Identification of expensive-to-simulate parametric models using Kriging and Stepwise Uncertainty Reduction - CentraleSupélec
Communication Dans Un Congrès Année : 2007

Identification of expensive-to-simulate parametric models using Kriging and Stepwise Uncertainty Reduction

Emmanuel Vazquez
Eric Walter

Résumé

This paper deals with parameter identification for expensive-to-simulate models, and presents a new strategy to address the resulting optimization problem in a context where the budget for simulations is severely limited. Based on Kriging, this approach computes an approximation of the probability distribution of the optimal parameter vector, and selects the next simulation to be conducted so as to optimally reduce the entropy of this distribution. A continuous-time state-space model is used to illustrate the method.
Fichier principal
Vignette du fichier
46thIEEE.pdf (98.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00252148 , version 1 (13-02-2008)

Identifiants

Citer

Julien Villemonteix, Emmanuel Vazquez, Eric Walter. Identification of expensive-to-simulate parametric models using Kriging and Stepwise Uncertainty Reduction. Conference on Decision and Control, Dec 2007, New Orleans, United States. pp.5505-5510, ⟨10.1109/CDC.2007.4434190⟩. ⟨hal-00252148⟩
122 Consultations
288 Téléchargements

Altmetric

Partager

More