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|dentification of expensive-to-simulate parametric moded using Kriging
and Stepwise Uncertainty Reduction

Julien Villemonteix, Emmanuel Vazquez and Eric Waliter

Abstract— This paper deals with parameter identification for ~ principles of Kriging, on which IAGO is based, and Sec-
expensive-to-simulate models, and presents a new strate¢y  tion IV will illustrate the potential evaluations saving$ o

address the resulting optimization problem in a context whee ; ; : e
the budget for simulations is severely limited. Based on Kging, the methodqlogy on a simple but not uniquely identifiable
continuous-time state-space model.

this approach computes an approximation of the probability
distribution of the optimal parameter vector, and selects he N
next simulation to be conducted so as to optimally reduce Il. ESTIMATING PROBABILITY DENSITY FORX
the entropy of this distribution. A continuous-time state-space A Kriging and linear prediction
model is used to illustrate the method.
Kriging ([1], [10]) is a prediction method based on random
. INTRODUCTION processes, which can be used to approximate or interpolate

. . data. It can also be understood as a kernel regression method
The vectorx of the parameters of a parametric model is

usually estimated by optimizing some cost functidm) that such gsplmes[lS] orSuppor_t vector RegreSS|QSyR, [81). .

I : . It originates from geostatistics and has been widely used in
quantifies the difference between a vecotasf experimental this domain since the 60s. Kriging is also known as Best
data and the resultym(x) of model simulation ([14]). ! e - nging | W

Except in some important but very specific cases where tﬂ_énear Unbiased Predictior(BLUP) in statistics, and has

; . . been more recently designated as Gaussian Processes (GP)
optimal parameter vector* can be computed explicitly, this . i . . .
in the 90s in the machine-learning community.

optimization requires a large number of model simulations. Wh deli ih G . the functi f
This paper is concerned with the case where the number of €n modeling wi aussian processes, the function o

model simulations effectively achievable is severely fedi interestf : X — R IS assumed to be a s_ample pr_:\th of a
by either time or cost. second-order Gaussian random procEssvith covariance

In this context, it becomes essential to favor optimizatior|§("')' The mean ofF (x) is assumed to be a finite linear

. . . : _aT
methods that use the scarce information as efficiently & mbmaﬂ_on of known fun_ct|onsp. of x, m(x) = B p_()_(),
ere B is a vector of fixed but unknown coefficients,

possible. Such methods often use an approximation bas . = T Usually the funct _
on available evaluations, as a cheap proxy for the functionl" P(x) = (p1(x),.... pi(x)) . Usually the functionsy are

to be optimized. We shall refer to this proxy assarro- mo_nomials of low degree in the componentxdin practice,
gate approximatiorto avoid confusion with the parametricthe'r_d_egree dqes '?Ot exceeql two). . . .
modelyn(x). Surrogate approximations based on Gaussian Kriging cpn5|sts n computmg_an unbiased linear predic-
processes an&riging (initially introduced in geostatistics tlor_1 Of F(X) |nthe.vectorspacHS_spar{F(xl),...,F(xn)},
[7]) have received particular attention [5], mainly for theWhICh can be written as
unde.rlying probgbilistic framework, W_it(_:h allows the sdt o F(x) =A(X)TFs, (1)
function evaluations to be chosen efficiently.
In this context, the authors have introduced [12] the ~With Fs = [F(x1),...,F (xa)]T, andA(x) the vector of Kriging
formational Approach to Global OptimizatiohAGO, [12]), coefficients for the prediction at
which provides arexplicit estimated probability distribution ~ To compute an unbiased prediction with minimal variance,
for the minimizers of f, allowing an information-based @ Lagrangian formulation is adopted, wifi(x) a vector
search strategy. In comparison, most alternative stregegiof | Lagrange multipliers. The coefficien®%(x) are then
implicitly seek a likely value fox* and then assume it to be solutions of the linear system of equations
a sui_table Iocati_on for evalugting ([4], 51, [6]). K P AX) K(x)
This paper aims at drawing the attention of the control ( PT 0 ) ( H(X) ) = ( k(x) )7
community on the pertinence and performances of the IAGO
to be presented in Section Ill. Section Il will recall thewith 0 a matrix of zeroskK = (k(xi,xj)), (i,j) € {1,...,n}?
the n x n covariance matrix of at all evaluation points in
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The Kriging coefficients at can thus be computed without 15
evaluating f (x), along with the variance of the prediction ul

error
105+

(3) 10

9.5

62(x) = var(F (x) — F(x))
= k(x,X) = A(X)Tk(x) = p(x) " H(x),

as these quantities only depend on the covarianée &fnce

f has been evaluated at all in S, the prediction off (x) ’

f(x)

becomesf (x) = A(x)Tfg, with fs = [f(x1), ..., f (xn)]T. 85t
Note that, in the case of exact evaluationsfofKriging 8t
is an interpolation{x; € SF(x;) = F(xi)). 25l
B. Density of the global minimizers .
According to the GP model, a global minimizer of 65 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
f corresponds to a global minimizer of a sample path ¢ 0 ' Z : IV ¢ ! ¢
F. Hence the intuitive idea to consider a random quantit
accounting for the knowledge on the global minimizers-of
conditionally to past evaluations. o081 1
More formally, consider the random sef} of the global 007l i
minimizers ofF over G (a finite subset oK), i.e,
0.06 4
MG = {x* € G:F(x") :g]EigF(x)}. < oost 1
Let then X7, be a random vector uniformly distributed ong oos 1
The probability density funcUopXE‘fS of X* conditionally
to fs, designated as the conditional density of the globe %% 1
minimizers in [12] (or in short minimizers density), can be .| ]
viewed as the current solution of the global optimizatior L
problem as it contains all of what has been learnt about tt 0 1 2 3 4 5 6 7 8
function and its minimizers. In what follows, we propose X
a simulation-based approximation for the density of the
minimizers.

Fig. 1. Top: Kriging prediction (bold line) based on scarceleations
C. Conditionning by Kriging (squares), along with conditional simulations (thin lijpneBottom: Condi-

. . }ional density of the minimizers approximated using candal simulations.
Initially, f is only assumed to be a sample path o

F. As evaluations become availablé, is assumed to be
a sample path of that interpolates the data, namely a

conditional sample pathwhich can be viewed as a possibIeWhere]c 's the mean of the Kriging predictor fér based on

version of f (the Kriging prediction is in fact the mean of the design points ii$. It can then be easily verified that, as

these sample paths). The simulation of these sample paﬁl esult of the unbiasedness&fthe sample paths of are

(known asconditional simulatioh is of remarkable interest also F:ondltlona_ll simulations . )

when one wishes to estimate quantities non-linear in the USing equation (1), one can rewrite (4) as

studied function, such as the minimizer [1]. Examples of

such simulations are presented on Figure 1, along with the T(x) = Z(X)+A(x)" [fs — Zs], (5)

corresponding Kriging prediction. In this paper, we prapos

to use such simulations to compute an approximafign;”  With Zs = [Z(x1), - Z(xn)]T. So the same vectak(x) of

of the minimizers density. Kriging coefficients is used for the interpolation of the alat
Among the many available methods for generating corgnd for the simulations aZ.

ditional simulations [1], we use, mainly for simplicity and In summary, to simulaté& over G conditionally to past

computational reasons, the unbiasedness of the Kriging prevaluationsfs, one can simply simulate a zero-mean Gaus-

diction to transform non-conditional simulations into sim sian proces¥ over G, compute, for every point iz, the

lations interpolating the evaluatioffis. vector of Kriging coefficients based on the design points in
Let Z be a zero-mean Gaussian process with covariinceS, and apply (5). Obtaining an approximation fpg*G‘fS is

(the same as that d¥), Z be its Kriging predictor based on then simply a matter of computing the global minimizers for

the random variable&(x;), x; € S, and consider the random a sufficient number of conditional simulations. An example

process of the resulting distribution is presented on Figure 1 along
T(x) = f(x)+ [2(x) — Z(x)] (4) with the corresponding Kriging prediction (top).



I1l. KRIGING-BASED GLOBAL OPTIMIZATION B. Stepwise uncertainty reduction

We have seen that the Kriging framework is well suited for In [12], conditional entropy has been introduced to mea-
an estimation of the minimizers density. Before describingure the information gain to be provided on the minimizers
the new IAGO search strategy, let us recall the optimizatioby an additional evaluation. In active learning, this istpar
approaches that are standard when dealing with expersive-0f the Stepwise Uncertainty ReductigSUR) strategy [3],
evaluate functions using a Kriging surrogate approxinmtio which chooses the point that potentially brings the largest
reduction in entropy (seen as a measure of uncertainty). To
apply the SUR principle to global optimization, the IAGO

Most Kriging-based optimization algorithms are built onstrategy evaluates this gainaby using Kriging to generate
the same principle, and sequentially evaluétat a point the necessary conditional simulations for the approxiomati
that optimizes a criterion based on the surrogate approxf the distribution of the minimizers conditionally to past
mation obtained using the previous evaluations. In a sensjaluations and to a possible evaluatiorxathis approach,
the expensive-to-evaluate cost functibnis replaced by a is relatively expensive but, as detailed in [12], the sante se
cheaper cost function based on the surrogate approximatiaf sample paths can be used throughout the procedure which
which we refer to as the criterion to avoid confusion withmakes the algorithm applicable (see [11] for an example in
f. A simple example of such a criterion is the predictiorthe automotive industry). Let us present the IAGO algorithm
f. However, too much confidence is then put in the currerih more detail.
prediction, and search may stall on a local minimizer if the The entropy of a discrete random variakle(in bits) is:
initial prediction is too distant from a the global minimize

To improve this basic criterion, a compromise between ZP = u)log, P(U
local and global search has to be struck. This compromise L
is generally achieved by putting more emphasis on trf(u) quantmes_the_ sprea_\d of the distribution ©f, and
prediction error that indicates locations where addition ecreases as this distribution gets more peaked.
evaluations are needed to improve confidence in the model. Similarly, the conditional entropy [2] a9 given a discrete
This approach has led to a number of criteria [5], and chleflgﬁndom variable/ and an evens is
the expected improvemeantiterion (El, cf. [6]) that we shall H(U|3,V) Z P(V =Vv|8)H(U|3B,V = V), (8)
briefly present here and use it as reference in Section IV.

In [6], the improvement expected from an additionalyith
evaluation of f at x given the past evaluations ify is HU[B,V =v) = — ZP(U — U8,V =V)
expressed as

A. Standard approaches

=u).

u 9)

EI(X) =E[I(x)|Fs = 3, (6) 108, P(U = ul.V =),
the conditional entropy df) given3 and{V =v}.

For our optimisation problem to be fully solved, there
I(x)_{ 0 if _ (X) > fmin should not remain any uncertainty odf. Therefore, we

fmin—F(x)  otherwise ’ would like to ensure that (X} |Fs = fs) = 0. The idea of the

IAGO strategy is then iteratively to ensure a one-step ogitim
reduction of H(X{|Fs = fs) given what is known of the
system. In other words! is chosen as a new evaluation point

with

5"')

and fmin the best value of yet obtained. Using integration
by part, one can easily rewrite (6) as

El(x) = 6(x) [uqn(u)+q>’(u)]7 (7) if it minimizes Hg(x) the conditional entropy oKg given
_ all past evaluations anBg(x), a discrete version of (x),
with o — F(0) obtained by quantization at levefs, ..., fy (the quantization
_ Imin—

is necessary for the computation of conditional entropy). B

G(x) using (8) we can then write

and @ the normal cumulative distribution. The new evalua- M
tion point is then chosen as a global maximizer ofxgI( Hs(x) = ZP(FQ(X) = fj|Fs =fg)

Besides El, all commonly used criteria aim at answering [ (10)
the same question: What is the most likely position of H(XG|Fs = fs,Fo](x) = fi),
x*? They implicitly seek a likely value for the optimum .
location, and then assume it to be a suitable location for an .
additional evaluation of . By contrast, our main contribution (XglFs =fs,Fo(x) = fi) =
will be the explicit characterization (througpy’ ) of the - % P, ffe. £ (U) 1092 Pz, s £ (U) (11)

ue

uncertainty on the minimizers stemming from the lack of
information on the function. We shall also see that a morand
pertinent problem can in fact be solved: Where should the X

. : X . s it £ (U) = P(X* = u|Fg = fg, Fo(X) = fi
evaluation be carried out optimally to improve knowledge on Px s, (U) = P IFs =5, Fo(x) = fi),
the global minimizers? computed using conditional simulations.



The criterionHs thus takes into account the conditionalpoints for a 6 dimension parameter space). Beside§; &s
statistical properties of and particularly the covariance of re-sampled after every evaluation 6f the number of can-
the model to choose a one-step optimal evaluation point. Blidate points effectively explored is considerably lartiem
contrast, the EIl criterion depends only on the conditionadll. Lastly, the result obtained can be trusted to be a consisten
mean and variance &f at the design point considered (andchoice within this set of candidate points, in regard of what
this is actually true for most standard strategies). has been learned (observations) and assumed (covariance of
the GP model) about. Anyhow, the computation ofls(x)
only involves the surrogate approximation. Computational
Our algorithm is similar in spirit to a particular strategyburden is therefore a minor issue as long as it stays small in
for Kriging-based optimization known aEfficient Global comparison with the computational burden of an evaluation
Optimization(EGO [6]). EGO starts with a small initial set of of f.
evaluations off, estimates the parameters of the covariance
(see [12] and the reference therein for details on this stjbje
and computes the Kriging model. Based on this model, an A typical example of identification for which the IAGO
additional point is selected in the design space to be theethod is particularly relevant is the estimation of the few
location of the next evaluation of using the EI criterion. physical parameters of a knowledge-based model described
The parameters of the covariance are then re-estimated, the partial differential equations with complex boundary
model re-computed, and the process of choosing new poirmtenditions. We chose, however, to consider a much simpler
continues until the improvement expected from samplinglustrative problem, for three reasons. First, it is pbksito
additional points has become sufficiently small. The IAGQvriefly give enough details to allow the reader to use it to
algorithm uses the same idea of iterative incorporation afompare the performance of the IAGO approach with those
the information obtained to the prior on the function, bubther methods not considered here. Second, nothing is lost
the SUR strategy is used instead of the maximization of Ehy considering such an example, as the methodology would
Another specific feature of our algorithm is that we advocatke strictly the same for a more expensive to simulate model.
the use of the Matern covariance [9] and of maximunibast, it will turn out that this example is not so easy to solve
likelihood estimation for the parameters. and demonstrates the superiority of our approach over more
Stopping criterion: When the number of additional func- conventional ones.
tion evaluations is not specified beforehand, we propose toWe thus consider a deceptively simple two compartmental
use as a stopping criterion the conditional probabilityt thamodel. Its state vectog = [ql,qz]T corresponds to the
the global minimum of the GP model be no further aparamounts of material in two compartments, which are gov-
of the current minimum of the Kriging interpolation thanerned by the evolution equations
a given tolerance threshold. This stopping criterion islwel .
suited here, since the estimation of the repartition fumcti { = —0a+3)01+ X0,
of F(X*) can be carried out using conditional simulations in G2 = X=X
exactly the same fashion as for the estimatiorpg)g‘f; At time t = 0, a unit injection of material takes place in
Computational burdenThe IAGO algorithm involves the compartment 1, sg(0) = (1,0)". Measuremeny(t;) of the
minimization of the conditional entropiis(x) over a set quantity of material in Compartment 2 are collected at time
of candidate evaluations points. We propose to solve thisi=1,...,15.
optimization problem using points i@ as candidate points, For this simulated example, a noise-free vector of mea-
and samplingG with pxa‘fs as prior. By doing so, areas surementsy is generated using the ODE solver of Matlab
of the design space where the density is sufficiently smaWith a parameter vectoxo = (0.6,0.15,0.35)". The opti-
are ignored as they are not likely to be of interest for thénization is then carried out ové®,1]° using the quadratic

C. Computational issues

IV. EXAMPLE

(12)

reduction of entropy. cost function
As detailed earlier, the computation ld§(x) requires the 15
use of conditional simulations df over G. This can be f(x) = Zl(qz(x,ti)—)/(ti))z-

done in gN) operations (cf. [12]), withN the cardinal of =

G. Choosing a new evaluation point fértherefore requires  This example is actually difficult for two reasons. First, as

O(N?) opérations. suggest by the level sets of Figure 2 (thin lines), the zones
Given this complexity, trying to cover parameter spac&here f is small are relatively large in proportion to the

while keeping the same accuracy as dimension increassge of the search space. Second, the model parameters are

leads to an exponential increase in computational burdemot uniquely identifiable, as the values p$ and B can

In a context of expensive function evaluation, however, thbe exchanged without modifying the system output [14]. So

objective is less to specify exactly all global minimizershere are two global minimizers of, namelyxo but also

(which could be too demanding in function evaluations; = (0.6,0.35,0.15)".

anyway), than to use available information to efficiently With the IAGO algorithm, after 40 evaluations éf the

reduce the likely areas for the location of these minimizZdrs zones where the approximate density of the minimizers

can therefore be kept relatively small (in [11] we used 1003 non-zero are consistent with the 0.3-level setfofcf.
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Fig. 2. Cross sections of the density of the minimizers in(ifwe= 0.15)
plane Top) and (p; = 0.6) plane botton) estimated after 40 evaluations of
f using the IAGO algorithms. The points where the estimatedkside is
non-zero are contained by the dark areas. The black curvei8.03-level
set of the cost function. The true global minimizegsandx; are indicated
by triangles.

Figure 2). Bothxg andx; are within high probability zones
for the global minimizer. By comparison, with the EGO al-

gorithm, after 40 evaluations (cf. Figure 3), the approxiana ’,;'S‘-’ﬁ?;';*;{;‘n arror Tor NelderMeald | ECO_| 1AGO
density of the minimizers misses bok and x;. In terms the minimizers after| 0.44 8'588 8'822
of convergence rates, IAGO performs well on this example 40 evaluations i '

(see Table 1V), as both minimizers are found with 0.01 iﬂ'mfﬁz%nunfggrer% 0.135 102 | 10°3
precision after 80 evaluations éf In comparison, the EGO evaluations 107 10

algorithm has only identifieat;, and it takes an average of Estimation error for 0.399 | 0.011
160 evaluations to the Nelder-Meald simplex to reach this ;hfe\glﬂ'ggi'gﬁf after 0.35 0.011 | 0.011
precision for one of the global minimizers, while entirely Estmation error _for 5 —
missing the other. the minimum after 80 5.102 15:4 i8,5

evaluations

TABLE |

Fig. 3. Cross sections of the density of the minimizers in(ifwe= 0.15)

plan (Top) and (p1 = 0.6) plan potton) estimated after 40 evaluations bf
using the EGO algorithm. The graphic conventions are theesasnthose
of Figure 2.

RESULTS AFTER40 AND 80 FUNCTION EVALUATIONS.?

V. CONCLUSIONS
. . aFor EGO and IAGO, two results are given, corresponding totithe
In this paper, we have presented the 1AGO aI(-:lor'tl"relobal minimizers. For the Nelder Mead simplex, a singleiltds presented,

as an efficient way of handling parameter identificatiofs it is a local method. The local search is repeated for 1ff€reint starting
when confronted with, possibly non-uniquely identifiablepoints, and the average precision is presented (each timenost favorable

ive-t luat tri dels. Th h minimizer is chosen). The estimation error, is either thelllean distance
expensive- O'?Va uate pgrgme ne m? els. € appro&N, ydwyveen the estimated minimizer and a true one, or the aimaf the
others before it, uses Kriging to provide a surrogate approxinimum (as the true minimum is zero).

imation of the cost function. However, to the best of our



knowledge, no other method has used Kriging to compute the
density of the minimizers explicitly, which allows, at each
iteration of the search, to perform an evaluation at thetpoin
that is most likely to reduce the uncertainty on the positbn
the minimum. As evidenced by the example, the evaluations
savings offered by the IAGO algorithm can be significant
in comparison with the widespread Nelder-Meald simplex
algorithm, but also in comparison with the EGO algorithm,
a standard procedure in Kriging-based optimization. The
method is particularly well suited to the identification bét
parameters of knowledge-based models, which are often very
expensive to simulate.
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