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Abstract

This paper deals with the convergence of the expected improvement algorithm, a popular global optimization algo-
rithm based on a Gaussian process model of the function to be optimized. The first result is that under some mild
hypotheses on the covariance functionk of the Gaussian process, the expected improvement algorithm produces a
dense sequence of evaluation points in the search domain, when the function to be optimized is in the reproducing
kernel Hilbert space generated byk. The second result states that the density property also holds for P-almost all
continuous functions, whereP is the (prior) probability distribution induced by the Gaussian process.
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1. Introduction

Global optimization is the task of finding the global optima of a real valued function using the results of some
pointwise evaluations, which can be chosen sequentially, or in batches, when parallelization is possible. The function
to be optimized is generally calledobjective function. In the field of design and analysis of computer experiments,as
pioneered by Sacks et al. (1989) and Currin et al. (1991), theobjective function—typically an expensive-to-evaluate
numerical model of some physical phenomenon—is seen as a sample path of a stochastic process. The stochastic
model captures prior knowledge about the objective function and makes it possible to infer the position of the global
optima before evaluating the function. This Bayesian decision-theoretic point of view has been largely explored
during the 70’s and the 80’s by the Vilnius school of global optimization led by J. Mockus (see Mockus et al., 1978;
Mockus, 1989; Törn and Zilinskas, 1989; Zilinskas, 1992, and references therein).

In this paper, we consider theexpected improvement(EI) algorithm, a popular optimization algorithm proposedby
J. Mockus in the 70’s and brought to the field of computer experiments by D.R. Jones, M. Schonlau and W.J. Welch
(Schonlau and Welch, 1996; Schonlau, 1997; Schonlau et al.,1997; Jones et al., 1998). LetX be a compact subset
of Rd, d ≥ 1, and letξ be a real valued Gaussian process with parameterx ∈ X. Our goal is to maximize a given
objective function, which is assumed to be a sample path ofξ. The EI algorithm is a sequential planning strategy that
constructs a sequence (xn)n∈N ∈ XN in such a way that each evaluation pointxn is a function of the previous evaluation
pointsxi , i < n, and the corresponding values of the objective function. Let Mn = ξ(x1) ∨ · · · ∨ ξ(xn) be the observed
maximum at stepn; then, a new evaluation pointxn+1 is chosen in order to maximize the quantity

ρn(x) := E
[
(ξ(x) − Mn)+ | ξ(x1), . . . , ξ(xn)

]
(1)

wherez+ = z ∨ 0. Note that this is equivalent to choosing the evaluation point xn+1 that maximizesE
[
Mn ∨ ξ(x) |

ξ(x1), . . . , ξ(xn)
]

with respect tox. The functionρn(x), which is called the expected improvement atx, is the con-
ditional mean excess ofξ(x) above the current maximumMn. It is well-known that the expected improvement has a
closed-form expression, which can be written using the kriging predictor and its variance (see, e.g., Jones et al., 1998).

This paper addresses the convergence of the EI algorithm, under the assumption thatξ is a Gaussian process with
zero mean and known covariance. (Our results still apply if some parameters of the covariance function—for instance,
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the range and regularity parameters of a Matérn covariancefunction—are estimated using a first batch of evaluations
and held fixed afterward.) It is easily seen that a global optimization algorithm converges for all continuous functions
if and only if the sequence of evaluation points produced by the algorithm is dense for all continuous functions
(Törn and Zilinskas, 1989, Theorem 1.3). In the case of the EI algorithm, this property was proved by Locatelli
(1997), withd = 1, X = [0, 1] andξ a Brownian motion. Mockus (1989, Section 4.2) claims a much more general
convergence result, but his proof unfortunately contains asevere technical gap1.

The main contribution of this paper is a couple of convergence results for the EI algorithm. The first result
(Theorem 6) states that the sequence of evaluation points isdense in the search domain provided that the objective
function belongs to the reproducing kernel Hilbert spaceH attached toξ, under a non-degeneracy assumption on the
covariance function that we call the No-Empty-Ball (NEB) property. This convergence result is quite natural from the
point of view of interpolation theory. The second result (Theorem 7) states that the density property also holds for
P-almost all continuous functions, whereP is the (prior) probability distribution of the Gaussian processξ.

The paper is outlined as follows. Section 2 introduces our framework, notations and standing assumptions. Sec-
tion 3 describes the EI algorithm in greater details and states the main results of the paper. Section 4 provides a
sufficient condition for the NEB property, in the case of a stationary covariance function. Section 5 contains the proof
of the main theorems. Finally, Section 6 gives our conclusions and discusses future work.

2. Preliminaries

2.1. Framework and standing assumptions

The central mathematical object in global optimization theory is the objective functionω : X → R, defined on
somesearch spaceX. A deterministic search strategy can therefore be seen as a mappingX from the setΩ = R

X to
the setXN of all sequences inX,

X(ω) := (X1(ω), X2(ω), . . . ) , (2)

with the property that, for alln ≥ 1, Xn+1(ω) depends only on the firstn evaluationsω(X1(ω)), . . . ,ω(Xn(ω)). Assum-
ing measurability of theXns with respect to the productσ-algebraA onΩ (i.e. theσ-algebra generated by cylinder
sets), this can be reformulated in the language of probability theory—although there is no probability measure in-
volved yet. Indeed, let

ξ : X ×Ω→ R, (x, ω) 7→ ξ(x, ω) := ω(x), (3)

denote the canonical process on the path space (Ω,A). Then, the above search strategyX can be seen as arandom
sequence inX, with the property thatXn+1 isFn-measurable, whereFn is theσ-algebra generated byξ(X1), . . . ,ξ(Xn).
It must be stressed that, despite the lexical shift, we are still dealing with deterministicalgorithms: randomness only
comes from the fact that we are now considering the objectivefunctionξ( · , ω) = ω as a random element inΩ.

In the Bayesian approach to global optimization, prior information on the objective function is taken into account
under the form of a probability measureP on (Ω,A), which amounts to specifying the probability distributionof the
stochastic processξ. This prior information is then updated at each step of the search, through the computation of
the conditional distributionP{ · | Fn}. For practical reasons, only Gaussian process priors have been considered in the
literature: in this case, the prior is completely specified by the meanm(x) and the covariance functionk(x, x′), and the
processξ remains Gaussian under the conditional distributionsP{ · | Fn}, n ≥ 1. Throughout the paper we shall make
the following standing assumptions:

Assumption 1.

i) X is a compact subset ofRd, for some d≥ 1,

ii) ξ is a centered Gaussian process underP,

iii) the covariance function k is continuous and positive definite.

1More precisely, the arguments given on page 45 fail to prove the key result claimed in Lemma 4.2.2, i.e. the density of the sequence of
evaluation points.
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LetH ⊂ Ω denote the Reproducing Kernel Hilbert Space (RKHS) that is canonically attached toξ (also known as
the Cameron-Martin space ofξ; see, e.g., Bogachev, 1998). Assumption 1.iii entails thatH is a space of continuous
functions. We shall denote by( · , · )H the inner product ofH and by‖ · ‖H the corresponding norm. It is worth noting
thatP(H) = 0 (see, e.g., Lukic and Beder, 2001, Driscoll’s theorem). Weshall comment on this fact with respect to
our convergence result in Section 3.

Remark 2. Unless otherwise specified (see Section 4), it is not assumedthat the covariancek is stationary. To the
best of our knowledge, however, most practical applications of the EI algorithm have used stationary covariances to
model the objective function prior to any evaluation.

2.2. Linear prediction and the No-Empty-Ball property

For n ≥ 1, xn = (x1, . . . , xn) ∈ X
n andx ∈ X, we denote bŷξn

(
x; xn

)
the conditional expectation ofξ(x) given

ξ(x1), ξ(x2), . . . , ξ(xn). Sinceξ is a centered Gaussian process, the conditional expectation is also the best linear
predictor inL2 (Ω,A,P), and therefore can be written as

ξ̂n

(
x, ω; xn

)
=

n∑

i=1

λi
n

(
x; xn

)
ξ(xi , ω) . (4)

Letσ2
n

(
x; xn

)
denote the mean-square prediction error, i.e.

σ2
n

(
x; xn

)
:= E

[(
ξ(x) − ξ̂n

(
x; xn

))2]
. (5)

(Recall that, sinceξ is a Gaussian process, the error of prediction is independent of theσ-algebra generated by the
ξ(xi)s, 1≤ i ≤ n; see, e.g., Chilès and Delfiner (1999), Section 3.3.4.)

Definition 3. We shall say that the Gaussian processξ—or, equivalently, the covariance functionk—has the No-
Empty-Ball (NEB) property if, for all sequences (xn)n≥1 in X and ally ∈ X, the following assertions are equivalent:

i) y is an adherent point of the set{xn, n ≥ 1},

ii) σ2
n

(
y; xn

)
→ 0 whenn→ +∞.

Sincek is assumed continuous, (i) always implies (iii) in Definition 3. The NEB property is therefore equivalent
to the assertion that, if the prediction error aty goes to zero, then there can be no “empty ball” centered aty (i.e. for
all ǫ > 0, there existsn ≥ 1 such that|y− xn| < ǫ)—hence its name. A sufficient condition for the NEB property will
be given in Section 4. To the best of our knowledge, finding necessary and sufficient condition for the NEB property
is an open problem.

2.3. Simplified notations

Since the notations introduced in (4) and (5) would rapidly become cumbersome in the next sections, the following
simplified notations will be used:

ξ̂n(x, ω) := ξ̂n

(
x, ω; Xn(ω)

)
, (6)

σ2
n(x, ω) := E

[(
ξ(x) − ξ̂n

(
x; Xn

))2 ∣∣∣Fn

]
(ω) = σ2

n

(
x; Xn(ω)

)
, (7)

with Xn = (X1, . . . , Xn). Remark thatσ2
n(x, ω) is a stochastic process indexed byX. The second equality in (7) follows

from the fact that̂ξn(x; · ) is continuous for allx ∈ X.
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3. Main results

In this paper, we shall consider a generalization of the EI criterion. Define

ρn(x) = γ
(
ξ̂n(x) − Mn, σ

2
n(x)
)
, (8)

where the functionγ : R × [0;+∞)→ [0;+∞) satisfies the following requirements:

R1 : γ is continuous,

R2 : ∀z≤ 0, γ(z, 0) = 0, (9)

R3 : ∀z ∈ R, ∀s> 0, γ(z, s) > 0.

The corresponding optimization algorithm can then be written as:
{

X1 = xinit ∈ X ,
Xn+1 = arg maxx∈X ρn(x) .

(10)

Remark 4. It is well-known (Schonlau and Welch, 1996) that the EI criterion defined by (1) can be rewritten under
the form (8). More precisely, letΦ denote the Gaussian cumulative distribution function. Then (8) holds for the EI
criterion with

γ(z, s) =



√
sΦ′
(

z√
s

)
+ zΦ

(
z√
s

)
if s> 0,

max(z, 0) if s= 0.
(11)

In fact, equation (8) withγ thus defined should be taken as the true definition of the EI criterion. Indeed, the exact
mathematical meaning of “ρn(x) := E

[
(ξ(x) − Mn)+ | Fn

]
” has to be specified, since, for eachx, the conditional

expectation is only defined up to aP-negligible subset ofΩ.

Remark 5. The criterionx 7→ ρn(x) is continuous, but there is no guarantee that the maximizeroverX will be unique.
Therefore, a more rigourous statement of the iterative partof (10) would be:Xn+1 ∈ arg maxx∈X ρn(x). In this way,
instead of a single algorithm, we encapsulate the family of all algorithms that choose (measurably)Xn+1 among the
maximizers ofρn. General measurable selection theorems (see, e.g., Molchanov, 2005) ensure that such an algorithm
does exist.

The first result of this paper is the following density theorem:

Theorem 6. Assume that the covariance function k has the NEB property. Then, for all xinit ∈ X and allω ∈ H , the
sequence(Xn(ω))n≥1 generated by(10) is dense inX.

The fact that Theorem 6 is stated for objective functions in the RKHSH calls for some comments. From the point
of view of interpolation theory, it is indeed quite natural that an algorithm built on the best interpolantsξ̂n( · , ω) in
an RKHSH should be provably working, using the tools of RHKS theory, only whenω is in this very space. From
the probabilistic point of view, however, the event{ξ( · ) ∈ H} almost never happens according to Driscoll’s theorem
(Lukic and Beder, 2001). The second result of this paper states that the result of Theorem 6 also holdsP-almost surely
in Ω.

Theorem 7. Assume that the covariance function k has the NEB property. Then, for all xinit ∈ X, the sequence(Xn)n≥1

generated by(10) is P-almost surely dense inX.

It is still an important open question to determine whether the algorithm converges forall continuous functions,
as claimed in Mockus (1989). Another interesting open problem would be to determine whether the NEB assumption
can be relaxed.

Remark 8. We have assumed for the sake of simplicity that the optimization algorithm starts after a single evaluation
performed atX1 = xinit . In practice, especially when some parameters of the covariance need to be estimated, the
algorithm starts with an initial design of several evaluationsx1

init , . . . , xn0

init . This is equivalent to saying thatF1 is the

σ-algebra generated byξ
(
x1

init

)
, . . . ,ξ

(
xn0

init

)
. The proofs of Theorem 6 and Theorem 7 carry over without modification.
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4. A sufficient condition for the NEB property

4.1. Statement of the result

In this section we shall prove that the following assumptionis a sufficient condition for the NEB property:

Assumption 9. The processξ is stationary and has spectral density S , with the property that S−1 has at most poly-
nomial growth.

In other words, Assumption 9 means that there existC > 0 andr ∈ N \ {0} such thatS(u)(1 + |u|r) ≥ C,
almost everywhere onRd. This assumption preventsk from beingtoo regular. In particular, the so-calledGaussian
covariance,

k(x, y) = σ2 e−α ‖x−y‖2, σ > 0, α > 0, (12)

does not satisfy Assumption 9. However, we are still allowedto consider a large class of covariances. For instance,
the exponential covariances

k(x, y) = σ2 e−α ‖x−y‖s, σ > 0, α > 0, 0 < s< 2 , (13)

the class of Matérn covariances (see, e.g., Stein, 1999), and their anisotropic versions, all satisfy Assumption 9. The
main result of this section is:

Proposition 10. Let (xn)n≥1 and (yn)n≥1 be two sequences inX. Assume that the sequence(yn) is convergent, and
denote by y⋆ its limit. Then each of the following conditions implies thenext one:

i) y⋆ is an adherent point of the set{xn, n ≥ 1},

ii) σ2
n

(
yn; xn

)
→ 0 when n→ ∞,

iii) ξ̂n

(
yn, ω; xn

)
→ ξ(y⋆, ω) when n→ ∞, for all ω ∈ H .

Moreover, under Assumption 9, the three conditions are equivalent and thereforeξ has the NEB property.

Remark 11. As already observed, the Gaussian covariance does not satisfy Assumption 9. In fact, it is known that
the Gaussian covariance does not even have the NEB property (Vazquez and Bect, 2010).

4.2. Consequence of Assumption 9 in terms of RKHS

LetH ′ denote the RKHS associated tok onR
d. It is well-known (Aronszajn, 1950, Section 1.5) thatH embeds

isometrically intoH ′ and that, for allω ∈ H ′, the orthogonal projection ofω ontoH is simply its restriction toX.
Under Assumption 9,H ′ contains the Sobolev spaceH

r
2 (Rd), and the injection is continuous. Indeed, denoting

by ω̂ the Fourier transform ofω ∈ H ′, we have

∫
(1+ |u|r) |ω̂(u)|2 du ≥ C

∫
S(u)−1 |ω̂(u)|2 du = ‖ω‖2H ′ .

A useful consequence is thatH ′ contains the spaceC∞c (Rd) of all compactly supported infinitely differentiable func-
tions onRd, for anyr. In particular,k is auniversal kernelonX in the sense of Steinwart (2001), which means that
H is dense in the Banach spaceC(X) of all continuous functions onX.



Published in the Journal of Statistical Planing and Inference. DOI:10.1016/j.jspi.2010.04.018. This is an author-generated post-print version.Published in the Journal of Statistical Planing and Inference. DOI:10.1016/j.jspi.2010.04.018. This is an author-generated post-print version.Published in the Journal of Statistical Planing and Inference. DOI:10.1016/j.jspi.2010.04.018. This is an author-generated post-print version.

4.3. Proof of Proposition 10

(i) ⇒ (ii). Assume thaty⋆ < {xn, n ≥ 1} (otherwise the result holds trivially). Let (xφk) be a subsequence of (xn)
converging toy⋆ and letψn = max{φk ; φk ≤ n}. Then,

σ2
n

(
yn; xn

)
= var

[
ξ(yn) − ξ̂n

(
yn; xn

)] ≤ var
[
ξ(yn) − ξ(xψn)

]
.

Sinceψn→ ∞, it follows from the continuity ofk that

var
[
ξ(yn) − ξ(xψn)

]
= k(yn, yn) + k(xψn, xψn) − 2k(xψn, yn) → 0 .

(ii)⇒ (iii). Using the Cauchy-Schwarz inequality inH , we have
∣∣∣∣ξ(yn, ω) − ξ̂n

(
yn, ω; xn

)∣∣∣∣ ≤ σn

(
yn; xn

)
‖ω‖H

Therefore
∣∣∣ξ(y⋆, ω) − ξ̂n

(
yn, ω; xn

)∣∣∣ ≤
∣∣∣ξ(y⋆, ω) − ξ(yn, ω)

∣∣∣ +
∣∣∣ξ(yn, ω) − ξ̂n

(
yn; xn

)∣∣∣

≤
∣∣∣ω(y⋆) − ω(yn)

∣∣∣ + σn

(
yn; xn

)
‖ω‖H → 0 ,

sinceω is continuous.

Under Assumption 9, (iii)⇒ (i). Suppose (i) is false. Then, there exists a neighborhoodU of y⋆ in R
d that does

not intersect{xn, n ≥ 1}. Besides, it follows from Assumption 9 that there existsω ∈ H such that suppω ⊂ U and
ω(y⋆) > 0 (where suppω denotes the support ofω). Then,̂ξn

(
y⋆, ω; xn

)
= 0 for all n, whereasξ(y⋆, ω) = ω(y⋆) , 0.

Therefore (iii ) does not hold.

5. Proofs of the main theorems

5.1. Proof of Theorem 6

Let νn = supx∈X ρn(x), whereρn is the criterion defined by equation (8). Note that, for alln ≥ 1,

νn = ρn(Xn+1) = γ
(
ξ̂n(Xn+1) − Mn, σ

2
n(Xn+1)

)
.

Our proof of Theorem 6 will be based on the following result (which does not require the NEB property):

Lemma 12. For all ω ∈ H , lim inf n→∞ νn(ω) = 0.

Proof. Fix ω ∈ H . For all n ≥ 1, setxn = Xn(ω), sn = σ
2
n(xn+1, ω) andzn = ξ̂n(xn+1, ω) − Mn(ω), so thatνn(ω) =

γ(zn, sn). Let y⋆ be a cluster point of the sequence (xn) and let (xφn) be any subsequence converging toy⋆: we are
going to prove thatνφn−1(ω) → 0. It follows from Proposition 10, (i) ⇒ (iii ), that ξ̂φn−1

(
xφn, ω

)
→ ω(y⋆). Moreover,

(Mφn−1(ω)) is a bounded increasing sequence, with the property thatMφn−1(ω) ≥ Mφn−1(ω) ≥ ω(xφn−1) → ω(y⋆).
Therefore (zφn−1) has a finite limit, such that

lim
n→∞

zφn−1 = lim
n→∞

ξ̂φn−1

(
xφn , ω

)
− lim

n→∞
Mφn−1(ω) ≤ 0 .

By Proposition 10, (i)⇒ (ii ), we also know thatsφn−1 = σ
2
φn−1

(
xφn, ω

)
→ 0. Therefore, using (R1) and (R2),

νφn−1(ω) = γ(zφn−1, sφn−1) → γ( lim
n→∞

zφn−1, 0) = 0 .

This completes the proof of Lemma 12.
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Proof of Theorem 6. Now fix ω ∈ H , and suppose that{Xn(ω), n ≥ 1} is not dense inX. Then there exist a point
y⋆ ∈ X that is not adherent to{Xn(ω), n ≥ 1}. This implies, by the NEB property, that

inf
n≥1

σ2
n

(
y⋆, ω

)
> 0.

Besides, using the Cauchy-Schwarz inequality inH , we observe that the sequence (ξ̂n
(
y⋆, ω

)
) is bounded. Indeed, we

have ∣∣∣∣̂ξn

(
y⋆, ω

)
− ω(y⋆)

∣∣∣∣
2
≤ σ2

n

(
y⋆, ω

)
‖ω‖2H ≤ k(y⋆, y⋆) ‖ω‖2H .

The sequence(Mn(ω)) is also obviously bounded by‖ω‖∞. Therefore, we obtain as a consequence of (R1) and (R3)
that

ρn(y⋆, ω) ≥ inf
k≥1

γ
(̂
ξk

(
y⋆, ω

)
− Mk(ω), σ2

k

(
y⋆, ω

))
> 0 .

This is a contradiction with Lemma 12, sinceνn(ω) = maxx∈X ρn(x, ω). The proof is thus complete.

5.2. Proof of Theorem 7

In essence, the structure of the proof of Theorem 7 is the sameas that of Theorem 6. The first step is to obtain an
almost sure version of Lemma 12.

Lemma 13. lim inf n→∞ νn = 0 almost surely.

Proof. Let Dn = min1≤i≤n |Xn+1 − Xi | be the distance ofXn+1 to the set of all previous evaluation points. DefineTk =

min{n ≥ 1 ; Dn ≤ rk}, with (rk) a sequence of positive numbers such that limrk = 0. Note that eachTk is finite, since
the setX is compact, and is an(Fn)-stopping time since the sequence(Dn) is (Fn)-adapted.

The first step is to see that, as in the proof of Proposition 10,

σ2
Tk

(
XTk+1

) ≤ ηk := sup
|x−y|≤rk

k(x, x) + k(y, y) − 2k(x, y) −−−−→
k→∞

0 . (14)

Note that
(
XTk+1

)
k does not necessarily converge.

The next step is to prove that̂ξTk

(
XTk+1

) − ξ(XTk+1) converges to zero almost surely, for a suitable choice of the
sequence (rk). First, using thatTk is a stopping time, we have:

E
[(̂
ξTk

(
XTk+1

) − ξ(XTk+1)
)2]
= E
[∑

n≥1

1Tk=n
(̂
ξn(Xn+1) − ξ(Xn+1)

)2]

=

∑

n≥1

E
[
1Tk=n E

[
(̂ξn(Xn+1) − ξ(Xn+1))2

∣∣∣ Fn
]]

= E
[∑

n≥1

1Tk=nσ
2
n(Xn+1)

]

= E
[
σ2

Tk

(
XTk+1

) ] ≤ ηk .

Then, for eachε > 0, it follows from Markov’s inequality that

P
{
(̂ξTk

(
XTk+1

) − ξ(XTk+1))2 > ε
} ≤ ηk/ε .

Choosingrk such that, for instance,ηk = 1/k2, ensures that̂ξTk

(
XTk+1

) − ξ(XTk+1) converges to zero almost surely.
Therefore, the sequence

(̂
ξTk

(
XTk+1

))
is almost surely bounded. Moreover,

lim sup
k→∞

ξ̂Tk

(
XTk+1

) − MTk = lim sup
k→∞

ξ̂Tk

(
XTk+1

) − MTk+1

≤ lim
k→∞

ξ̂Tk

(
XTk+1

) − ξ(XTk+1) = 0 a.s., (15)

where we have used the fact that(Mn) is convergent.
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Finally, using (R1) and (R2), the fact that
(̂
ξTk

(
XTk+1

) − MTk

)
is almost surely bounded, (14) and (15), we conclude

that
νTk = γ

(̂
ξTk

(
XTk+1

) − MTk , σ
2
Tk

(
XTk+1

)) −−−−→
k→∞

0 a.s.

Proof of Theorem 7. Fix x ∈ X and define the eventAx ∈ A by

Ax =
{
x is not an adherent point of the set{Xn, n ≥ 1}} .

Then infn≥1σ
2
n(x) > 0 onAx by the NEB property. Moreover, the martingaleξ̂n(x) = E

[
ξ(x) | Fn

]
is bounded inL2

sinceE ξ̂n(x)2 ≤ k(x, x) < +∞, and thus converges almost surely and inL2 to a random variablêξ∞(x) (see, e.g.,
Williams, 1991). As a consequence, the event

Bx :=
{ (
ξ̂n(x) − Mn

)
is bounded

}

has probability one, since (Mn) is also convergent. Therefore, we obtain by (R1) and (R3) that, onAx ∩ Bx,

νn ≥ ρn(x) ≥ inf
k≥1

γ
(
ξ̂k(x) − Mk, σ

2
k(x)
)
> 0 .

SinceP(Bx) = 1, it follows from Lemma 13 thatP(Ax) = 0.
Finally, letX̃ be a countable dense subset ofX and letΩ0 = Ω \

⋃
x∈X̃ Ax. ThenP(Ω0) = 1 and it is straightforward

to see that for eachω ∈ Ω0, the set{Xn(ω), n ≥ 1} is dense inX.

6. Discussion

Since Jones et al. (1998), the expected improvement (EI) algorithm has become a very popular algorithm to op-
timize an expensive-to-evaluate function. Such functionsare often encountered in industrial problems, where the
function value may be the output of a complex computer simulation, or the result of costly measurements on pro-
totypes. A body of empirical studies, based on optimizationtest-beds and real applications, have shown that the
EI algorithm can lead to significant evaluation savings overtraditional optimization methods (see, e.g. Jones, 2001;
Huang et al., 2006; Forrester et al., 2008). Yet, making use of an optimization algorithm without knowing its con-
vergence properties is not satisfying, not only theoretically, but also from a practical viewpoint. Indeed, if it turned
out that the EI algorithm could not get arbitrarily close to aglobal optimizer when the number of function evaluations
increases, using this algorithm on a restricted budget of function evaluations would hardly be justified.

In this paper, we have provided two important results. The first one is that the EI improvement algorithm behaves
consistently provided that the objective function belongsto the reproducing kernel Hilbert space (RKHS) attached
to ξ, under a non-degeneracy assumption on the covariance function that we have called the No-Empty-Ball (NEB)
property. This result is obviously interesting from a theoretical viewpoint; it is less so in practice because one seldom
knows in advance whether the objective function belongs to agiven RKHS. The second main result of this paper,
which states that convergence also takes place forP-almost all continuous functions, whereP is the (prior) probability
distribution of the Gaussian processξ, is what really matters from a practical point of view.

These results constitute a first step toward a deeper understanding of global optimization algorithms based on the
EI criterion, or more generally on criterions satisfying (9). Possible directions for future research include the derivation
of pathwise or average convergence rates, the convergence of the algorithm when some parameters of the covariance
are re-estimated after each new evaluation, and the extension—possibly under more restrictive assumptions—of our
convergence results to all continuous functions.
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