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A unifying formulation of the
Fokker-Planck-Kolmogorov equation
for general stochastic hybrid systems

Julien Bect

Department of Signal Processing and Electronic Systenpe|8g,
Gif-sur-Yvette, France. E-mail: julien.bect@supelec.fr

Abstract: A general formulation of the Fokker-Planck-Kolgorov (FPK) equation for stochastic hybrid
systems is presented, within the framework of Generalizedastic Hybrid Systems (GSHS). The FPK
equation describes the time evolution of the probability ¢d the hybrid state. Our derivation is based
on the concept of mean jump intensity, which is related td bloé usual stochastic intensity (in the case
of spontaneous jumps) and the notion of probability cur(enthe case of forced jumps). This work
unifies all previously known instances of the FPK equatiarsfochastic hybrid systems, and provides
GSHS practitioners with a tool to derive the correct evolutequation for the probability law of the
state in any given example.

Keywords: general stochastic hybrid systems, Markov nmydeintinuous-time Markov processes,
jump processes, Fokker-Planck-Kolmogorov equation, ggized Fokker-Planck equation

1. INTRODUCTION stochastic intensity exists for these jumps. Until reggritie
only results available in the literature were dealing witreo

, Among all continuous-time stochastic models of (nonlijeatdimensional models; see Feller (1952, 1954) and Malhardé an
dynamica| SystemS, those with the Markov property are espghong(1985) These results have been extended to a class of
cially appealling because of their numerous nice propertie  Multi-dimensional models by Bect et al. (2006).

C particular, they come equipped with a pair of operator semirhe main contribution of this paper is general formulatién o
.Ogroups, the so-called backward and forward semigroupswhithe FPK equation for GSHS's. It is based on the concept of
&)are the analytical keys to most practical problems inv@vinmean jump intensitywhich conveniently substitutes for the
qoMarkov processes. When the system is determined by a stochggchastic intensity when the latter does not exist. Thiséqn
Stic differential equation, these semigroups are genelt&tar-  ynjfies all previously known instances of the FPK equation
tial Differential Equations (PDE) — respectively the baekd  for stochastic hybrid systems, and provides GSHS pragtiti®
and forward Kolmogorov equations. The forward Kolmogoroyyith a tool to derive the correct evolution equation for the
(")PDE, also known as the Fokker-Planck equation, rules the tiyopapility law of the state in any given example. The result

O)evolutiont — yu;, wherey; is the probability distribution of the  presented in this paper are extracted from the PhD thesfeof t
LO)stateX; of the system at time This paper deals with the gener- 5 thor (Bect, 2007).

—lalization of this Fokker-Planck-Kolmogorov (FPK) equatio . . ] .
Q\lthe framework of General Stochastic Hybrid Systems (GSHI)'e paper is organized as follows. Section 2 introduces our

Orecently proposed by Bujorianu and Lygeros (2004, 2006). hotations for the GSHS formalism, together with various as-
sumptions that will be needed in the sequel. In Section 3 we

! The GSHS framework encompasses nearly all continuougefine the crucial concept of mean jump intensity, which is
(Otime Markov models arising in practical applications, Wt  sed in Section 4 to derive our general formulation of the FPK
-Cing piecewise deterministic Markov processes (Davis, 1984quation for GSHS’s. Section 5 concludes the paper with a

1993) and switching diffusions (Ghosh et al., 1992, 199%b T series of examples and some general remarks concerning PDEs
kinds of jumps are allowed in a GSHS: spontaneous jumpgnd integro-differential equations.

defined by a state-dependent stochastic intens(fy;), and

forced jumps triggered by a so-called guard &etGeneral- 2. GENERAL STOCHASTIC HYBRID SYSTEMS

ized FPK equations have been given in the literature, in the

case of spontaneous jumps, for several classes of models; $&e object of interest in the GSHS formalism is a continuous-
Gardiner (1985), Kontorovich and Lyandres (1999), Krystulime strong Markov procesX = (X;);>0, With values in a

et al. (2003) and Hespanha (2005) for instance. The case roktric spacel?’. It is defined on a filtered spad€?, A, F),
forced jumps is harder to analyze, at the FPK level, becanse aquipped with a syster{1P$; T € EO} of probability measures
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n (2, A), with the property thatP, {X, =z} = 1 for all vector fieldsf; and ar-dimensional Wiener proces8 such
z € E° (i.e., X starts fromz underP,). As usual,E, denotes that, in mode; € Q \ Q9,
the expectation operator correspondind®o r
dZ; = folq, Z)dt+ > fi(q, Z:)dBY. 1)

It is assumed that, for eache (2, the samplepath — X;(w) =

is right-continuous, has left limitX, (w) in the completion¥
of EO, and has a finite number ijumps’ denotedﬂyw% on In other WordS, for allp S 02(E), X satisfies the fOIIOWing
the interval0; ¢] for all ¢ > 0. The last condition can be seen aggeneralized Ito formula

a “pathwise non-Zenoness” requirement. We will denote;py

the k™ jump time, withr, = + c if there is less thar jumps.  ¢(X:) — ¢(Xo) = /0 (Lp)(X,)ds + Z/ (f1p)(X

2.1 The hybrid state space + > (e o(X;))
Tk ?

0<m <t
The (completed) state-space of the model is assumed to have =

a hybrid structure® = U,co {q} x E,, whereQ is a finite where L is the differential generator assouated with (1), i.e.
- q q»

or countable set, and eadt, is either the closure of some L = }_; £ 2 + > (Zz 1fo]) 727957+ We make the

connected open subsX, C R"s (n, > 1) or any singleton following smoothness assumption:

space (in which case we se} = 0). The state at time can

therefore be written as a ant (Qt; Zt) Wherth c Q ASSUmpuon 1. The dl’lftfo is of C|aSECl and the other vector

andZ; € Eq,. We denote byo? = {g € Q | n, =0} the set fieldsf;, 1 <1 <r, are of classC**.

of all “purely discrete” modes, and by? = U,coa {¢} x E,

the corresponding subset bt ) ] }
_ o 2.3 Two different kinds of jumps
The state spack is regarded as the disjoint sum of the sBfs

g € Q, and endowed with the disjoint union topologyWe
denote by& the Borel o-algebra, and by. the subsets of
all relatively compact” € £. Moreover, we define a “volume
measure” orE’ by the relation

m() = Y my(lNE,) + Za reé,

We assume that there exists a Markov ketiiefrom E to E°
and a measurable locally bounded functionE® — R, such
that the followingLévy system identitigolds for allz € E°,
t > 0, and for all measurable : E x E° — R:

t
et ot B {3, <tsﬁ(X?k,X o =e{ [ wouan.|
where m, is the n,-dimensional Lebesgue measure éj = 0
andé, the Dirac mass at. (Note thatE, C R" has been where(Kop)(y) = [0 K(y,dy’) ¢(y,y’) and H is the pre-
tacitly identified with{¢} x E, C E.) dictable i mcreasmg process defined by
Let OF, be the boundary of, in R"¢, with the convention H — /t X d 1. 2
thatdE, = @ whenn, = 0. We define the bounda@E of A (Xs)ds + Z X, €G @

the state space by the relatiof = U,eo {¢} x 9E,, and the Test

guard seby G = E \ E. Itis notrequired thaG = JE. The first part corresponds $pontaneougimps, triggered “ran-
domly in time” with a stochastic intensity(X;), while the

Notations. Let 1 : £ — R be a (signed) measur& : £ X other part corresponds forcedjumps, triggered wheiX hits
& — Rakemelandp : E — R a measurable function. the guard se€.

The following notations will be used throughout the paper

assumlng the integrals exigK)(dy) = [ pu(dz) K (z, dy), Remark. The terms “spontaneous” and “forced” seem to have

(Ko)(x) = [ K(z,dy) o(y) andup = [ ju(dz) ( ). been coined by Bujorianu et al. (2003). They are closelyedla
to the probabilistic notions of predictability and totahoctessi-
2.2 A stochastic differential equation with jumps bility for stopping times (see, e.g., Rogers and Willian@0Q,

chapter VI,§§12—18), but be shall not discuss this point further
A vector fieldg on E is regarded as a first order differentialin this paper.
operator with respect to the continuous variables: itsoacti
on a continuously differentiable functign € Cl( ) will be
denoted byse, where(gy)(q, 2) = i, &' (4, 2) 5 (g, 2) on
E\ EY andgy = 0 on E. The number of “components” @f
depends on the modg to simplify the notations, we shall
agree that the indexésnd; always correspond to summations
on the number of continuous vanables_, {i_nd drop the explicit 3. MEAN JUMP INTENSITY
dependence og. For mstance, the definition afy can be

rewritten asgy = >, &' 62“ From now on, we assume that some initial probability |ayv
The processX is assumed to be driven by an Itd stochastitias been chosen, with (G) = 0 since the process cannot start
differential equation between its jumps: there existl smooth  from G. All expectations will be taken, without further mention,
1 which is (here) locally compact, separable and completadjrimable with respect to the probabilit?,, = [ po(dz)P,

Remark.The pair(K, H) is aLévy systerfor the proces in
the sense of Walsh and Weil (1972, definition 6.1). Most atstho
require thatH be continuous in the definition of a Lévy system,
thereby disallowing predictable jumps.




3.1 Definition and link with the usual stochastic intensity Now takey, to be the uniform probability of0; 1] (which is,

incidentally, the only stationary probability law of theogess).
It is assumed from now on thd(N;) < 4 co. This is a usual Then X
requirement for stochastic hybrid processewhich is clearly k—x
stronger than piecewise-continuity of the samplepatb$ding R(T > (0:]) = &:(T) /0 ar%fllax{ P t} d
satisfied depends not only on the dynamics of the system but 1

51 (I) / ot + 2] do
0

also on the initial probability lav.

In order to introduce the main concept of this section, let us = vty (D),
define a (positive, unbounded) meastiren £ x (0; +o0) by where[vt + «] is the smaller integer greater or equahio+
_ . Therefore the mean jump intensity exists in this case, and
R(A) =E 14 (X : ?” L > :
(4) ““{Zkzl A( T’f’Tk)} is equal tovd; (it is of course time-independent, singg
For anyI" € £, the quantityR (I x (0;¢]) is the expected num- IS Stationary). In particular, the global mean jump intgni
ber of jumps starting fronii during the time interva(0; ¢]. ri(E) = v.
Definition 2. Suppose that there exists a mappingt — 4, 4. MAIN RESULTS
from [0; +00) to the set of all positive bounded measuresin
such that, for all’ € &, 4.1 A weak form of the Fokker-Planck-Kolmogorov equation
(1) t+— r(I') is measurable, , Taking expectations in 2.2, the followirgeneralized Dynkin
(2) forallt >0, R(I' x (0;t]) = [ 7s(I) ds. formulais obtained: for all compactly supported € C?(E)
Thenr is called themean jump intensitpf the processX and allt > 0, .
(started with the initial law). E{o(X))— ¢(Xo)} = E {/ (L) (X,) ds}
0
Let us splitR into the sum of two measurd®’ and R, corre- B ®)
sponding respectively to the spontaneous and forced jurinps o +E Z P(Xr) —o(X5) ¢
0<1 <t

the process. Then, using the Lévy system identity, it iy ¢as

see that a mean jump intensity always exist for the sponta- L€t us assume the existence of a mean jump intemsiat all
neous parz’: it is given by times. Then (3) can be rewritten as

() = E(A\(Xy) 1x,er) :/F)\(x),ut(dx). (ht — po) o = /O us(L@)ds+/0 rs(K —I)pds, (4)

In other words: for spontaneous jumps, a mean jump intensi,YypeLe“r( s thledla;{v Og)i)t and[/is the “ide/ntity kernltlal"dq;E,
always exists, and it is the expectation of the stochastigpju - i€ eTe _ ﬁj'ne Wy, dy') = 0,(dy’). Formally differ-
intensity\(X,) on the even{ X, € T'}. entiating (4) yields

E di bl tic. The Lé tem identit py = L+ (K —1), (5)
orced jumps are more problematic. The Levy system iden Wheret — wy is the “derivative” oft — pu, (in a sense to

is powerless here, since no stochastic intensity existsa(ise be specified later), and* the adjoint of L in the sense of
forced jumps are predictable). All hope is not lost, thothdistribution theory '

a simple example will be presented in the next subsection,
proving that a mean jump intensity can exist anyway. This iEquation (5) begins like the usual Fokker-Planck equatayn f
fortunate, since the existence of a mean jump intensity witdliffusion processesy = L*u;) and ends with an additional
be an essential ingredient for our unified formulation of théerm that accounts for the jumps of the process. Accordjngly
generalized FPK equation. See subsection 5.2 for furtheilsle pgfinition 3. we will say thatt — y; is a solution in the weak

on that issue. sense of thgeneralized FPK equatiofor the GSHS if

a) there exists a mean jump intensity> r;,
b) there exists a mapping — pj}, from [0; +00) to the

. . _ . _ spaceM.(F) of all Radon measures dn, such that —
Consider the following hybrid dynamics of =[0;1]: the 1+(T) is absolutely continuous with a.e.-derivative—
state X; moves to the right at constant speed> 0 as long /

wy(T), forallT € &,

LA : .
as itis inEY =[0;1), and jumps instantaneously ioas soon ¢) L*u, is a Radon measure for al> 0,

as it hits the guard? = {1} (i.e., the reset kernel is such d) equation (5) holds as an equality between Radon mea-
thatK (1, -) = do)- sures, i.eu; () = (L*p)(T) + re(K — I)(T) for all
If we take iy = & for the initial law, then the process jumps t>0andalll € &.

from 1 to 0 each timet is a multiple ofl/v, i.e. 7, = k/v o .
and X~ = 1 almost surely. There is therefore no mean jum uch a weak form of the FPK equation is the price to pay for a
intensity in this case, sincB = 3",-, 0(1.k/u)- unified treatment of both kind of jumps. Conditions 3.a ard 3.

can be seen as smoothness requirements with respect tméhe ti
2 See, e.g., Davis (1984) or Bujorianu and Lygeros (2004). variable, and 3.c with respect to the space variables.

3.2 Whereuy comes into play: an illustrative example




4.2 “Physical” interpretation initial law pq, the vector fieldg of the stochastic differential
equation, the geometry of the state spdceand the reset
The usual FPK equation admits a well-known physical intekkernel K).
pretation as a conservation equation for the “probabiliassi
(see e.g. Gardiner, 1985). Indeed, assuming the existdrce .4 The case when a piecewise smooth pdf exists
smooth pdfp € C*(E x R;), the equation:, = L*u, can
be rewritten as a conservation equatign/ot = div(j,), with  Equation (5) is an evolution equation for the measure-vhlue
the probability currentj, defined by functiont ~— . In most situations of practical interest, the
_ _ 1 ij » L measureg:; admit a pdfp,, with respect to the volume mea-
ji =fope — 3 Z 8(225%) , a’ = Zf;f{ . 6) suremonFE (sometimes with an additional singular measure,
Y =1 like a linear combination of Dirac masses, but this caservail
The additional “ump term” in the generalized FPK equationP® discussed here). If the functipn (z, ?) — p;(z) is smooth

admit a nice physical interpretation as well. To see thisye €N10Udh, at least piecewise, then equation (5) simultaeous
rewrite it as the difference of two bounded positive measurd/Ves birth to an evolution equation for— p, and to static re-
ro(K —I) = 15" —r,, wherer?™ = r, K. Thereforer, andrs lations that hold for alt > 0 (so-called “boundary conditions”,
-t ’ t - . t . : . .
behave respectively assink and asourcein the generalized 2lthough the name is not entirely appropriate here). Thisea

FPK equation: for each € &, (') dt is the probability mass done quite generally, using some additional measure-gieor

leaving the seF duringdt, because of the jumps of the proces 'Eools for which there is no room in this paper. The reader is

while 757 (T") dt is the probability mass enteririg referred to Bect (200%]V.2.C) for more on this issue.

These two measures are in fact connected by the reset ker- 5. EXAMPLES

nel K (z, dy). In particular, the relation; (E) = r$*°(E) holds

at all imest > 0, ensuring that the total probability mass isg 1 A class of models with spontaneous jumps
conserved. Moreover, introducing the measu#gédz, dy) =

ri(de) K (z, dy), we haver, = J W(.,dz), 1" = _fW(dz’ ) Our first series of examples covers a large family of models
and the generalized FPK equation can be rewritten more syfihout forced jumps@ = @). The reset kernek is assumed

metrically as to satisfy the following assumption:
py = L¥p + / (Wi(dz,-) — Wi(-,dx)) . Assumption 5. There exists a kernét * on E such that
It appears clearly, under this form, as a generalizatiorhef t m(dz) K (z,dy) = m(dy) K*(y, dz) .

differential Chapman-Kolmogorov formute Gardiner (1985, (We donotassume thak * is a Markov kernel, i.e. thak ™ (y, -)
equation 3.4.22) — which only allows spontaneous jumps. s g probability measure for ajl.) The following result is an
easy consequence of Theorem 4:

Corollary 6. If there exists a pdp € C?'(E x R,), then
The main result of this paper show that the various requirgene the measures; andr are absolutely continuous with respect
of definition 3 are not independent. We denotel|blythe total tom, ar gy
variation measure of a Radon measurvhich is finite on&.. d_ni = Ape, dltn = K*(Aps) ,

We shall say that a function-— v; from [0;00) 10 Me(E) iS5 h 4 e following evolution equation holds:
right-continuous (resp. locally integrable)tis— v;¢ is right-

4.3 Main theorem

continuous (resp. locally integrable) for all bounded nuealsle opr _ L*py + K" (Apt) — Ap:. (7
p: E—R. ot
Theorem 4. Consider the following assumptions: Assumption 5 holds for several classes of models known in the

literature: pure jump processes with an absolutely contiisu
reset kernel, the switching diffusions of Ghosh et al. (1992
1997) and also the SHS of Hespanha (2005).

a) there exists a mean jump intensit{3.a), such that — r;
is right-continuous,

b) ¢t — . is differentiable in the sense of 3.b,— u; is
right-continuous and — |}/ locally integrable,

c) L*u. is a Radon measure for all> 0 (3.c),t — L*u is
right-continuous and — |L* | is locally integrable.

Example 7. Pure jump processes occur whenr= 0, i.e. when
there is no continuous dynamics. We consider here the case
whereK is absolutely continuousk (z, dy) = k(z,y) m(dy).

If any two of these assumptions hold, then the third holdsalis wFor instance, if the amplitude of the jumps is independent of

andt — . is a solution in the weak sense of the generalizete pre-jump state and distributed the pdfthenk(z,y) =
FPK equation. p(y — x). In this case Assumption 5 holds witki* (z, dy) =

k(y, z) m(dy). Introducing the functiory(z, y) = A(z)k(z,y),
The proof of this theorem is given in appendix A. We will notequation 7 turns into the well-knowmaster equation(Gar-
try to give general conditions under which assumptions#i@— diner, 1985, eq. 3.5.2):
are satisfied, since such conditions would inevitably behe Op
general setting of this paper, very complicated (involving 5 Wt) = /(W(fﬁay)l?(ﬂ?at) —7(y, z)p(y, ) m(dz).



In particular, when all modes are purely discretig & 0), this Example 10. Let us consider a GSHS without spontaneous
is just the usual forward Kolmogorov equation for a contimsto  jumps (A = 0), whose hybrid state space is defined Qy=
time Markov chain. {0,1}, By = [2min; +00) X R*7}, andEy = (—00; Zmax] X

1 (where zmin < Zmax). ASsume that the guar@ is the
Example 8. In the case of switching diffusions, the state spac&hole boundarydE, and that the reset map is defined by
is of the formE = Q x R (with Q a countable setand> 1)  ¥(q,2) = (1—g, 2). In other words, the discrete componént

and the reset kernel of the form switches fron? to 1 whenZ} reaches the lower threshoigl;.,,
i 1
K N — and switches back t0 when Z; reaches the upper thresh-
((Qaz)a ) Z Tqq ( )6((; z) old Zrmax.
q'#q
wherern(z) = (mqq (2)) is a stochastic matrix for ai € R™.  For such a hybrid structure, it is easily shown using Theotem
Assumption 5 is fulfilled withK * defined by that noC?1! solution can exist. Consider the €6t = ¥(G),
x hich is the disjoint unions of two “hyperplanes” ifi°. A
K ) = S(qr.z) - W S) ,
((q’z)’ ) qz?;q m'a(2) 8(q' 2) careful examination of (5) suggests to look for solutiort tra

classC?! on E°\ G, possibly with a discontinuity 06" If
the process effectively has a pglatisfying these assumptions,
"hen it can be proved using Theorem 4 that:

Equation 6 becomes in this case the familiar generalized F
equation for switching diffusion processes (see, e.g.,-Kon
torovich and Lyandres, 1999; Krystul et al., 2003): for aII

r = (q,2) € Eandt >0, (1) The usual Fokker-Planck equatidhy /0t = L*p;, holds
op on the four components @ \ ¢/,
E(I’ t) = )+ Z Aya(2) pe(d's 2) = @) pe() (2) The jumps are accounted for by the static relagighi =
7'#q jin o onG, at all timest > 0, wherej Ut andji* are
wherelyq(z) = (¢, 2) mgq(2). the outgoing and ingoing probability current, respectivel

defined onG and G’ (see (6) for the defintion of the
Example 9. The SHS of Hespanha (2005) are also defined probability current).
on £ = Q x R, but this time the post-jump stat&,, is  (3) The mean jump intensity; is supported by~ and given

determined by applying a reset map: E — E° to the pre- by the outgoing flux of the probabily curreit, i.e.

jump stateX_ , ¥ being chosen randomly in a finite of reset r(T) = frmc joutds, wheres is the surface measure.

maps¥,. The reset kernel can therefore be written as (4) Finally, for eachr € G such that at least one of the “noise
K(z,) = Z 70(2) By, (2 driven” vector fieldsg; (1 < [ < r) is transverse t@,

the pdf has to satisfy the so-callathsorbing boundary
conditionp,(x) = 0. For similar reasongy; has to be
continuous at eaclhr € I such that at least one of the
“noise driven” vector fields is transversed.

k
with 7 («) the probability of choosing the reset mép given
that X = z. Provided that the function, are localC-
diﬁeomorphisms the kernét fulfills Assumption 5 with

Z Z T (y) | Tk (y)] ' Oy » 5.3 Aremark concerning PDEs
yel, ' ({z})
where.J,(y) is the Jacobian determinant®f, aty. Therefore, Notations can be deceiving, sometimes. The compact formula
introducing a stochastic intensity, = ) o, for each one of the tion of (5) and (7), which makes them look very much like the
reset maps, we recover thanks to Corollary 6 the generalizggual Fokker-Planck equation, should not fool the reader in

FPK equation given by Hespanha (2005, p. 1364): thinking that these equations are simple PDEs. Indeed, even
dp . when a (piecewise) smooth pdf exists, the generalized FPK
3¢ (@ 1) = (L'pe)(@) equation is in general a system of integro-differential aqu

tions, with boundary conditions that can also involve insdg)
+ Z Z ()r]pf ) — (M Pt)(fﬁ)) . The integrals are hidden in the kernel notation:K)(T') =
yev ({z}) g [ ri(dz)K (z,T). Fortunately, they disappear in many inter-
esting examples where the reset kernel is simple enough (see
5.2 A class of models with forced jumps examples 8-10). This is an important observation for pcatti

applications, since the numerical solution of a PDE is much

The measure-valued formulation of the generalized FPK-equaasier than that of a general integro-differential equatio
tion equation (5) paves the way for an easier proof of some

recent results (Bect et al., 2006), concerning GSHS witbefdr Appendix A. PROOF OF THEOREM 4
jumps and deterministic resets. A typical example of théssl

of process is the thermostat model of Malhamé and Chongy 02( ) denote the set of all compactly supported

(1985). Since a complete statement and proof of these sesudjfz . The following lemma is an easy consequence of the
would be too long for this paper, we shall only provide arkmoothness of the vector fields:

illustrative example. The interested reader is referreded’hD

2 tirx H
thesis of the author (Bect, 2007, IV.2.C and IV.3.C). Athagh  Le8mMMma 1L For all ¢ € C*(E), ¢ — [y(L"p;)(p)ds is
treatment will appear in a forthcoming publication. differentiable on the right, with the right continuous dexiive

ts (L' 10) ().



In the sequel, “right continuous” is abbreviated as “rc”. M. L. Bujorianu and J. Lygeros. General stochastic hybrid

o Assume that both 4.a and 4.b hold. Then each term of (4) féétérginrp%ieg'ggsgg gﬁgrgfni?:;gf) Iémmc.log;gifg;(;
has at-derivative on the right. Differentiating both sides preve ' 001 <, PP- ’

that (5) holds for alt > 0, hence thal* ., is a Radon measure le?ogﬁ'orianu and J. Lvaeros. Toward a aeneral theory of
and thatt — L*u; is rc. Moreover, integrating the inequality ! - Y9 . 9 y

) , . stochastic hybrid systems. [8tochastic Hybrid Systems:
L7 e < || + 2r¢ yields that, for all” € £, Theory and Safety Critical Applicationgol. 337 of LNCIS

ot ot .
/ |L*ps| (T') ds < / | (T)ds + 2 E{N,} < 400 pp. 3-30. Springer Verlag, 2006.
0 0 M. L. Bujorianu, J. Lygeros, W. Glover, and G. Pola. A stochas

Thereforel — |L* 11| is locally integrable, which proves 4.c.  tic hybrid system modeling framework. Technical Report
WP1, Deliv. 1.2, HYBRIDGE (IST-2001-32460), 2003.
o Assume now that 4.a and ‘%C hold, and gpt= L~ u * M. H. A Davis. Piecewise deterministic Markov processes: a
re(K—1I),forallt > 0. Clearly,y:; is a Radon measurey— 1 general class of nondiffusion stochastic modelsR. Stat.
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