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Identification of expensive-to-simulate parametric models using Kriging
and Stepwise Uncertainty Reduction

Julien Villemonteix, Emmanuel Vazquez and Eric Walter1

Abstract— This paper deals with parameter identification for
expensive-to-simulate models, and presents a new strategyto
address the resulting optimization problem in a context where
the budget for simulations is severely limited. Based on Kriging,
this approach computes an approximation of the probability
distribution of the optimal parameter vector, and selects the
next simulation to be conducted so as to optimally reduce
the entropy of this distribution. A continuous-time state-space
model is used to illustrate the method.

I. I NTRODUCTION

The vectorx of the parameters of a parametric model is
usually estimated by optimizing some cost functionf (x) that
quantifies the difference between a vectory of experimental
data and the resultsym(x) of model simulation ([14]).
Except in some important but very specific cases where the
optimal parameter vectorx∗ can be computed explicitly, this
optimization requires a large number of model simulations.
This paper is concerned with the case where the number of
model simulations effectively achievable is severely limited
by either time or cost.

In this context, it becomes essential to favor optimization
methods that use the scarce information as efficiently as
possible. Such methods often use an approximation based
on available evaluations, as a cheap proxy for the function
to be optimized. We shall refer to this proxy as asurro-
gate approximationto avoid confusion with the parametric
model ym(x). Surrogate approximations based on Gaussian
processes andKriging (initially introduced in geostatistics
[7]) have received particular attention [5], mainly for the
underlying probabilistic framework, witch allows the set of
function evaluations to be chosen efficiently.

In this context, the authors have introduced [12] theIn-
formational Approach to Global Optimization(IAGO, [12]),
which provides anexplicit estimated probability distribution
for the minimizers of f , allowing an information-based
search strategy. In comparison, most alternative strategies
implicitly seek a likely value forx∗ and then assume it to be
a suitable location for evaluatingf ([4], [5], [6]).

This paper aims at drawing the attention of the control
community on the pertinence and performances of the IAGO
to be presented in Section III. Section II will recall the
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principles of Kriging, on which IAGO is based, and Sec-
tion IV will illustrate the potential evaluations savings of
the methodology on a simple but not uniquely identifiable
continuous-time state-space model.

II. ESTIMATING PROBABILITY DENSITY FOR x∗

A. Kriging and linear prediction

Kriging ([1], [10]) is a prediction method based on random
processes, which can be used to approximate or interpolate
data. It can also be understood as a kernel regression method,
such assplines[13] or Support Vector Regression(SVR, [8]).
It originates from geostatistics and has been widely used in
this domain since the 60s. Kriging is also known as theBest
Linear Unbiased Prediction(BLUP) in statistics, and has
been more recently designated as Gaussian Processes (GP)
in the 90s in the machine-learning community.

When modeling with Gaussian processes, the function of
interest f : X → R is assumed to be a sample path of a
second-order Gaussian random processF with covariance
k(., .). The mean ofF(x) is assumed to be a finite linear
combination of known functionspi of x, m(x) = βββTp(x),
where βββ is a vector of fixed but unknown coefficients,
and p(x) = (p1(x), ..., pl (x))T. Usually the functionspi are
monomials of low degree in the components ofx (in practice,
their degree does not exceed two).

Kriging consists in computing an unbiased linear predic-
tion of F(x) in the vector spaceHS = span{F(x1), ...,F(xn)},
which can be written as

F̂(x) = λλλ(x)TFS , (1)

with FS = [F(x1), ...,F(xn)]
T, andλλλ(x) the vector of Kriging

coefficients for the prediction atx.
To compute an unbiased prediction with minimal variance,

a Lagrangian formulation is adopted, withµµµ(x) a vector
of l Lagrange multipliers. The coefficientsλλλ(x) are then
solutions of the linear system of equations

(
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, (2)

with 0 a matrix of zeros,K = (k(xi ,x j)) , (i, j) ∈ {1, ...,n}2

the n×n covariance matrix ofF at all evaluation points in
S, k(x) = [k(x1,x), ...,k(xn,x)]T, the vector of covariances
betweenF(x) andFS, and
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The Kriging coefficients atx can thus be computed without
evaluating f (x), along with the variance of the prediction
error

σ̂2(x) = var(F̂(x)−F(x))

= k(x,x)−λλλ(x)Tk(x)−p(x)Tµµµ(x) ,

(3)

as these quantities only depend on the covariance ofF. Once
f has been evaluated at allxi in S, the prediction off (x)
becomesf̂ (x) = λλλ(x)TfS, with fS = [ f (x1), ..., f (xn)]

T.
Note that, in the case of exact evaluations off , Kriging

is an interpolation (∀xi ∈ S F̂(xi) = F(xi)).

B. Density of the global minimizers

According to the GP model, a global minimizerx∗ of
f corresponds to a global minimizer of a sample path of
F . Hence the intuitive idea to consider a random quantity
accounting for the knowledge on the global minimizers ofF
conditionally to past evaluations.

More formally, consider the random setM ∗
G

of the global
minimizers ofF over G (a finite subset ofX), i.e,

M
∗

G =

{

x∗ ∈ G : F(x∗) = min
x∈G

F(x)

}

.

Let then X∗
G

be a random vector uniformly distributed on
M ∗

G
.

The probability density functionpX∗
G
|fS of X∗ conditionally

to fS, designated as the conditional density of the global
minimizers in [12] (or in short minimizers density), can be
viewed as the current solution of the global optimization
problem as it contains all of what has been learnt about the
function and its minimizers. In what follows, we propose
a simulation-based approximation for the density of the
minimizers.

C. Conditionning by Kriging

Initially, f is only assumed to be a sample path of
F . As evaluations become available,f is assumed to be
a sample path ofF that interpolates the data, namely a
conditional sample path, which can be viewed as a possible
version of f (the Kriging prediction is in fact the mean of
these sample paths). The simulation of these sample paths
(known asconditional simulation) is of remarkable interest
when one wishes to estimate quantities non-linear in the
studied function, such as the minimizer [1]. Examples of
such simulations are presented on Figure 1, along with the
corresponding Kriging prediction. In this paper, we propose
to use such simulations to compute an approximation ˆpX∗

G
|fS

of the minimizers density.
Among the many available methods for generating con-

ditional simulations [1], we use, mainly for simplicity and
computational reasons, the unbiasedness of the Kriging pre-
diction to transform non-conditional simulations into simu-
lations interpolating the evaluationsfS.

Let Z be a zero-mean Gaussian process with covariancek
(the same as that ofF), Ẑ be its Kriging predictor based on
the random variablesZ(xi), xi ∈ S, and consider the random
process

T(x) = f̂ (x)+
[

Z(x)− Ẑ(x)
]

, (4)

x

f(
x)

0 1 2 3 4 5 6 7 8
6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

x

p̂ X
∗ G
|f

S
(x

)

0 1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fig. 1. Top: Kriging prediction (bold line) based on scarce evaluations
(squares), along with conditional simulations (thin lines). Bottom: Condi-
tional density of the minimizers approximated using conditional simulations.

where f̂ is the mean of the Kriging predictor forF based on
the design points inS. It can then be easily verified that, as
a result of the unbiasedness ofẐ, the sample paths ofT are
also conditional simulations ofF.

Using equation (1), one can rewrite (4) as

T(x) = Z(x)+ λλλ(x)T [fS −ZS] , (5)

with ZS = [Z(x1), ...,Z(xn)]
T. So the same vectorλλλ(x) of

Kriging coefficients is used for the interpolation of the data
and for the simulations ofZ.

In summary, to simulateF over G conditionally to past
evaluationsfS, one can simply simulate a zero-mean Gaus-
sian processZ over G, compute, for every point inG, the
vector of Kriging coefficients based on the design points in
S, and apply (5). Obtaining an approximation forpX∗

G
|fS is

then simply a matter of computing the global minimizers for
a sufficient number of conditional simulations. An example
of the resulting distribution is presented on Figure 1 along
with the corresponding Kriging prediction (top).



III. K RIGING-BASED GLOBAL OPTIMIZATION

We have seen that the Kriging framework is well suited for
an estimation of the minimizers density. Before describing
the new IAGO search strategy, let us recall the optimization
approaches that are standard when dealing with expensive-to-
evaluate functions using a Kriging surrogate approximation.

A. Standard approaches

Most Kriging-based optimization algorithms are built on
the same principle, and sequentially evaluatef at a point
that optimizes a criterion based on the surrogate approxi-
mation obtained using the previous evaluations. In a sense,
the expensive-to-evaluate cost functionf is replaced by a
cheaper cost function based on the surrogate approximation,
which we refer to as the criterion to avoid confusion with
f . A simple example of such a criterion is the prediction
f̂ . However, too much confidence is then put in the current
prediction, and search may stall on a local minimizer if the
initial prediction is too distant from a the global minimizer.

To improve this basic criterion, a compromise between
local and global search has to be struck. This compromise
is generally achieved by putting more emphasis on the
prediction error that indicates locations where additional
evaluations are needed to improve confidence in the model.
This approach has led to a number of criteria [5], and chiefly
theexpected improvementcriterion (EI, cf. [6]) that we shall
briefly present here and use it as reference in Section IV.

In [6], the improvement expected from an additional
evaluation of f at x given the past evaluations infS is
expressed as

EI(x) = E [I(x)|FS = fff S] , (6)

with

I(x) =

{

0 if F(x) ≥ f̂min

f̂min−F(x) otherwise
,

and f̂min the best value off yet obtained. Using integration
by part, one can easily rewrite (6) as

EI(x) = σ̂(x)
[

uΦ(u)+ Φ′(u)
]

, (7)

with

u =
fmin− f̂ (x)

σ̂(x)
,

and Φ the normal cumulative distribution. The new evalua-
tion point is then chosen as a global maximizer of EI(x).

Besides EI, all commonly used criteria aim at answering
the same question: What is the most likely position of
x∗? They implicitly seek a likely value for the optimum
location, and then assume it to be a suitable location for an
additional evaluation off . By contrast, our main contribution
will be the explicit characterization (through ˆpX∗

G
|fS ) of the

uncertainty on the minimizers stemming from the lack of
information on the function. We shall also see that a more
pertinent problem can in fact be solved: Where should the
evaluation be carried out optimally to improve knowledge on
the global minimizers?

B. Stepwise uncertainty reduction

In [12], conditional entropy has been introduced to mea-
sure the information gain to be provided on the minimizers
by an additional evaluation. In active learning, this is part
of the Stepwise Uncertainty Reduction(SUR) strategy [3],
which chooses the point that potentially brings the largest
reduction in entropy (seen as a measure of uncertainty). To
apply the SUR principle to global optimization, the IAGO
strategy evaluates this gain atx by using Kriging to generate
the necessary conditional simulations for the approximation
of the distribution of the minimizers conditionally to past
evaluations and to a possible evaluation atx. This approach,
is relatively expensive but, as detailed in [12], the same set
of sample paths can be used throughout the procedure which
makes the algorithm applicable (see [11] for an example in
the automotive industry). Let us present the IAGO algorithm
in more detail.

The entropy of a discrete random variableU (in bits) is:

H(U) = −∑
u

P(U = u) log2 P(U = u).

H(U) quantifies the spread of the distribution ofU , and
decreases as this distribution gets more peaked.

Similarly, the conditional entropy [2] ofU given a discrete
random variableV and an eventB is

H(U |B ,V) = ∑
v

P(V = v|B )H(U |B ,V = v), (8)

with

H(U |B ,V = v) = − ∑
u

P(U = u|B ,V = v)

log2 P(U = u|B ,V = v),
(9)

the conditional entropy ofU givenB and{V = v}.
For our optimisation problem to be fully solved, there

should not remain any uncertainty onx∗. Therefore, we
would like to ensure thatH(X∗

G
|FS = fS) = 0. The idea of the

IAGO strategy is then iteratively to ensure a one-step optimal
reduction of H(X∗

G
|FS = fS) given what is known of the

system. In other words,x′ is chosen as a new evaluation point
if it minimizes HS(x) the conditional entropy ofX∗

G
given

all past evaluations andFQ(x), a discrete version ofF(x),
obtained by quantization at levelsf1, ..., fM (the quantization
is necessary for the computation of conditional entropy). By
using (8) we can then write

HS(x) =
M

∑
i=1

P(FQ(x) = fi |FS = fS)

H(X∗
G|FS = fS,FQ](x) = fi),

(10)

with

H(X∗
G|FS = fS,FQ(x) = fi) =

− ∑
u∈G

pX∗
G
|fS, fi (u) log2 pX∗

G
|fS, fi (u) ,

(11)

and

pX∗
G
|fS, fi (u) = P(X∗ = u|FS = fS,FQ(x) = fi),

computed using conditional simulations.



The criterionHS thus takes into account the conditional
statistical properties ofF and particularly the covariance of
the model to choose a one-step optimal evaluation point. By
contrast, the EI criterion depends only on the conditional
mean and variance ofF at the design point considered (and
this is actually true for most standard strategies).

C. Computational issues

Our algorithm is similar in spirit to a particular strategy
for Kriging-based optimization known asEfficient Global
Optimization(EGO [6]). EGO starts with a small initial set of
evaluations off , estimates the parameters of the covariance
(see [12] and the reference therein for details on this subject)
and computes the Kriging model. Based on this model, an
additional point is selected in the design space to be the
location of the next evaluation off using the EI criterion.
The parameters of the covariance are then re-estimated, the
model re-computed, and the process of choosing new points
continues until the improvement expected from sampling
additional points has become sufficiently small. The IAGO
algorithm uses the same idea of iterative incorporation of
the information obtained to the prior on the function, but
the SUR strategy is used instead of the maximization of EI.
Another specific feature of our algorithm is that we advocate
the use of the Matèrn covariance [9] and of maximum
likelihood estimation for the parameters.

Stopping criterion:When the number of additional func-
tion evaluations is not specified beforehand, we propose to
use as a stopping criterion the conditional probability that
the global minimum of the GP model be no further apart
of the current minimum of the Kriging interpolation than
a given tolerance threshold. This stopping criterion is well
suited here, since the estimation of the repartition function
of F(X∗) can be carried out using conditional simulations in
exactly the same fashion as for the estimation of ˆpX∗

G
|fS .

Computational burden:The IAGO algorithm involves the
minimization of the conditional entropyHS(x) over a set
of candidate evaluations points. We propose to solve this
optimization problem using points inG as candidate points,
and samplingG with p̂X∗

G
|fS as prior. By doing so, areas

of the design space where the density is sufficiently small
are ignored as they are not likely to be of interest for the
reduction of entropy.

As detailed earlier, the computation ofHS(x) requires the
use of conditional simulations ofF over G. This can be
done in O(N) operations (cf. [12]), withN the cardinal of
G. Choosing a new evaluation point forf therefore requires
O(N2) opérations.

Given this complexity, trying to cover parameter space
while keeping the same accuracy as dimension increases
leads to an exponential increase in computational burden.
In a context of expensive function evaluation, however, the
objective is less to specify exactly all global minimizers
(which could be too demanding in function evaluations
anyway), than to use available information to efficiently
reduce the likely areas for the location of these minimizers. N
can therefore be kept relatively small (in [11] we used 1000

points for a 6 dimension parameter space). Besides, asG is
re-sampled after every evaluation off , the number of can-
didate points effectively explored is considerably largerthan
N. Lastly, the result obtained can be trusted to be a consistent
choice within this set of candidate points, in regard of what
has been learned (observations) and assumed (covariance of
the GP model) aboutf . Anyhow, the computation ofHS(x)
only involves the surrogate approximation. Computational
burden is therefore a minor issue as long as it stays small in
comparison with the computational burden of an evaluation
of f .

IV. EXAMPLE

A typical example of identification for which the IAGO
method is particularly relevant is the estimation of the few
physical parameters of a knowledge-based model described
by partial differential equations with complex boundary
conditions. We chose, however, to consider a much simpler
illustrative problem, for three reasons. First, it is possible to
briefly give enough details to allow the reader to use it to
compare the performance of the IAGO approach with those
other methods not considered here. Second, nothing is lost
by considering such an example, as the methodology would
be strictly the same for a more expensive to simulate model.
Last, it will turn out that this example is not so easy to solve
and demonstrates the superiority of our approach over more
conventional ones.

We thus consider a deceptively simple two compartmental
model. Its state vectorq = [q1,q2]

T

corresponds to the
amounts of material in two compartments, which are gov-
erned by the evolution equations

{

q̇1 = −(x1 +x3)q1 +x2q2,

q̇2 = x1q1−x2q2.
(12)

At time t = 0, a unit injection of material takes place in
compartment 1, soq(0) = (1,0)T. Measurementy(ti) of the
quantity of material in Compartment 2 are collected at time
ti , i = 1, ...,15.

For this simulated example, a noise-free vector of mea-
surementsy is generated using the ODE solver of Matlab
with a parameter vectorx0 = (0.6,0.15,0.35)T. The opti-
mization is then carried out over[0,1]3 using the quadratic
cost function

f (x) =
15

∑
i=1

(q2(x,ti)−y(ti))
2
.

This example is actually difficult for two reasons. First, as
suggest by the level sets of Figure 2 (thin lines), the zones
where f is small are relatively large in proportion to the
size of the search space. Second, the model parameters are
not uniquely identifiable, as the values ofp2 and p3 can
be exchanged without modifying the system output [14]. So
there are two global minimizers off , namelyx0 but also
x1 = (0.6,0.35,0.15)T.

With the IAGO algorithm, after 40 evaluations off , the
zones where the approximate density of the minimizers
is non-zero are consistent with the 0.3-level set off (cf.
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Fig. 2. Cross sections of the density of the minimizers in the(p3 = 0.15)
plane (Top) and (p1 = 0.6) plane (bottom) estimated after 40 evaluations of
f using the IAGO algorithms. The points where the estimated density is
non-zero are contained by the dark areas. The black curve is the 0.03-level
set of the cost function. The true global minimizersx0 andx1 are indicated
by triangles.

Figure 2). Bothx0 andx1 are within high probability zones
for the global minimizer. By comparison, with the EGO al-
gorithm, after 40 evaluations (cf. Figure 3), the approximate
density of the minimizers misses bothx0 and x1. In terms
of convergence rates, IAGO performs well on this example
(see Table IV), as both minimizers are found with 0.01
precision after 80 evaluations off . In comparison, the EGO
algorithm has only identifiedx1, and it takes an average of
160 evaluations to the Nelder-Meald simplex to reach this
precision for one of the global minimizers, while entirely
missing the other.

V. CONCLUSIONS

In this paper, we have presented the IAGO algorithm
as an efficient way of handling parameter identification
when confronted with, possibly non-uniquely identifiable,
expensive-to-evaluate parametric models. The approach, as
others before it, uses Kriging to provide a surrogate approx-
imation of the cost function. However, to the best of our
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Fig. 3. Cross sections of the density of the minimizers in the(p3 = 0.15)
plan (Top) and (p1 = 0.6) plan (bottom) estimated after 40 evaluations off
using the EGO algorithm. The graphic conventions are the same as those
of Figure 2.

TABLE I

RESULTS AFTER40 AND 80 FUNCTION EVALUATIONS.a

Algorithm Nelder-Meald EGO IAGO
Estimation error for
the minimizers after
40 evaluations

0.44 0.269
0.090

0.063
0.025

Estimation error for
the minimum after 40
evaluations

0.135 10−2

10−3
10−−−333

10−−−333

Estimation error for
the minimizers after
80 evaluations

0.35 0.399
0.011

0.011
0.011

Estimation error for
the minimum after 80
evaluations

5.10−2 10−2

10−4
10−−−777

10−−−555

aFor EGO and IAGO, two results are given, corresponding to thetwo
global minimizers. For the Nelder Mead simplex, a single result is presented,
as it is a local method. The local search is repeated for 100 different starting
points, and the average precision is presented (each time, the most favorable
minimizer is chosen). The estimation error, is either the Euclidean distance
between the estimated minimizer and a true one, or the estimation of the
minimum (as the true minimum is zero).



knowledge, no other method has used Kriging to compute the
density of the minimizers explicitly, which allows, at each
iteration of the search, to perform an evaluation at the point
that is most likely to reduce the uncertainty on the positionof
the minimum. As evidenced by the example, the evaluations
savings offered by the IAGO algorithm can be significant
in comparison with the widespread Nelder-Meald simplex
algorithm, but also in comparison with the EGO algorithm,
a standard procedure in Kriging-based optimization. The
method is particularly well suited to the identification of the
parameters of knowledge-based models, which are often very
expensive to simulate.

REFERENCES

[1] J.P. Chilès and P. Delfiner.Geostatistics, Modeling Spatial Uncer-
tainty. John Willey & Sons, Inc, New York, 1999.

[2] T. M. Cover and A. T. Joy.Elements of Information Theory. John
Willey & Sons, Inc, New York, 1991.

[3] D. Geman and B. Jedynak. An active testing model for tracking
roads in satellite images. Technical Report 2757, InstitutNational
de Recherche en Informatique et en Automatique (INRIA), December
1995.

[4] D. Huang, T. Allen, W. Notz, and N. Zeng. Global optimization
of stochastic black-box systems via sequential Kriging meta-models.
Journal of Global Optimization, 34:441–466, 2006.

[5] D.R. Jones. A taxonomy of global optimization methods based on
response surfaces.Journal of Global Optimization, 21:345–383, 2001.

[6] D.R. Jones, M. Schonlau, and J. William. Efficient globaloptimization
of expensive black-box functions.Journal of Global Optimization,
13:455–492, 1998.

[7] G. Matheron. Principles of geostatistics.Economic Geology, 58:1246–
1266, 1963.

[8] A.J. Smola.Learning with Kernels. PhD thesis, Technische Universität
Berlin, 1998.

[9] M.L. Stein. Interpolation of Spatial Data: Some Theory for Kriging.
Springer, New-York, 1999.

[10] Emmanuel Vazquez.Modélisation comportementale de systèmes non-
linéaires multivariables par méthodes à noyaux et application. PhD
thesis, Université Paris Sud, UFR Scientifique d’Orsay, 2005.

[11] J. Villemonteix, E. Vazquez, M. Sidorkiewicz, and E. Walter. Gradient-
based IAGO strategy for the global optimization of expensive-to-
evaluate functions and application to intake-port design.Accepted
for the conference on Advances in Global Optimization: Theory and
Applications, to be help in June 2007.

[12] J. Villemonteix, E. Vazquez, and E. Walter. An informational approach
to the global optimization of expensive-to-evaluate functions.Submited
to the Journal of Global Optimization, 2006.

[13] G. Wahba. Support vector machines, reproducing kernelHilbert
spaces, and randomized GACV. In B. Schölkopf, C.J.C. Burges, and
A.J. Smola, editors,Advances in Kernel Methods - Support Vector
Learning, volume 6, pages 69–87, Boston, 1998. MIT Press.

[14] E. Walter and L. Pronzato.Identification of Parametric Models from
Experimental Data. Springer-Verlag, London, 1997.


