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Abstract— Hybrid Filter Banks allow wide-band, high fre-
quency conversion. All existing design methods suppose that
the input signal is band-limited and that each sub-band signal
is sampled at 1/M times the effective Nyquist frequency of the
input signal 1/T . To avoid aliasing in the sampling process, an
analog anti-aliasing filter should be used in order to eliminate
noise in frequency bands in which there is no signal (or a
few signal) . In this paper, it is shown that this pre-filtering
operation is critical and has to be done taking into account the
respective power spectral densities of signal and noise due to the
spectral aliasing with the sampling rate compressor. Results will
be demonstrated for the design of a realistic 8 channel Hybrid
Filter Bank.

I. INTRODUCTION

In wireless systems and other domains, a trend of using
higher data rates (up to 1 Gb/s for instance), high working
frequencies and versatility can be noticed. Significant im-
provements have been achieved in the digital signal process-
ing part of telecom systems, but the A/D conversion is still
a bottleneck. To build very wide band ADCs, the paral-
lelization of channels had been studied. Classical solutions
such as time-interleaved ADCs are very sensitive to jitters,
channel gain and phase mismatch errors. . . Hybrid Filter
Banks (HFB) (Fig. 1) are very good candidates [6], [10],
since they achieve an intrinsic parallel splitting without being
subject to these drawbacks. Different methods of designing
HFB have been proposed. Starting from a Digital Filter Bank
prototype with perfect reconstruction and using a discrete
to continuous time transform, Velasquez [10] transformed
each digital filter of the analysis bank to a continuous-
time correspondent. Olialei [4] also started with a digital
prototype and found the continuous-time analysis filter by
putting THm(jΩ) = Hm(ejω) for |ΩT | < π. In [11], [3],
[7], [1], [8], starting from the knowledge of the frequency
response of the analog filters, the digital synthesis filters
are found after minimizing different error criteria. All the
proposed design methods assume that the continuous time
input signal x(t) is bandlimited and that the analog M -band
analysis filter bank is associated with M ADCs working
at 1/M times the effective Nyquist frequency of the input
signal to avoid aliasing in the sampling process [5]. In this
paper, the effect of spectral aliasing in the sampling process
is studied. It is shown that the analog pre-filtering used before
the HFB in order to eliminate noise in frequency bands in

wm[n]

MT
Q() ↑ M

Q() ↑ M

Q() ↑ M
MT

MT

xm(t) xq
m[n]

F0(z)

...

Fm(z)

FM−1(z)

+
ym[n] y[n]

...
xm[n]

H0(s)

...

Hm(s)

HM−1(s)

x(t)

...

Fig. 1. General structure of an ADC using HFB with maximally-decimated
architecture

which there is no signal (or a few signal) of interest should be
particularly efficient to obtain a near perfect reconstruction.
The results will be demonstrated for the design of a realistic
8 channel HFB structure.

II. HYBRID FILTER BANKS THEORY

Fig. 1 shows an example of an ADC using HFB.
The input signal x(t) is split into M subband sig-
nals xm(t), m = 0, . . . ,M − 1 via the M continuous-time
analysis filters H0(s),H1(s) . . .HM−1(s). Each subband
signal is down-sampled at 1/MT , and quantized (block
designed by Q()). Then, the digitized signals are up-
sampled by M and the sampled version of the input sig-
nal is reconstructed via the discrete-time synthesis filters
F0(z), F1(z) . . . FM−1(z).

The goal of the synthesis stage of the HFB is to reconstruct
the original signal. Neglecting the effects of quantization, the
synthesis stage of the HFB would have firstly to eliminate
the aliasing terms due to down-sampling and secondly to
reconstruct the original signal by compensating the distortion
effects due to spectral aliasing with the sampling rate com-
pressor and spectral imaging with the sample rate expander.

A. Frequency-domain analysis

The nonlinear part due to quantizers are hereby neglected.
The Fourier transform of the output signal can be written:

Y (ejω) =
M−1∑
m=0

Fm(ejω) Xm(ejωM ), (1)



with ω = ΩT and:
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Noting H̃m(jΩ) the 2π/T periodic extension of the analy-
sis filter Hm(jΩ) and X̃(jΩ) the 2π/T periodic extension of
the input signal X(jΩ), (1) can be rewritten as follows:

Y (ejω) =
M−1∑
m=0

Tm(ejω) X̃

(
jω
T
− 2πjm

MT

)
, (3)

where:
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)
Fk(ejω). (4)

T0(ejω) stands for the distortion function and
Tm(ejω), m = 1, . . . ,M − 1 are the (M − 1) terms of
the aliasing function.

B. Perfect reconstruction in band limited case

To make possible a perfect reconstruction for all in-
put signals, the input signal x(t) should be band-limited
to ]lπ/T , (l + 2)π/T [, l ∈ Z [5]. Therefore, if the in-
put signal spectrum is null outside the frequency inter-
val ]− π/T , π/T [ for example, it is necessary to extend
Hm(jΩ) considering only its ±π/T duration. It is clear that
there are only three replica of X̃m(jΩ) which take part in
Y (ejω), |ω| < π through X̃m(jΩ). These are Xm(jΩ) itself
and its replicas Xm(jΩ±2π/T ). Therefore, for |ω| < π and
k = 0, . . . ,M − 1:
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For the case of perfect reconstruction for all input signals,
the distortion function T0(ejω) should be a pure delay all
over the band and aliasing Tm(ejω) (m = 1, . . . ,M − 1) are
undesirable terms. There will be M equations, which every
equation is defined throughout a period of ω, for example
±π:

T0(ejω) = c e−jωτ |ω| < π

Tm(ejω) = 0 m = 1, . . . ,M − 1 |ω| < π, (7)

where τ ∈ Z+ is the filter bank’s delay, c ∈ R is a scale
factor.

C. Design method

Even if the input signal is band limited, analog filters
cannot be band limited and the HFB design procedure
leads to discontinuities of the synthesis frequency responses.
Therefore, (7) cannot be exactly satisfied. Synthesis methods
aim at finding an HFB that minimizes the distortion and
aliasing. Several methods may be found in the literature.
We chose the global frequency domain least square solving
method [8] since it gives the best results in terms of distortion
and aliasing.

The input signal is assumed band limited to ±π/T . Start-
ing with the knowledge of frequency responses of analog
filters (for the sake of analog feasibility), the synthesis filter
bank includes a set of M L-coefficients FIR filters to design.

Perfect reconstruction conditions (7) are then written for
each of the N frequency points ωn equally distributed in
π < ω < π. Noting H the MN × MN matrix of the
frequency response of the analysis filters calculated at the
selected frequency values and F the MN × 1 matrix of
the associated frequency response of the synthesis filters, (7)
gives:

HF = t, (8)

with:

t = c
[
e−jω1τ . . . e−jωN τ 0(M−1)N

]T
, (9)

where 0(M−1)N is the 1× (M − 1)N raw vector filled with
zeros. A delay τ equal to half the FIR filter length (τ = L/2)
was used in the simulations.

If f represents the ML× 1 FIR coefficients matrix of the
synthesis filter bank, (8) can be written:

(HD) f = t. (10)

where D stands for the MN × ML matrix of the Discrete
Fourier Transform coefficients.

If N > L, the linear system (10) is over determined.
However, a least square solution can be found [9]:(

Re {(HD) f}
Im {(HD) f}

)
=

(
Re {t}
Im {t}

)
(11)

whereRe {A} and Im {A} denote the real and imaginary
parts of matrix A.

In order to dramatically increases the filter bank perfor-
mances and reach acceptable levels of aliasing, [8] chooses
to slightly rise the sample frequency against the band of
interest. An oversampling ratio of η% is used.

III. ANTI-ALIASING FILTERING

The band of interest is now supposed to be ±π/(1− η)T .
So, the input signal of interest x(t) is assumed band-limited:

X(jΩ) = 0 |Ω| > π

(1− η)T
(12)

This approximation can be relevant if an analog anti-
aliasing filter is used before the HFB. This pre-filtering is
used in order to eliminate noise in frequency bands in which
there is no (or a few) signal of interest.



Nevertheless, the anti-aliasing filter cannot perfectly elim-
inate noise. The real input signal y(t) of the HFB can then
be written:

y(t) = x(t) + n(t) (13)

where n(t) stands for the additive noise not filtered.
The resolution of the HFB depends on the quantization

noise and the aliasing level. Quantization noise has been
studied in [2]. The worse between aliasing and quantization
noise will limit the resolution.

The product of each aliasing function by the whole input
signal spectrum Y (jΩ) can be considered as an additive noise
at the output of the HFB. The respective contributions of the
signal of interest x(t) and the noise n(t) need to be taken
into account at the output of the ADC converter.

Then, the aliasing terms due to n(t) should be less (or
of the same order) than the aliasing terms due to x(t) to
preserve the performance of the HFB. In other words, the
signal to noise ratio at the input of the HFB is enforced by
this requirement. Accordingly, the pre-filtering operation has
to be done taking into account the respective power spectral
densities of signal and noise.

IV. EIGHT CHANNEL HFB SIMULATION RESULTS

To observe the behavior of the HFB, an eight channel HFB
has been considered. The analysis bank includes a low-pass
RC filter and simple RLC circuits with equal bandwidths
distributed through the band |Ω| < π/T . The synthesis bank
was design for a band of interest |Ω| < π/(1−η)T, η = 6%
using 128 length FIR filters . 128 points were chosen for the
discrete frequency domain.

The simulation was carried out for a signal in the band of
interest. Fig. 2 shows the related magnitude and phase of the
distortion functions versus frequencies. Fig. 3 illustrates the
corresponding magnitude of the aliasing functions. Distortion
is below 0.21dB and aliasing is below −100dB. The product
of the mth aliasing function and X̃(jω/T − 2πjm/MT )
appears at the output (m = 1, . . . ,M − 1). Thus, the
narrow band of oversampling for which the input spectrum
is assumed null is frequency shift by mπ/MT and gaps (6%
of total bandwidth) can be seen in Fig. 3 (and better in Fig. 7,
see below).

The simulation was also fulfilled for a filtered white
noise (band limited to |Ω| < π/T ). Fig. 4 and 5 show
the associated distortion and aliasing functions (to better
compare the performances, the magnitude of the first aliasing
term T̂1(ejω) associated with the two case of study is shown
Fig. 6 and 7). One can see that noise has practically no effect
on the distortion function. The gap observed in Fig. 3 cannot
be seen. Aliasing is now only −18dB. Comparing Fig. 3 and
5, one can obviously notice that the main contribution on the
aliasing functions are due to component frequencies in the
band |Ω| > π/0.94T . Hence, at the input of the HFB, the
ratio of spectral densities in the band |Ω| > π/0.94T (noise)
and |Ω| < π/0.94T (signal of interest) needs to be less than
−80dB preserve the performances of the HFB in the band
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Fig. 2. Magnitude (dB) and phase (deg.) of the distortion function for the
signal of interest (band |ω| < π/(1 − η)T ).
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Fig. 3. Magnitude (dB) of the aliasing functions (m = 1, . . . , M − 1) for
the signal of interest (band |ω| < π/(1 − η)T ).

of interest. Therefore, this involves a stop band attenuation
greater 80dB for the anti-aliasing filter .

V. CONCLUSION

As future A/D converters shall be versatile, they will have
to deal with wide bandwidths, which is not likely to be possi-
ble with today’s solutions. HFB A/D converters appear to be
appropriate, especially because they allow wider bandwidth.
A small oversampling allows to reach great performances
through the band of interest. Nevertheless, noise out of this
band can strongly decrease the performances of the HFB
due to aliasing during sampling, even with high signal to
noise ratio. The pre-filtering (anti-aliasing filter) operation is
critical.
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Fig. 4. Magnitude (dB) and phase (deg.) of the distortion function in the
whole band (band |ω| < π/T ).
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Fig. 5. Magnitude (dB) of the aliasing functions (m = 1, . . . , M − 1) for
the whole band (|ω| < π/T ).
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