
HAL Id: hal-00216031
https://centralesupelec.hal.science/hal-00216031v1

Submitted on 4 Apr 2008 (v1), last revised 17 Apr 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fixed-step Simulation of Continuous-Time Σ∆

Modulators
Philippe Benabes, Ali Beydoun

To cite this version:
Philippe Benabes, Ali Beydoun. Fixed-step Simulation of Continuous-Time Σ∆ Modulators. IEEE,
ISCAS International Symposium on Circuits and Systems, May 2008, Seattle, United States. pp.NA.
�hal-00216031v1�

https://centralesupelec.hal.science/hal-00216031v1
https://hal.archives-ouvertes.fr


Fixed-step Simulation of Continuous-Time Σ∆ 
Modulators 

Philippe BENABES IEEE Member, Ali BEYDOUN 
Department of Signal processing and Electronic Systems 

SUPELEC 
91192 GIF/YVETTE FRANCE 

philippe.benabes@supelec.fr, ali.beydoun@supelec.fr  
 

Abstract— A methodology for the simulation of continuous time 
sigma-delta (Σ∆) converters is presented in this paper. This 
method permits the simulation of Σ∆ modulators employing 
continuous-time filters using a fixed-step algorithm. The analysis 
method is based on the discretization of a continuous-time model 
and using a discrete simulator, which is more efficient than an 
analog simulator. In our analysis approach, each sampling-
period is divided into a fixed number of steps. This 
transformation is exact in term of Noise Transfer Function and 
asymptotically exact in term of Signal Transfer Function (the 
Signal Transfer Function of the model rapidly tends to the 
continuous time model transfer function when the number of 
steps increases). Moreover, the ideal step-size can be estimated 
from the bandwidth of the input signal. 

I. INTRODUCTION 
Discrete Time Sigma-delta (DTΣ∆) circuits are very 

attractive analog-to-digital converters because they achieve 
high accuracy with few critical analog components [1]-[2]. 
They are composed of a Σ∆ modulator which provides a high 
speed one bit data string followed by a digital filter and 
decimator to produce a high resolution data. Unfortunately, 
the speed of these circuits is limited. Using switched-
capacitors technologies, the sampling frequency of the 
modulator is limited by a few tenth of MHz which results in a 
signal bandwidth between 50 kHz and a few MHz. 

An alternative to the use of Discrete-Time (DT) filters is 
the use of Continuous-Time (CT) filters [3][4]. Although CT 
filters are not easy to integrate, they possess one key 
advantage over their discrete-time competitors: no sampling is 
performed within the filter itself. As a first result, the 
restriction of the mentioned maximum sampling frequency is 
removed. Secondly, both sampling errors and out-of-band 
signals which alias into the passband are reduced by the high 
gain of the forward loop in the passband. On the other hand, 
continuous-time circuits are more difficult to design and to 
simulate than discrete-time circuits. 

When simulations are done by an analog simulator, it takes 
a huge computational time. Equivalent discrete-time model of 
CT modulator loop have been described [5][6], but they need 
a continuous filter in the input signal path to ensure the exact 

equivalency, and furthermore the input bandwidth is limited to 
half the sampling frequency. 

In this paper, an analysis method of CT modulators based 
on Oversampled Discrete Time (ODT) models is presented. 
With this method, each sampling-period is divided into a fixed 
number of steps. We will show that this transformation is 
exact in term of Noise Transfer Function (NTF) and 
asymptotically exact in term of Signal Transfer Function 
(STF). The STF of the model rapidly tends to the STF of the 
CT model when the number of steps increases. Besides, an 
estimation of the ideal step-size from the bandwidth of the 
input signal will be performed. 

This paper is structured as follows. The following section 
describes the synthesis and analysis method of continuous 
filter Σ∆ modulators. An application of a second order 
modulator is illustrated in Section III. Finally, concluding 
remarks are given in Section IV. 

II. SIMULATION METHOD OF CONTINUOUS FILTER Σ∆ 
MODULATORS  

A.  Equivalency between Continuous-Time and Discrete-
Time Filters  
The behavior of Σ∆ modulators employing CT filters has 

been widely studied for ten years, especially high order stable 
topologies. Directly designing and optimizing a CT modulator 
can take a very long time if only an analog simulator is used. 
A better solution is to design and to optimize a Σ∆ modulator 
with discrete-time filters and transform it by a mathematical 
tool into a continuous-time Σ∆ modulator.  

The relationship between the continuous-time filter 
transfer function ( )(sg ) and the discrete-time transfer ( )(zf ) 
can be expressed using the formula [5], 
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when the loop delay can be neglected. This formula ensures 
the equivalency of the Noise Transfer Function between the 
continuous and the discrete time topology shown in Figure 1. 



Extra loop delay could be taken into account ([5]), but in 
order to simplify the discussion we will neglect it. 

    (a) 

  (b) 

Figure 1 : Single-bit CT (a) and DT (b) modulator 

Assuming that the input signal is a band-limited signal 
(limited to the half of the sampling frequency), and that the 
quantizer can be modeled by an additive white noise, the 
signal transfer function of the discrete-time topology can be 
expressed as : 
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where Fs is the sampling frequency. 

The signal transfer function of the continuous-time 

topology is 
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 f being related to g by equation (1). 

Figure 2 shows the modulus of the discrete-time and 
continuous-time modulators STF for a first-order lowpass 
modulator. It can be clearly seen that these transfer functions 
differ for non null frequencies which means that any 
simulation performed for a non constant signal will be wrong 
using the discrete model, especially for high frequencies. 
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Figure 2 : STF for a CT and DT modulator 

Furthermore, the discrete-time model is unable to model 
an input signal with a frequency higher that half the sampling 
frequency. 

In order to enhance the signal-transfer function and 
remove the frequency limitation, we propose to use an 
oversampled model of the discrete-time modulator (ODT). 

B. Oversampled model of a sigma delta modulator  
Let’s consider now the oversampled model of a Σ∆ 

modulator. The sampling frequency of the ADC is still Fs, but 
the digital filter (F) runs now at kFs. The feedback signal is 
held during k samples. In order to simplify the notations, the Z 
variable denotes functions running at frequency kFs, while the 
z variable denotes a function running at frequency Fs. 

 
Figure 3 : Oversampled modulator 

 
Now we consider the transfer function between the ADC 

output and its input. We calculate the response to a discrete 
impulse (Y*[n]) in the three cases: discrete-time modulator, 
continuous-time modulator, and oversampled discrete-time 
modulator (T is the sampling period).  

Table I gives equivalency between DT, CT and ODT 
modulators for first order, second order and third order filters, 
by identifying the impulse responses Y*[n]. These formula 
were obtained using Maple software. 
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TABLE I.  EQUIVALENCIES BETWEEN CT, DT, AND ODT 

with  
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In the case of the DT modulator : )( )(][* 1 zfnY −Ζ= (4) 

In the case of the CT modulator : 
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In the case of the ODT modulator :  
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It can be noticed that the DT case is a particular case of the 
ODT modulator for k=1, and the CT case can be seen as the 
limit when k tends to infinity of the ODT model. 

III. APPLICATION TO THE SIMULATION OF A SECOND-
ORDER Σ∆ MODULATOR  

A. Oversampled model of a sigma delta modulator 
 

High order Σ∆ modulators employing discrete-time filters 
have been widely studied. Most of them are designed with 
multiple-loop topologies. Usually CT topologies are derived 
from their DT counterpoint using table 1 transformation 
formulas. We consider a classical second-order modulator 
(Figure 4) [7]. The CT equivalent modulator is given by 
Figure 5 using the methodology of [5]. For this purpose, the 
ADC input has been first decomposed to the sum of the output 
signals of filters whose inputs are sampled and held. Then 
each discrete-time integrator has been replaced by its 
continuous-time equivalent filter thanks to Table I. The 
elements of this modulator have then recombined to give the 
usual modulator structure (Figure 5).  

It must be noticed that the equivalency is only exact for the 
NTF. The STF has not been taken into account in this 
transform. 
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Figure 4 : DT modulator 
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Figure 5 : CT equivalent modulator 

In order to simulate the CT modulator, we use the same 
methodology to transform the CT modulator into an ODT 
topology. This operation takes into account the feedback 
signal and the input signal of the modulator. A pre-distortion 
FIR filter (d(Z)) has been introduced to compensate the error 
introduced by replacing the CT filter from the signal input to 
the ADC input ( )(sg ) by the ODT filter. In the case of a 
second order integrator, it can be expressed as: 
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The transformation’s result topology is presented in Figure 
6. When k tends to infinity, the ODT tends to the CT one in 
terms of STF and NTF. 
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Figure 6 : equivalent ODT modulator 

B. Simulation results  
The three modulators have been simulated using Simulink. 

We verify by simulations that they are equivalent in term of 
NTF. Figure 7 shows a time domain simulation for a constant 
input signal of the second-order modulator. The three curves 
represent the ADC input signal for the DT, CT and ODT case. 
It can be seen that the three signals are equal at the sampling 
times nT. Furthermore the CT and ODT signals are equal for 
each nT/k time, showing that the ODT model response tends 
to the CT model when k tends to infinity. 

 
Figure 7 : time domain simulations of the ADC input 

signal for CT, DT and ODT modulator. 

C. Signal transfer function evaluation  
The signal transfer function of a second-order modulator 

was evaluated (still by making the assumption that the 
quantization noise behaves as an additive white noise) using 
the ODT model. In order to evaluate the efficiency of our 
methodology, this STF is compared with the one that would 
be obtained by making a bilinear transform of the filters of the 



CT modulator (Figure 8 topology). One must notice that this 
topology is not strictly equivalent in term of NTF. 
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Figure 8 : ODT equivalent model obtained by a bilinear 

transform 

The modulus of the STF of the model obtained by bilinear 
transform (ODTbt) is given in Figure 9 and the one of the 
ODT modulator is given in Figure 10.  With a classical 
bilinear transform, the STF remains far from the real STF 
even for large k. Using the ODT, the STF is near from the real 
STF even for low k values. 
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Figure 9 :  |STF| for k=1, 2, 4, 8 for the ODTbt modulator  

compared with the CT modulator 
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Figure 10 : |STF| for k=1, 2, 4, 8 for the ODT modulator  

compared with the CT modulator 

The phases curves have not been plotted but they have the 
same kind of behavior. 
D. Aliasing terms evaluation  

The ODT model allows applying input signals from 0 to 
kFs/2. The STF can be extended to frequencies higher than 
Fs/2 using the convention that a signal at frequency φ+mFs is 

aliased into a term at frequency φ at the modulator input. 
Figure 11 compares the STF of the CT modulator and ODT 
for k=8 at frequencies higher than Fs/2. The obtained STF is 
very accurate from 0 to the sampling frequency. Some other 
tests confirmed that taking k equal to 4 times the ratio between 
the input-signal bandwidth and Fs/2 is accurate. 
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Figure 11 : |STF| in dB for k=8 and CT, frequency 

between 0 and 4 Fs. 

 
IV. CONCLUSIONS 

A new methodology for time-domain simulations of 
continuous-time modulators is proposed. This methodology is 
based on a fixed step discretization of each output sample. 
Using this method, simulations are very fast as they use a 
fixed step algorithm and discretized equations. STF 
considerations on a second-order modulator have shown that 
the ODT method describes the behavior of a CT modulator 
better than classical transform method such as bilinear 
transform. Besides, we have checked that this methodology 
can be extended to the case of bandpass modulators but the 
results could not fit into this paper. 
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