Tracking fast changing non-stationary distributions with a topologically adaptive neural network: Application to video tracking - CentraleSupélec Access content directly
Conference Papers Year : 2007

Tracking fast changing non-stationary distributions with a topologically adaptive neural network: Application to video tracking

Hervé Frezza-Buet

Abstract

In this paper, an original method named GNG-T, extended from GNG-U algorithm by Fritzke is presented. The method performs continuously vector quantization over a distribution that changes over time. It deals with both sudden changes and continuous ones, and is thus suited for video tracking framework, where continuous tracking is required as well as fast adaptation to incoming and outgoing people. The central mechanism relies on the management of quantization resolution, that cope with stopping condition problems of usual Growing Neural Gas inspired methods. Application to video tracking is briefly presented.
Fichier principal
Vignette du fichier
es2007-89.pdf (617.53 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-00250981 , version 1 (12-02-2008)

Identifiers

  • HAL Id : hal-00250981 , version 1

Cite

Georges Adrian Drumea, Hervé Frezza-Buet. Tracking fast changing non-stationary distributions with a topologically adaptive neural network: Application to video tracking. 15th European Symposium on Artificial Neural Networks (ESANN2007), Apr 2007, Bruges, Belgium. pp.43-48. ⟨hal-00250981⟩
61 View
98 Download

Share

Gmail Facebook X LinkedIn More