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Abstract— This paper deals with the initialization of the 

BIMBO method, a deterministic identification method based on 
binary observation, for the (self-) test of integrated electronic and 
electromechanical systems, such as MEMS. Finding an adequate 
starting point for the parameter estimation algorithm may be 
crucial, depending on the chosen model parameterization. We 
show how this starting point may be obtained using only binary 
inputs and outputs and a few straightforward calculations. The 
practical implementation of this method only requires a one-bit 
digital-to-analog converter (DAC) and a one-bit analog-to-digital 
converter (ADC). This makes the proposed approach very 
amenable to integration and leads to no additional cost compared 
to the BIMBO method. We describe the method from a 
theoretical point of view, discuss its implementation and illustrate 
it in some idealized cases.  
 

Index Terms— Parameter estimation, self-test, binary data 
processing, microsystems, integrated electronics. 
 

I. INTRODUCTION 

As the characteristic dimensions of electronic devices and 
systems become smaller, the performances of these devices 
become more dispersed. Typical sources of dispersion are 
variations in the fabrication process or changes in the 
operating conditions, such as temperature. As a consequence, 
the capacity to self-test and self-adjust is a very desirable 
feature for microfabricated devices. However, most existing 
system identification methods [1-2] do not easily scale down 
to the micro- or nano-world. This is due to the fact that these 
methods rely on a high-resolution digital measurement of the 
system output. Their integration requires the implementation 
of a high-resolution analog-to-digital converter (ADCs) and, 
thus, results in longer design times as well as larger silicon 
areas. These issues have been addressed in [3], where the 
Basic Identification Method using Binary Observations 
(BIMBO) is presented and its basic properties are established. 
The principle of BIMBO is the following (Fig. 1): 

1. generate a spectrally rich signal ku , such as a 

white noise.  
2. measure the system’s output ky  using a one bit 
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ADC, i.e. measure ( )kk ys sign= . 

3. using a discrete parametric model of the unknown 
system, compute the estimated time response kŷ  

and )ˆsign(ˆ kk ys = . 

4. adjust the parametric model so that a correct 
estimation kŷ  is produced. 

Because of its very low integration cost and its simple 
practical implementation, it provides designers with a very 
simple tool for the built-in self-test of micro-electromechanical 
systems (MEMS) and microelectronic devices. We showed in 
[3] that the criterion used in the parameter estimation routine 
(3rd and 4th step) becomes convex in a neighbourhood of the 
minimum, when the number of samples goes to infinity. As a 
consequence, it is possible to find the optimal system 
parameters using the gradient algorithm described in [3], or 
any other convex optimization method, provided the initial 
parameters are correctly chosen. Depending on the chosen 
parameterization and on the regularity of the system, an 
inadequate starting point may result in the non-convergence of 
the optimization algorithm. For example, it is very difficult to 
identify the parameters of an ARX model of a system with a 
large quality factor without sufficient prior information. 

In the present paper, we describe a method for finding these 
initial parameters in two cases:  

•  the input signal is a binary white noise. 
•  the input signal is a gaussian white noise. 

The former case is of special practical interest because its 
practical implementation requires only a one-bit digital-to-
analog converter (DAC).  

The rest of the paper is organized as follows: first, we 
describe the initialization method when a binary excitation is 
used (section II) and when a gaussian excitation is used 
(section III). In section IV, we discuss the validity of the 
proposed approach from a mathematical standpoint and 
establish the statistical properties of our approach. In section 
V, we describe the practical implementation of the method. 
Finally, in section VI, we use simulated examples to illustrate 
our method and we discuss and explain the results. 

II. INITIALIZATION IN THE CASE OF A BINARY INPUT 

Consider the setup of Fig. 2, where ku  is a symmetric 

binary white noise with mean um  and standard deviation 1, so 

that: 
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( )ukukk mumuw −=−= sign  (1) 

and  

( ) ( )
2

1
1P1P =−=== kk ww . (2) 

We suppose that kb  is a noise (not necessarily white), with 

zero mean and standard deviation bσ . We also suppose the 

following two quantities are defined: 
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where the lh  are the coefficients of the system’s impulse 

response, i.e. that the system under consideration is stable. 
The cross-covariance function of ku  and ks  may be written 

as: 
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where ( ).E  denotes the mathematical expectation. Using (1), 

we have: 
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Equation (5) can then be reformulated in terms of probabilities 
as: 
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and thus: 
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Now, the first term on the right-hand side is a random variable 
with zero mean and standard deviation bσ , the second term is 

a Bernouilli random variable with zero mean and standard 
deviation hum Σ  and the third term is a weighted sum of 

Bernouilli random variables with zero means and standard 
deviations 1. All these variables are independent, thus, 
provided the conditions of the central limit theorem (CLT) [4] 
are met, pkk wy −  can be approximated by a gaussian random 

variable with mean ph  and standard deviation pσ , where: 

22222222
pphhubp hhm −=−+Σ+= σσσσ . (10) 

The probability that appears in (7) is then: 
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where erf  is the error function, so that 
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Finally, letting 1erf −  denote the inverse error function, we 
have: 
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An estimation of the system’s impulse response can then be 
found by replacing in (13) suC  by an empirical estimation, for 

example: 
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The statistical properties of this estimation are discussed in 
section IV, along with the applicability of the CLT.  

III.  INITIALIZATION IN THE CASE OF A GAUSSIAN INPUT 

When ku  is a gaussian white noise, it is difficult to apply 

the approach described in section II unless um  equals 0. Let 

us then suppose that it is the case and let kv  be the sign of ku . 

Then, it is simple to show that: 
( ) ( ) 10P2 −>= − pkksv uypC . (15) 

The joint probability density function of ky  and pku −  can be 

written: 
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where it is supposed that the input has variance 1,  

'σ
ph

r = ,  (17) 

and 
222' hb σσσ += .  (18) 

One can then integrate (16) on ++ ℜ×ℜ  to find a closed-form 
expression of (15). This leads to [5]: 

( )
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= pCh svp 2

sin'
πσ  (19) 

This result can also be used to initialize the BIMBO 
algorithm. However, its practical implementation requires a 
high-resolution DAC and, thus, it is less amenable to 
integration than the method proposed in section II. On the 
other hand, this approach can be applied regardless of the 
properties of the unknown system. 

IV. VALIDITY OF THE PROPOSED APPROACH 

In this section, we look more deeply into the conditions of 
applicability of the CLT and we establish the statistical 



 

properties of (14) in the case of binary inputs and outputs.  

A. Applicability of the CLT 

Intuitively, the applicability conditions of the CLT are met 
in many cases, provided none of the random variables 
appearing in (9) dominates too much. In case the input noise 
has zero mean and the measurement noise is gaussian, this 
reduces to the condition that the system’s impulse response 
does not vanish quickly.  

More accurately, a sufficient condition for applying the CLT 
is the Lindeberg condition [4]. Letting lQ  be the distribution 

of pklkll wwhX −−=  and ∑
=
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converges weakly to a unit normal distribution provided the 
following condition is met: 
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It is simple to see that, in the case of Bernouilli random 
variables, the integrals appearing in (21) are all zero provided 
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Thus, the only way to make sure that the Lindeberg condition 
is strictly met is to have hσ  go to infinity. However, we shall 

consider, in practice, that the distribution of nµ  is close to a 

unit normal distribution if: 
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h

h
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This result can easily be extended to the cases when 0≠um  

or when the measurement noise is not gaussian (for example, it 
could be a binary dither signal). 

B. Statistical properties of (14) 

Before moving to the practical implementation of the 
approach, we must establish the bias and the variance of the 
cross-covariance estimator (14). For the sake of simplicity, we 
suppose 0=um . It is clear that: 

( )( ) ( ) ( )pCus
N

pC su

N

k
pkksu == ∑

=
−

1

E
1ˆE . (24) 

As for the variance of the estimator, we have: 
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The first term on the right-hand side can then be written, using 
(1):  
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Finding a closed-form expression for (26) is feasible but 
tedious, except in the case when p  is large compared to the 

correlation length of h , i.e.  
( ) 0≈pC su . (27) 

It is then simple to verify that: 
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where klδ  is the Kronecker symbol. The variance of (14) can 

then be expressed as: 

( )
N

Csu
1ˆvar ≈ .  (29) 

Equation (29) is valid in the case of any white and centered 
input ku . 

V. PRACTICAL IMPLEMENTATION 

Once an estimation of the cross-covariance between ku  and 

ks  has been calculated, equation (13) or (19) must be used, 

depending on whether the inputs are gaussian or binary white 
noise. In either case, the relation between the coefficients of 
the impulse response and the cross-covariance function is 
almost linear (Fig. 3). As a consequence, it may be 
approximated with sufficient accuracy with a third- or fifth-
order Taylor expansion.  

We know that, theoretically, when the impulse response 
vanishes, the variance of the cross-covariance estimator (14) is 
given by (29). Therefore, it should be possible to truncate the 
estimated impulse response to an adequate length maxP  by 

dropping the coefficients for which the calculated value of 

( )pC su
ˆ  is below a certain threshold value, say N/2 .  

Now, consider that bσ  is known and different from zero. 

We can rewrite (13) or (19) as: 
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Taking the square of (30) and summing for maxPp ≤  leads to:  
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and thus, 2
hσ  may be empirically estimated by: 
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where pF̂  stands for ( )( )pCF su
ˆ . Note that, as bσ  increases, 



 

the correlation between ku  and ks  tends to decrease and, 

ultimately, drops below the threshold value N/2 , leading to 

a poor evaluation of maxP . On the other hand, it is clearly 

impossible to estimate the value of hσ  when bσ  is equal to 

zero. As a consequence, there should exist a noise level 
leading to an optimal estimation of hσ . 

If the BIMBO method is to be used to estimate the 
coefficients of the impulse response, those found with the 
approach described in the previous sections can directly be 
used to initialize the optimization algorithm. Otherwise, a 
reduced-order model (as an ARX model, for instance) must be 
fitted to the impulse response estimated with (13) or (19) and 
the resulting model parameters must then be used as the initial 
parameters of the optimization algorithm.  

Some examples are given in the next section. 

VI.  ILLUSTRATION 

 In this section, the initialization method described in the 
previous sections is illustrated in an idealized case. We 
consider a discrete system, as shown in Fig. 2, where ku  is a 

symmetric binary white noise with mean 0 and standard 

deviation 1, so that (13) should apply. ( )1−zH  is chosen as the 

discrete transfer function of a sampled-and-held second-order 
system with natural pulsation 0ω =1 rad.s-1 and damping factor 

ξ . The sampling period sT  is equal to 1s. The static gain of 

( )1−zH  is adjusted so that hσ =1. 

In the absence of measurement noise or of dither, some 
computer experiments give the results shown in Figs. 4 and 5. 
By comparing these two figures, we verify that, for a given 
sampling period, the distribution of ky  becomes more 

gaussian as the quality factor increases. These simulations are 
repeated a large number of times, with different trials of 

ku and a fixed number of samples, so that we can obtain an 

empirical estimate of the variance of pĥ . Using (13), (29) and 

supposing 1=σ , we have, in theory: 

 ( )
N

h p 2
ˆvar

π≈ .  (33) 

Figs. 4 and 5 show that this approximation is valid for both 
systems, provided, as mentioned in section IV-B, that p  is 

large compared to the correlation length of h . We also 
observe that, as expected, this approximation gets better as the 
quality factor of the system increases. These results validate 
the practical implementation proposed in section V. 
In order to test the validity of (32), the simulations are 
repeated a large number of times for several values of bσ . We 

define the total error on the estimation of 2hσ  as: 

( ) ( ) 2/1
2222 ˆvarˆE 


 +− hhh σσσ . (34) 

This quantity can be empirically estimated as a function of 

bσ , knowing hσ =1. We see in Fig. 6 that, as expected, there 

exists an optimal noise level for the estimation of hσ . It is 

clear that this “stochastic resonance” phenomenon is sharper 
for the system with the smaller damping factor. The 
explanation for this is that adding a gaussian white noise at the 
comparator input improves the gaussianity of ky . Thus, in the 

case of a system with a low quality factor or, more generally, a 
system that does not meet requirement (23), adding a gaussian 
dither at the comparator input results in a large improvement 
in the validity of (13) and, therefore, in the accuracy of the 
estimation of the impulse response. On the other hand, if (23) 
is met, there is only little improvement to be expected. When 

bσ  becomes much larger than hσ , the correlation drops to 

zero and leads to a poor estimation of hσ , regardless of the 

validity of (23). These arguments are also valid in the case of 
non-gaussian dither: there usually exists an optimal value of 

bσ  for which the error on hσ  is minimized and this value 

approximately corresponds to a peak in the gaussianity of ky , 

i.e. in a value of kurtosis close to 3 (Fig. 7). Note that this 
phenomenon stacks with the errors due to the finite number of 
samples. 

VII.  CONCLUSION 

In this paper, we have shown how the BIMBO self-test 
method could be initialized in a simple way, without any 
additional implementation cost. The proposed approach, based 
on probabilistic considerations, such as whiteness assumptions, 
is less general in scope than BIMBO but the computational 
efforts it requires are very small, making it eligible as a 
standalone self-test method. We have discussed the validity of 
this approach from a mathematical standpoint and we have 
described how it could be implemented. Some results based on 
simulations were given. They were found to be in good 
agreement with the predicted behaviour of the method. 
Stochastic resonance phenomena were observed and explained 
in the presence of a dithering signal at the ADC input.  
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Fig. 1 - Block diagram of the BIMBO method. A parametric model of the real system is built so as to maximize the similarity 
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Fig. 4 - Simulation results for ξ =0.5 and N =216. The histogram of the output of the simulated system is shown in the upper box. 

In the lower box, we compare the variance of ph
�

 (stem plot) to the theoretical value obtained with (33) (dotted line), based on 

the results of 500 simulations.  
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Fig. 5 - Simulation results for ξ =0.05 and N =216. The histogram of the output of the simulated system is shown in the upper 

box: it is clearly more gaussian-shaped than the one in Fig. 4. In the lower box, we compare the variance of ph
�

 (stem plot) to the 

theoretical value obtained with (33) (dotted line), based on the results of 500 simulations. 
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Fig. 6 - Plot of the total error on the estimation of 2

hσ , as defined in (34), versus the known value of bσ , for ξ =0.5 (left) and 

ξ =0.05 (right). 
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Fig. 7 - Plot of the kurtosis of ky  (for ξ =0.5) versus the 

value of bσ , for different types of dither. There usually 

exists a value of bσ  for which the gaussianity (kurtosis = 3) 

of ky  is maximal. 
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Fig. 8 - Plot of the total error on the estimation of 2

hσ , as 

defined in (34), versus the value of bσ , for ξ =0.5, N  = 216 

and different types of dither. 


