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Abstract— The analog electronic circuits are always subject to
some imperfections. Analog imperfections cause deviations from
nominal values of electronic elements. In the case of Linear
Time-Invariant (LTI) circuits, the coefficients of the transfer
function include some deviations from related typical values
leading to the differences between the typical (i.e. design) and the
actual transfer functions. In this paper, the analog imperfections
are digitally estimated using only the output samples, without
any access to the input signal nor to the analog system (blind
method). Super Exponential Algorithm (SEA) is used as the blind
equalization technique, since it provides rapid convergence. The
only assumption is that the input is a non-Gaussian independent
and identically distributed (i.i.d.) signal. Using this algorithm,
the effects of analog imperfections in the analog circuits can be
digitally estimated and possibly compensated without any depen-
dance on the types and the sources of the analog imperfections.
It provides the possibility to have an online compensation of
the imperfections (realization errors, drifts, etc.). The analog
imperfections have been estimated with a precision of ±0.2%

and ±1.3% for the exemplary RC and RLC circuits respectively.

I. INTRODUCTION

Analog electronic circuits are always subject to some ran-

dom deviations from the nominal values of their components.

Analog imperfections cause some unknown deviations from

typical values of the coefficients related to the nominator and

denominator of the transfer function associated with the LTI

analog circuit. These unknown deviations are originated from

various sources. The imperfections related to fabrication are

generally independent of time. There are also some time-

varying contributions in the deviations from typical values as

well. Time-varying imprecisions like temperature drifts appear

because of ambiance conditions. In practice, there are many

applications in which high sensitivity to the parameters of

the associated analog circuits is a bottleneck. As an exam-

ple, the high sensitivity to analog imperfections is a major

problem in sigma-delta A/D converters [1]. The proposed

solutions for handling this problem are mostly based on the

calibration techniques which are costly and not efficient [2].

Moreover, these methods are very dependent on the type and

the source of the analog imperfections [3]. Hybrid Filters

Banks (HFB) are exploited in the architecture of the wide

band A/D converters [4] but HFB-based A/D converters have

not been practically used because of intolerable amount of

sensitivity to analog imperfections [4]. Calibration method has

been proposed but is not a generic solution and is dependent on

the source of the imperfection [4]. Accordingly, the necessity

of a general digital solution for the estimation of analog

imperfections is apparent. So, analog imperfections could be

compensated through the estimated deviations. The objective

of this work is to estimate the imperfections of the analog

circuits and thus the respective actual transfer function using

only the samples of the analog system output.The estimation

algorithm has to be independent of the types and the sources

of the analog imperfections. Second-Order Statistics (SOS)

have been previously used to provide a nonlinear model for

the analog circuits imperfections [5]. Since the variations of

the signal power associated with the analog imperfections are

so little and the proposed model is based on signal powers

(variances), then that model is not totally satisfactory. In this

paper, Higher-Order Statistics (HOS) parameters are used for

the estimation of the analog imperfections through a blind

equalization technique. The input signal is supposed to be

non-Gaussian at the next sections as HOS (> 2) parameters of

Gaussian processes are null [6]. Blind equalization technique

is the core of the proposed algorithm.

II. ESTIMATION OF ANALOG IMPERFECTIONS AND BLIND

EQUALIZATION

A. Problem definition

Considering figure 1, it is supposed that the Nyquist sam-

pling rate has been respected. It is assumed that the sampled
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y(t)x(t) y[n]

Fig. 1. An arbitrary LTI analog circuit with transfer function of H(s). y[n]
represents the output after sampling.

version y[n] of the output is the only available signal. Transfer

function of the analog circuit H(s) includes some unknown

imperfections. It is supposed that there are totally K unknown

coefficients in the nominator and the denominator of H(s).
Real value of ith unknown coefficient αi can be considered

as:

αi = αi◦(1 + δαi
) 1 ≤ i ≤ K (1)



where αi◦ stands for the typical (or nominal) value of this

coefficient. δαi
is the relative imperfection (or relative de-

viation from typical value) associated with αi. The prob-

lem is here to estimate the unknown relative imperfections

{δα1
, δα2

, · · · , δαK
} using only the samples y[n] of analog

output. In practice, the nominal values {α1◦
, α2◦

, · · · , αK◦
}

are a priori known, although they are not necessarily required

for the proposed algorithm. The structure of the analog circuit

(or simply the order of the nominator and the denominator

of H(s)) is known since it is defined at the design phase.

The extraction of the unknown relative imperfections from the

inverse FIR filter (result of blind equalization) is facilitated

through this information (see section III).

B. Blind equalization for the estimation of imperfections

Blind deconvolution or equalization is referred to the case

when the input of an unknown LTI system is required to be

reconstructed using only the output signal. SOS-based methods

are not useful unless the unknown LTI system is minimum-

phase [6]. Thus, the equalization is mostly implemented us-

ing HOS-based techniques. Regarding to the properties of

HOS, cumulants and polyspectra are blind to any Gaussian

process because all cumulants of the order higher than two

are equal to zero for a Gaussian process [6]. Accordingly,

the input would be supposed a non-Gaussian i.i.d. process

for implementing the blind equalization. Equalization problem

is simply equal to finding the inverse filter of an unknown

system. This inverse filter is often considered as an FIR filter

called equalizer filter (fig. 2). To realize this procedure, a

Unknown filter Equalizer filter

hn fn

xn
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Fig. 2. Blind equalization system. Equalizer filter fn is an FIR filter with
length L. x̂n approximates the unknown input signal xn in this system.

criterion or objective function is considered. Equalization is

realized through optimizing the equalizer filter f [n] so that the

criterion function is maximized (or minimized for Constant

Modulus Algorithm (CMA) criterion) [6]. Criteria are some

specific functions in terms of the cumulants due to y[n] and

x̂[n]. The third order cumulants are null for the signals with

symmetric distributions [6]. Therefore, fourth order cumulant

of x̂[n] is used in this paper as the analog input has been

considered with a uniform distribution. Super-Exponential

Algorithm (SEA) proposed by Shalvi and Weinstein has been

used in order to have a rapid convergence [7]. This algorithm

provides an iterative procedure for updating the coefficients

of equalizer filter. Before implementation of the updating

algorithm, it is required to calculate the vector of input/output

cross cumulant (fourth-order cumulant) d and the matrix of

output covariance R. The current value of the equalizer filter

f = [f0, f1, · · · , fL−1]
T is used in these calculations. L is

the length of the equalizer filter f . Using cumulant operation

cum(·), the ith element di of the vector d(L× 1) is obtained

as follows:

di = cum(x̂n, x̂n, x̂n, yn−i) 0 ≤ i ≤ L − 1 (2)

Each element Rij of the covariance matrix R (L × L) is

calculated as following:

Rij =
cum(yn−i, yn−j)

σ2
x

(3)

where σ2
x stands for the variance of unknown input. If σ2

x is

not a priori known, it can be substituted with any positive

real number in the equation 3. In this case, there would exist

an ambiguity on the amplitude. In other words, the estimated

inverse filter f [n] would be an amplitude-scaled version of

the exact inverse filter. Now, the iterative algorithm of SEA

for finding the updated value of equalizer fnew is implemented

as follows [7]:

V = R
−1

d (4)

fnew =
1√

V+RV
V

where (·)+ denotes for transpose-conjugate operation and

V (L × 1) is an intermediate vector. It should be noted that

the old value of equalizer vector is implicitly incorporated in

equation 4 through taking part in the calculation of d and

R. There is only one converging point which is associated

with the inverse filter [6]. However, this algorithm may in

practice converge to false results (spurious local maxima) for

reasons such as inappropriate length of equalizer L, insuf-

ficient number of data utilized in the cumulant calculation,

nonlinearities of the system and thus some initializations of

the equalizer [6]. Initialization problem can be handled in the

estimation of analog imperfections because the nominal analog

system a priori is known. Hence, respective typical equalizer

have been used as the initial equalizer.

III. IMPLEMENTATION OF THE ESTIMATION PROCEDURE

A. Estimation algorithm

Figure 3 shows the implementation. Equalizer filter F (z)
is supposed to be an FIR filter with length L. For estimating

the imperfections of analog circuit, the procedure is realized

in two phases. Firstly, blind equalization method (SEA proce-

dure) is applied to the system as explained in the preceding

section. It provides an FIR filter f [n] which approximates the

inverse filter associated with the analog circuit. At the second

LTI
analog circuit

y[n]

T
x[n]F(z)x(t)

H(s)

Fig. 3. An LTI analog circuit with transfer function of H(s) to which the
equalizer F (z) has been applied.

phase, the real coefficients of H(s) are estimated. To better

explain this stage, G(s) is considered as the inverse function



of H(s) with unknown coefficients. The nominator and the

denominator orders of G(s) are equal to the denominator and

the nominator orders of H(s) respectively. The coefficients of

G(s) are found through minimizing the error expression which

follows:

Gopt(s) = arg min ‖G(s) − F (ejω)‖s=j ω

T
w ∈ ρ (5)

where T is the sampling period utilized in the first phase

and ρ is the frequency band of interest. Depending on the

transfer function of the analog system, ρ is appropriately

selected so that the contribution of the unknown parameter

is emphasized. For example, it can be concentrated about the

nominal resonance frequency for an RLC circuit. The real

coefficients of H(s) and evidently the respective deviations

from nominal values are obtained from Gopt(s).

B. Simulation results

The algorithm that was explained in the previous section is

now applied to several first- and second-order analog circuits.

Firstly, a first-order RC circuit is considered. There are two

parameters describing the transfer function of a general RC

circuit: DC-gain g (gain at the zero frequency) and cut-off

frequency ωc. Respective transfer function can be described

as follows:

H(s) =
gωc

s + ωc

(6)

For estimating the parameter of DC-gain (scale factor), it is

required to know a priori the variance of the analog input (refer

to section II-B). The first stage (blind equalization) was real-

ized 1000 times for each deviation from nominal values using

an FIR equalizer (L = 9). The algorithm converged to spurious

local maxima (false results) in 5% of the times. Using an initial

equalizer associated with nominal RC circuit (no deviation

from nominal values) at the initialization procedure of blind

equalization, the algorithm always converged to the global

maximum. Figure 4 shows the histogram of the results for the

realization of the algorithm supposing an RC circuit having

20% and 10% deviations from nominal cut-off frequency and

DC-gain respectively. This histogram is in terms of the ratio

of the estimated to real deviation from the nominal value.

The histogram illustrates the distribution of the results due

to 1000 sample paths of the noise. The average values of the

results estimate the unknown deviations from nominal values

(for DC-gain and cut-off frequency) with an error of −0.5%
and 0.2% respectively. This simulation was implemented for

different deviations from nominal values as well. The average

estimation errors are shown in figure 5. The mean estimation

error is always lower than 0.25% for 1000 sample paths

of noise. Using larger repetition number in the simulation,

the mean values will better approximate the deviation from

nominal values. The algorithm was implemented for an RLC

circuit as well (refer to figure 6). Related transfer function is

described as following:

H(s) =

ωr

Q
s

s2 + ωr

Q
s + ω2

r

(7)
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Fig. 4. Histogram due to the ratio of estimated to real deviation from nominal
values after 1000 sample paths of noise for an RC circuit. The real deviation
from the nominal values are 20% and 10% for the cut-off frequency and the
DC-gain respectively.
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Fig. 5. Average errors of the estimation due to the DC-gain (solid) and
the cut-off frequency (dashed) versus the real values of the deviation from
nominal cut-off frequency for the general RC circuits.
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Fig. 6. The arbitrary RLC circuit used in the simulations. {R◦, L◦, C◦} are
the design values to which the unknown realization errors {δR, δL, δC} are
applied.

Deviations from nominal values for quality factor (Q) and

resonance frequency (ωr) were supposed as the unknown

parameters. There is no need for the variance of input at the

algorithm because the unknown parameters are independent of

any scaling factor. Using a random initialization, the algorithm

of blind equalization (first phase) converged to the spurious

local maxima in 35% of times. Using nominal equalizer

(related to the circuit with no deviations from nominal values),

the rate of convergence to spurious local maxima changed. The

percentage of convergence to the global maximum in terms



of deviations from nominal frequency of resonance is shown

in figure 7. However, converging to spurious local maxima

causes no problem in practice even with random initialization

because the incorrect equalizers are conveniently detected and

put aside. Figure 8 illustrates the histogram of the results
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Fig. 7. The percentage of convergence to the global maximum. Horizontal
axis shows the percentage of deviation from nominal frequency of resonance.
Deviation from nominal quality factor is fixed (10%) and the algorithm is
initialized by nominal values.

when deviations from nominal frequency of resonance and

quality factor are supposed 20% and 10% respectively. The

algorithm is repeated 500 times using an equalizer length of

L = 41. The average error of estimation are 0.01% and −1.3%
for frequency of resonance and quality factor respectively.

Figure 9 shows the mean errors due to several implementation
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Fig. 8. Histogram due to the ratio of estimated to real deviation from nominal
values after 500 sample paths of noise for an RLC circuit. The real deviation
from the nominal values are 20% and 10% for the resonance frequency and
the quality factor respectively.

of the algorithm supposing different values of deviations from

nominal values. It is discerned that this algorithm (first phase)

is very sensitive to the sampling period. In fact, the higher is

the sampling frequency, the longer equalizer is required for

compensating the lower levels of the spectrum amplitude at

the frequency extremes (the frequencies near to ± π
T

). This

is approved through analysis of the distribution of the mean

errors particularly in figure 9. In the RLC case, the presence
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Fig. 9. Average errors of the estimation due to the quality factor (solid) and
the resonance frequency (dashed) versus the real values of the deviation from
nominal resonance frequency for the RLC circuits.

of a zero situated on the null frequency (ω = 0) augmented

the rate of convergence to spurious local maxima since the

algorithm tries to compensate this zero (infinite gain for

equalizer at zero frequency). In practice, the series resistance

of the real inductance removes the associated zero in the

spectrum.

IV. CONCLUSION

A method for estimating the imperfections of analog circuits

(or their actual transfer function as well) was proposed in this

paper using only the samples of the output and without any

access to the input signal nor to the system components. This

estimation method was proposed using blind equalization tech-

niques. SEA algorithm for blind equalization was exploited

to have a fast convergence. Several implementations of this

method were realized using first- and second-order circuits.

The analog imperfections of RC circuits were estimated with

a mean error of −0.5% and 0.2% for DC-gain and cut-off

frequency respectively. In the RLC case, the mean errors of

estimation were 0.01% and −1.3% for frequency of resonance

and quality factor respectively. This demonstrates the feasibil-

ity of digital compensation of analog imperfections.
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