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with fixed mean and covariance functions

Emmanuel Vazquez and Julien Bect

SUPELEC, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France
email: {firstname.{lastnamé@ supelec.fr

Abstract

This paper deals with the convergence of the expected ingpment algorithm, a popular global optimization algo-
rithm based on a Gaussian process model of the function tetmiaed. The first result is that under some mild
hypotheses on the covariance functloof the Gaussian process, the expected improvement algogtbduces a
dense sequence of evaluation points in the search domaén thle function to be optimized is in the reproducing
kernel Hilbert space generated ky The second result states that the density property alststiot P-almost all
continuous functions, wheiis the (prior) probability distribution induced by the Gai# process.

Key words: Bayesian optimization, computer experiments, Gaussiaogss, global optimization, sequential design,
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1. Introduction

Global optimization is the task of finding the global optimfaacreal valued function using the results of some
pointwise evaluations, which can be chosen sequentially, lpatches, when parallelization is possible. The fumrctio
to be optimized is generally callabjective functionin the field of design and analysis of computer experimess,
pioneered by Sacks etlal. (1989) and Currin et al. (1991 )oklijective function—typically an expensive-to-evaluate
numerical model of some physical phenomenon—is seen as plesaath of a stochastic process. The stochastic
model captures prior knowledge about the objective fumciiod makes it possible to infer the position of the global
optima before evaluating the function. This Bayesian decitheoretic point of view has been largely explored
during the 70’s and the 80’s by the Vilnius school of globalimization led by J. Mockus (see_Mockus et al., 1978;
Mockus|1989; Torn and Zilinskas, 1989; Zilinskas, 199%] eeferences therein).

In this paper, we consider tlexpected improveme(il) algorithm, a popular optimization algorithm propossd
J. Mockus in the 70’s and brought to the field of computer expents by D.R. Jones, M. Schonlau and W.J. Welch
(Schonlau and Welch, 1996; Schonlau, 1997; Schonlau €t38.7; Jones et al., 1998). L&tbe a compact subset
of RY, d > 1, and let¢ be a real valued Gaussian process with parameteiX. Our goal is to maximize a given
objective function, which is assumed to be a sample path ©he El algorithm is a sequential planning strategy that
constructs a sequence )y € X in such a way that each evaluation paipis a function of the previous evaluation
pointsx;, i < n, and the corresponding values of the objective function.NLe= £(x;) V - - - V &(X,) be the observed
maximum at step; then, a new evaluation poist,; is chosen in order to maximize the quantity

pn(X) := E[((X) — M)+ [ €(Xa), ..., €(xn)] 1)
wherez, = z v 0. Note that this is equivalent to choosing the evaluationtpg,.1 that maximize€ [M,, v £(X) |
&(x1), ..., &(xn)] with respect tax. The functionon(x), which is called the expected improvemeniats the con-

ditional mean excess @{x) above the current maximui,. It is well-known that the expected improvement has a

closed-form expression, which can be written using theitkgigredictor and its variance (see, €.g., Jones &t al.;)1998
This paper addresses the convergence of the El algorithderdine assumption thatis a Gaussian process with

zero mean and known covariance. (Our results still applgriie parameters of the covariance function—for instance,
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the range and regularity parameters of a Matérn covariammtion—are estimated using a first batch of evaluations
and held fixed afterward.) It is easily seen that a globaloizgtion algorithm converges for all continuous functions
if and only if the sequence of evaluation points producedHsy algorithm is dense for all continuous functions
(Torn and Zilinskas, 1989, Theorem 1.3). In the case of thal§orithm, this property was proved hy Locatelli
(1997), withd = 1, X = [0, 1] and¢ a Brownian motion._Mockus (1989, Section 4.2) claims a mucdhengeneral
convergence result, but his proof unfortunately contaisewvere technical g@p

The main contribution of this paper is a couple of convergerasults for the El algorithm. The first result
(Theoreni B) states that the sequence of evaluation poidsnise in the search domain provided that the objective
function belongs to the reproducing kernel Hilbert spatattached t@&, under a non-degeneracy assumption on the
covariance function that we call the No-Empty-Ball (NEBpperty. This convergence result is quite natural from the
point of view of interpolation theory. The second result §6heniY) states that the density property also holds for
P-almost all continuous functions, whelds the (prior) probability distribution of the Gaussian pesst.

The paper is outlined as follows. Sectldn 2 introduces caméwork, notations and standing assumptions. Sec-
tion 3 describes the El algorithm in greater details andestéte main results of the paper. Secfidn 4 provides a
sufficient condition for the NEB property, in the case of a staigrcovariance function. Sectibh 5 contains the proof
of the main theorems. Finally, Sectigh 6 gives our conchisiand discusses future work.

2. Preliminaries

2.1. Framework and standing assumptions

The central mathematical object in global optimizationottyeis the objective functiom : X — R, defined on
somesearch spac&. A deterministic search strategy can therefore be seen appingX from the setQ = R* to
the setX" of all sequences ik,

l(((l.)) = (X]_((l)), XZ(‘”)v .. ')» (2)

with the property that, for ath > 1, X,.1(w) depends only on the firstevaluationgv(X1(w)), . . ., w(Xn(w)). Assum-
ing measurability of theX,s with respect to the productalgebraA on Q (i.e. theo-algebra generated by cylinder
sets), this can be reformulated in the language of prolaliieory—although there is no probability measure in-
volved yet. Indeed, let

EXXQ- R, (X ) &(Xw) = w(X), 3)

denote the canonical process on the path sp@cét]. Then, the above search strateéggan be seen asrandom
sequence itX, with the property thak,,1 is F,-measurable, wherg, is theo-algebra generated yX;), ..., £(0Xn).

It must be stressed that, despite the lexical shift, we dfelstling with deterministicalgorithms: randomness only
comes from the fact that we are now considering the objefuivetioné(-, w) = w as a random element .

In the Bayesian approach to global optimization, prior infation on the objective function is taken into account
under the form of a probability measupeon (Q2, A), which amounts to specifying the probability distributiofthe
stochastic process This prior information is then updated at each step of tteecde through the computation of
the conditional distributio®{ - | 7}. For practical reasons, only Gaussian process priors reee ¢onsidered in the
literature: in this case, the prior is completely specifigdie mearm(x) and the covariance functiddx, x’), and the
procesg remains Gaussian under the conditional distributiefis| #,}, n > 1. Throughout the paper we shall make
the following standing assumptions:

Assumption 1.
i) X is acompact subset &¢, for some d> 1,
i) ¢is acentered Gaussian process unier

iii) the covariance function k is continuous and positivéimie.

IMore precisely, the arguments given on page 45 fail to prbeekey result claimed in Lemma 4.2.2, i.e. the density of #mgusence of
evaluation points.
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LetH c Q denote the Reproducing Kernel Hilbert Space (RKHS) thaaimaically attached t6 (also known as
the Cameron-Martin space éf see, e.gl, Bogachev, 1998). Assumpfiéin]1.iii entails#fias a space of continuous
functions. We shall denote [y, -)4 the inner product of{ and by - |4 the corresponding norm. It is worth noting
thatP(H) = 0 (see, e.g., Lukic and Beder, 2001, Driscoll's theorem).siall comment on this fact with respect to
our convergence result in Sectidn 3.

Remark 2. Unless otherwise specified (see Secfibn 4), it is not assuh@dhe covarianck is stationary. To the
best of our knowledge, however, most practical applicatiofithe EI algorithm have used stationary covariances to
model the objective function prior to any evaluation.

2.2. Linear prediction and the No-Empty-Ball property

Forn> 1,x, = (X1, ..., %) € X" andx € X, we denote b{f}(x;gn) the conditional expectation @{x) given
&(x1), €(%2), ..., &(Xn). Sincef is a centered Gaussian process, the conditional expectat@so the best linear
predictor inL? (Q, A, P), and therefore can be written as

Gl wix,) = > A(xx,) £06.0). (4)

i=1

Let o-ﬁ(x; gn) denote the mean-square prediction error, i.e.

oa(xx,) = E [(f(x) —&(x; zn))z]- (5)

(Recall that, since is a Gaussian process, the error of prediction is indeperadehe o-algebra generated by the
£(x)s, 1<i < n; see, e.gl, Chiles and Delfiner (1999), Section 3.3.4.)

Definition 3. We shall say that the Gaussian procéssor, equivalently, the covariance functid—has the No-
Empty-Ball (NEB) property if, for all sequences,jn-1 in X and ally € X, the following assertions are equivalent:

i) yis an adherent point of the se4,, n > 1},
i) o3(y; x,) = 0 whenn — +co.

Sincek is assumed continuous, (i) always implies (iii) in Definitld. The NEB property is therefore equivalent
to the assertion that, if the prediction errolyajoes to zero, then there can be no “empty ball” centergdia. for
all e > 0, there exist® > 1 such thaty — x,| < e€)—hence its name. A dicient condition for the NEB property will
be given in Sectiohl4. To the best of our knowledge, findingessary and dficient condition for the NEB property
is an open problem.

2.3. Simplified notations

Since the notations introduced [d (4) ahd (5) would rapidigdime cumbersome in the next sections, the following
simplified notations will be used:

X w) :

T2A(x w) :

(% @i X(@)), (6)
E (€00 - &(x: X)) 73] (@) = oF(x: X, (@), )

with X, = (X4, ..., Xn). Remark that-2(x, w) is a stochastic process indexedyThe second equality if)(7) follows
from the fact that,(x; -) is continuous for alk € X.
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3. Main results

In this paper, we shall consider a generalization of the Eron. Define

pa(¥) = 7 (&) = Mo, 079 ), (8)
where the functiory : R x [0; +c0) — [0; +0c0) satisfies the following requirements:

Ry : yis continuous,
R,: V¥z<0, y(z0)=0, )
Rs: VzeR, ¥s>0, y(z s >0.

The corresponding optimization algorithm can then be emits:

Xl = Xinit € X»
10
{Xa T Somana (10

Remark 4. It is well-known (Schonlau and Welch, 1996) that the El ciite defined by[{lL) can be rewritten under
the form [8). More precisely, leb denote the Gaussian cumulative distribution function. AT holds for the El

criterion with
’ V4 Z H
Sz = \/s® (7S)+ZCD(7S) if s> 0, (11)
max(z, 0) if s=0.

In fact, equation[{8) withy thus defined should be taken as the true definition of the Eravh. Indeed, the exact
mathematical meaning ofor(X) = E[(£(X) — M)+ | Fn]” has to be specified, since, for eaghthe conditional
expectation is only defined up taPanegligible subset of2.

Remark 5. The criterionx — pp(X) is continuous, but there is no guarantee that the maximizerX will be unique.
Therefore, a more rigourous statement of the iterative gfaffd) would be:Xn,1 € arg max.x pn(X). In this way,
instead of a single algorithm, we encapsulate the familylladlgorithms that choose (measurabkjp,.1 among the
maximizers ofp,. General measurable selection theorems (seel_e.g., Mml¢h2005) ensure that such an algorithm
does exist.

The first result of this paper is the following density theare

Theorem 6. Assume that the covariance function k has the NEB propehtgn;Tfor all x,;; € X and allw € H, the
sequencéXn(w))n-1 generated byI0)is dense irX.

The fact that Theorefd 6 is stated for objective functione@RKHSH calls for some comments. From the point
of view of interpolation theory, it is indeed quite naturat an algorithm built on the best interpolagité- , w) in
an RKHSH should be provably working, using the tools of RHKS theomnlyovhenw is in this very space. From
the probabilistic point of view, however, the evéét-) € H} almost never happens according to Driscoll's theorem
(Lukic and Beder, 2001). The second result of this papeesthiat the result of Theordr 6 also hdidalmost surely
in Q.

Theorem 7. Assume that the covariance function k has the NEB propehgn,Tfor all i € X, the sequenc@Xn)ns1
generated byI0Q)is P-almost surely dense iX.

It is still an important open question to determine whetheralgorithm converges fall continuous functions,
as claimed in Mockus (1939). Another interesting open prablvould be to determine whether the NEB assumption
can be relaxed.

Remark 8. We have assumed for the sake of simplicity that the optingnatigorithm starts after a single evaluation
performed atX; = Xinit. In practice, especially when some parameters of the cnvegineed to be estimated, the
algorithm starts with an initial design of several evaluaﬁx%m, e )g’:g)n This is equivalent to saying th& is the

o-algebragenerated I@}(xﬁm), o€ ()g"" ) The proofs of Theorefd 6 and Theorgm 7 carry over without firezdion.

nit
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4. A sufficient condition for the NEB property

4.1. Statement of the result
In this section we shall prove that the following assumptfoa suficient condition for the NEB property:

Assumption 9. The procesg is stationary and has spectral density S, with the propdréag 81 has at most poly-
nomial growth.

In other words, Assumptionl 9 means that there eRist 0 andr € N\ {0} such thatS(u)(1 + |u") > C,

almost everywhere oRY. This assumption prevenksfrom beingtoo regular. In particular, the so-calleGaussian
covariance,

k(x,y) = c2e ¥ 550 a>0, (12)

does not satisfy Assumpti@h 9. However, we are still alloweedonsider a large class of covariances. For instance,
the exponential covariances

k(x,y) = c?e P 550 «>0,0<s<2, (13)

the class of Matérn covariances (see, €.g., Stein, 1988)theeir anisotropic versions, all satisfy Assumpfidn 9eTh
main result of this section is:

Proposition 10. Let (X,)n>1 and (Yn)n>1 be two sequences K. Assume that the sequen@g) is convergent, and
denote by ¥y its limit. Then each of the following conditions implies tiext one:

i) y*is an adherent point of the sgt,, n > 1},

ii) o-ﬁ(yn;gn) — 0when n— oo,
iii) En(yn,w; gn) — &(y*, w) when n— oo, for all w € H.

Moreover, under Assumptidn 9, the three conditions arevedent and thereforé has the NEB property.

Remark 11. As already observed, the Gaussian covariance does ndysasisumptior 9. In fact, it is known that
the Gaussian covariance does not even have the NEB propadgyez and Beat, 2010).

4.2. Consequence of Assumpfidon 9 in terms of RKHS

Let H’ denote the RKHS associatedk@n R, It is well-known (Aronszajn, 1950, Section 1.5) tifdtembeds
isometrically intoH’ and that, for allw € H’, the orthogonal projection @ ontoH is simply its restriction tcX.

Under Assumptiofl]9/H’ contains the Sobolev spa&k (R?), and the injection is continuous. Indeed, denoting
by @ the Fourier transform ab € H’, we have

f L+ Ul [&(WPdu > C f S WP du = [wlZ, .

A useful consequence is thaf’ contains the spadg®(RY) of all compactly supported infinitely fierentiable func-
tions onRY, for anyr. In particulark is auniversal kernebn X in the sense of Steinwatrt (2001), which means that
H is dense in the Banach spaC€X) of all continuous functions oK.
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4.3. Proof of Proposition 10

(i) = (ii). Assume thay* ¢ {x,, n > 1} (otherwise the result holds trivially). Lex{ ) be a subsequence of.}
converging toy* and lety, = maxX¢x; ¢k < n}. Then,

TA(Yni X,) = va&(yn) = &n(yni X,)] < val&yn) - £(x,)]-
Sinceyn, — oo, it follows from the continuity ok that

var(£(yn) = 06,1 = KYn: Yn) + K(Xy» %) = 2K(Xy,, Yn) — 0.

(ii) = (iii). Using the Cauchy-Schwarz inequality, we have

< on(Yni X,) llwllx

|§(yn’ w) _aw()’n» w; l(n)

Therefore

IA

J60v*, ) = E(yn, )| + [EYn, @) = En(Yn; X, )|
|w(y*) = w(yn)| + on(¥n: X,) llwllze — O,

ey, w) = E(yn w3 x,)|

IA

sincew is continuous.

Under Assumption[3, (ii) = (i). Supposeif is false. Then, there exists a neighborhabdf y* in RY that does
not intersec{x,, n > 1}. Besides, it follows from Assumptidd 9 that there existe  such that supp c U and
w(y*) > 0 (where supp denotes the support af). Then,a(y*,w;gn) = 0 for all n, whereag(y*, w) = w(y*) # 0.
Thereforeji ) does not hold. O

5. Proofs of the main theorems

5.1. Proof of Theorefl 6
Let vy = Sup.x pn(X), wherep,, is the criterion defined by equatidd (8). Note that, fomal 1,
Vn = pn(Xne1) = V(E(Xml) - Mn, O'ﬁ(xn+1))~
Our proof of Theorernl6 will be based on the following resulhigh does not require the NEB property):
Lemma 12. For all w € H, liminf,_,. va(w) = 0.

Proof. Fix w € H. Foralln > 1, setx, = Xp(w), S = 02(Xn+1, w) andz, = En(XnJrl, w) — Mp(w), so thatv,(w) =
v(zn, sn). Lety* be a cluster point of the sequenog)(and let &,,) be any subsequence converging/to we are
going to prove that,, _1(w) — 0. It follows from Propositiof 110,iY = (iii), thata,n,l(xd,n,w) — w(y*). Moreover,
(My,-1(w)) is a bounded increasing sequence, with the propertyNhat(w) = My, ,(w) = w(Xs, ) = w(Y*).
Therefore g, 1) has a finite limit, such that

lim 7,1 = lim &,1(X,, ) = im My, _1(w) < 0.
By PropositioriID, i) = (ii), we also know thas, 1 = o2 (X, w) — 0. Therefore, using®) and R;),
Vor-1(@) = Y21, Sp-1) = ¥(lim 2,1,0) = 0.

This completes the proof of Lemrhal12. O
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Proof of Theorem[8. Now fix w € H, and suppose th&K(w), n > 1} is not dense irX. Then there exist a point
y* € X that is not adherent t,(w), n > 1}. This implies, by the NEB property, that

; 2

IanII;O'n(y*,w) > 0.

Besides, using the Cauchy-Schwarz inequalitfinwe observe that the sequenEﬁ(y(*, w)) is bounded. Indeed, we

have
2

Ey* ) -ty < o3y" 0) ol < ky*,y*) el
The sequencéM(w)) is also obviously bounded byw||,. Therefore, we obtain as a consequenceRaf and Rs)

that
poly*. @) = inf v (Edy* ) - M(@). of(y*. w)) > 0.

This is a contradiction with Lemniall2, singgw) = maxex pn(X, w). The proof is thus complete. O

5.2. Proof of Theorein] 7

In essence, the structure of the proof of Thedrém 7 is the sartteat of Theorei 6. The first step is to obtain an
almost sure version of Lemrial12.

Lemma 13. liminf .« vn = 0 almost surely.

Proof. Let D, = miny<i< [Xni1 — Xi| be the distance oX;,,; to the set of all previous evaluation points. Defife=
min{n > 1; Dy < ri}, with (r) a sequence of positive numbers such thatlira 0. Note that eachy is finite, since
the setX is compact, and is af¥)-stopping time since the sequen@) is (¥)-adapted.

The first step is to see that, as in the proof of Proposifidn 10,

07, (Xra1) < i 1= sup k(x ) +k(,Y) - 2K(xy) — 0. (14)
[x=yl=rk =
Note that(Xr,.1), does not necessarily converge.

The next step is to prove that, (Xr,.1) — £(X1..1) converges to zero almost surely, for a suitable choice f th
sequencer(). First, using thaly is a stopping time, we have:

E (@ (%) — 0] = E| D 1rcn@Enine) = £0602))’|

n>1

> E[trien E [ 0K2) = £02)? | 72l

n>1

E [ Z 1Tk:n O'ﬁ(xml) ]

n>1

E[oF (Xre1) ] < .
Then, for eaclz > 0, it follows from Markov’s inequality that
P{Er(Xre1) — €Xma1))® > 8} < /s

Choosingrk such that, for instancey = 1/k?, ensures thaETk(XTkﬂ) — &(Xt,.+1) converges to zero almost surely.
Therefore, the sequen@k(XTkﬂ)) is almost surely bounded. Moreover,

lim sup &r,(Xr,+1) — Mra1

k—oo

i!mng(xTwl) -&(Xr+1) = 0 a.s, (15)

"T sup &r,(X7,+1) — Mr,

IA

where we have used the fact tliit,) is convergent.
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Finally, using Ry) and R:), the fact tha(ETk(XTkﬂ) - MTk) is almost surely bounded, {[14) and(15), we conclude
that

vt = Y(ér(Xrs1) — M1, 0'12'k(XTk+1)) g 0 as. O
Proof of Theorem[d. Fix x € X and define the ever, € A by

Ax = {xis not an adherent point of the sgt,,n > 1}}.

Then inf.1 02(X) > 0 on A, by the NEB property. Moreover, the martinggigx) = E [£(X) | Fn] is bounded in_?
sinceE&,(X)? < k(x, X) < +oo, and thus converges almost surely and_fnto a random variablé..(x) (see, e.g.,
Williams,|1991). As a consequence, the event

Bx := { (&n(X) - Mn) is bounded
has probability one, sincé\,) is also convergent. Therefore, we obtain By)(and Rs) that, onA, N By,
v 2 pa(¥) 2 inf oy (&) - Mic o5(9) > 0.

SinceP(By) = 1, it follows from Lemma 1B tha®(Ay) = 0.
Finally, letX be a countable dense subsekodind letQy = Q\ U,z Ax. ThenP(Qo) = 1 and it is straightforward
to see that for each € Qo, the sefX,(w), n > 1} is dense irX. O

6. Discussion

Since Jones et al. (1998), the expected improvement (Edyighgn has become a very popular algorithm to op-
timize an expensive-to-evaluate function. Such functiares often encountered in industrial problems, where the
function value may be the output of a complex computer sitiariaor the result of costly measurements on pro-
totypes. A body of empirical studies, based on optimizatesti-beds and real applications, have shown that the
El algorithm can lead to significant evaluation savings dxaditional optimization methods (see, e.g. Jones, 2001,
Huang et al., 2006; Forrester et al., 2008). Yet, making dismmptimization algorithm without knowing its con-
vergence properties is not satisfying, not only theor#jichut also from a practical viewpoint. Indeed, if it tuche
out that the El algorithm could not get arbitrarily close tglabal optimizer when the number of function evaluations
increases, using this algorithm on a restricted budgetrudtfan evaluations would hardly be justified.

In this paper, we have provided two important results. T @ine is that the El improvement algorithm behaves
consistently provided that the objective function belotahe reproducing kernel Hilbert space (RKHS) attached
to &, under a non-degeneracy assumption on the covariancedoribt we have called the No-Empty-Ball (NEB)
property. This result is obviously interesting from a thegral viewpoint; it is less so in practice because one seldo
knows in advance whether the objective function belongs given RKHS. The second main result of this paper,
which states that convergence also takes place-famost all continuous functions, whepds the (prior) probability
distribution of the Gaussian processs what really matters from a practical point of view.

These results constitute a first step toward a deeper uaddisg of global optimization algorithms based on the
El criterion, or more generally on criterions satisfyipl. (Bossible directions for future research include theidéion
of pathwise or average convergence rates, the convergéttoe algorithm when some parameters of the covariance
are re-estimated after each new evaluation, and the eatergiossibly under more restrictive assumptions—of our
convergence results to all continuous functions.
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