Z h?, one can show that the P(quk—py|U|—p >0)=E+E5k| ) (28)
distribution of = where J, is the Kronecker symbol. The variance of (14) can

10 then be expressed as:
=—§N X 20 A 1
Hn Sh (=5 ! (20) Var(csu):ﬁ- (29)
converges weakly to a unit normal distribution pded the Equation (29) is valid in the case of any white aetered
following condition is met: input u, .

n
O >0, lim izzj' x2Q, (dx)=0. 21)
n-o g 2 Ly Hxzsd V. PRACTICAL IMPLEMENTATION
It is simple to see that, in the case of Bernouitindom Once an estimation of the cross-covariance betwgeand
variables, the integrals appearing in (21) areeib provided s, has been calculated, equation (13) or (19) musiseel,

- ma>{h|| - "h"oo _ (22) depending on whether the inputs are gaussian anpimhite
gy, [, noise. In either case, the relation between thdficmats of

Thus, the only way to make sure that the Lindetmengition the impulse response and the cross-covariance idangs

is strictly met is to haver, go to infinity. However, we shall almost_ linear (_F'g' 3) As a consequence, I may be
approximated with sufficient accuracy with a thimk fifth-

order Taylor expansion.

consider, in practice, that the distribution gf is close to a

unit normal distribution if: We know that, theoretically, when the impulse remseo

[, vanishes, the variance of the cross-covarianceasir (14) is

I <<1. (23)  given by (29). Therefore, it should be possiblertmcate the
2

estimated impulse response to an adequate leRgth by
dropping the coefficients for which the calculatealue of
ésu (p) is below a certain threshold value, s2fy/N .

Now, consider thato,, is known and different from zero.
We can rewrite (13) or (19) as:

This result can easily be extended to the cases wiez 0
or when the measurement noise is not gaussiaexmple, it
could be a binary dither signal).

B. Satistical properties of (14)

Before moving to the practical implementation ofe th

approach, we must establish the bias and the wariahthe _P = F(Csu(p)): Fp. (30)
cross-covariance estimator (14). For the sakenoplggity, we g
supposem, =0. It is clear that: Taking the square of (30) and summing fok P, leads to:
~ l N 1 Pma>< 2 _Pmax 2
E(Csu(p))=ﬁz Elsci-p) = Ca(p). @4 —5 dhyt =y Fp7, (1)
=1 p=1 p=1
As for the variance of the estimator, we have: and thus,o, > may be empirically estimated by:
var(c”ﬂu ): EE((ESU -Cq, )2 @z E(ésuz)—Csuz. (25) P .
> F
The first term on the right-hand side can then btem, using . > _ 2 p=1
(1): On =0p —p — (32)
1-Y F?
p=1

where pr stands forF(ésu(p)). Note that, asg, increases,



the correlation betweem, and s, tends to decrease and,

ultimately, drops below the threshold valpévN | leading to
a poor evaluation ofP,,,. On the other hand, it is clearly
impossible to estimate the value of, when g}, is equal to

zero. As a consequence, there should exist a Heiss
leading to an optimal estimation of,, .

oy, knowing o, =1. We see in Fig. 6 that, as expected, there
exists an optimal noise level for the estimationaf. It is

clear that this “stochastic resonance” phenomesosharper
for the system with the smaller damping factor. The
explanation for this is that adding a gaussianevhdise at the
comparator input improves the gaussianityygf. Thus, in the

case of a system with a low quality factor or, mgeeerally, a

If the BIMBO method is to be used to estimate thgysiem that does not meet requirement (23), adsligaussian

coefficients of the impulse response, those fourith the
approach described in the previous sections cagtttir be
used to initialize the optimization algorithm. Otivese, a
reduced-order model (as an ARX model, for instameest be
fitted to the impulse response estimated with @r3§19) and
the resulting model parameters must then be us#ukasitial
parameters of the optimization algorithm.
Some examples are given in the next section.

VL.

In this section, the initialization method desedbin the
previous sections is illustrated in an idealizedsecaWe
consider a discrete system, as shown in Fig. 2revbg is a

symmetric binary white noise with mean 0 and steshda
deviation 1, so that (13) should apply.(z'l) is chosen as the

discrete transfer function of a sampled-and-hetmbisd-order
system with natural pulsatiom,=1 rad.8 and damping factor

[LLUSTRATION

¢ . The sampling periody is equal to 1s. The static gain of
H (z"l) is adjusted so that, =1.

In the absence of measurement noise or of dithemes
computer experiments give the results shown in.Fgsnd 5.

By comparing these two figures, we verify that, #orgiven
sampling period, the distribution ofy, becomes more

gaussian as the quality factor increases. Thesalations are
repeated a large number of times, with differemdalgr of

u,and a fixed number of samples, so that we can laai
empirical estimate of the variance 6; . Using (13), (29) and
supposingo =1, we have, in theory:

- T
vanh, |J= —.

r( p) 2N
Figs. 4 and 5 show that this approximation is véid both
systems, provided, as mentioned in section IV-Bf th is

(33)

large compared to the correlation length bf We also
observe that, as expected, this approximation lggdter as the
quality factor of the system increases. These tesallidate
the practical implementation proposed in section V.

In order to test the validity of (32), the simutais are
repeated a large number of times for several valties,. We

define the total error on the estimationaf? as:

o707 + var(c&hz)@v2 |

This quantity can be empirically estimated as acfiom of

(34)

dither at the comparator input results in a lamgerovement
in the validity of (13) and, therefore, in the a@my of the
estimation of the impulse response. On the othed hi (23)
is met, there is only little improvement to be ested. When
o, becomes much larger tham, , the correlation drops to

zero and leads to a poor estimationaf, regardless of the

validity of (23). These arguments are also validhe case of
non-gaussian dither: there usually exists an optiralue of
o, for which the error ong, is minimized and this value

approximately corresponds to a peak in the gausgiah y, ,

i.e. in a value of kurtosis close to 3 (Fig. 7).t&ldhat this
phenomenon stacks with the errors due to the fmit@ber of
samples.

VII.

In this paper, we have shown how the BIMBO self-tes
method could be initialized in a simple way, withcany
additional implementation cost. The proposed apgrphased
on probabilistic considerations, such as whitemsssmptions,
is less general in scope than BIMBO but the contjmrtal
efforts it requires are very small, making it dhigi as a
standalone self-test method. We have discussedatttty of
this approach from a mathematical standpoint andhease
described how it could be implemented. Some rebakgd on
simulations were given. They were found to be impdjo
agreement with the predicted behaviour of the nwktho
Stochastic resonance phenomena were observed plaihex
in the presence of a dithering signal at the AD@ltn

CONCLUSION
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Fig. 4 - Simulation results fof =0.5 andN =2'°. The histogram of the output of the simulatedesysis shown in the upper box.
In the lower box, we compare the variancégf (stem plot) to the theoretical value obtained W&RB) (dotted line), based on
the results of 500 simulations.
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Fig. 5 - Simulation results fof =0.05 andN =2*°. The histogram of the output of the simulatedesysis shown in the upper
box: it is clearly more gaussian-shaped than tleeioirig. 4. In the lower box, we compare the vaxriaofﬁp (stem plot) to the
theoretical value obtained with (33) (dotted linggsed on the results of 500 simulations.
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