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Abstract— A novel black-box model for time series of prices
analysis is proposed. It is constructed using the technique of
“shaping filter”. The model identification is then proposed;
it is based upon some stochastic calculus and a couple of
results from Lévy processes theory. Neither the modeling nor
the estimation parts are specific to the application, several
engineering fields are concerned with this work.

I. INTRODUCTION

The starting point in the resolution of an estimation
problem is the modeling: mathematical description of the
problem. When the model comes from physics, it is said
knowledge-based model, as opposed to black-box model. A
model consists of a set of relations between some quantities
among them appears those to be estimated. The term “dy-
namical” refers to the evolution in time of some quantities,
and means that the model comprises at least one dynamical
relation. In some model, the quantities that when fixed cause
the others to be uniquely determined are called “model’s
data” such as the imposed conditions on the solution of
an ordinary or partial differential equation, observations,
controls, parameters, etc. Often some of the model’s data are
unknown, this is expressed by the term “uncertainty”. Prior
information about some unknown can be inquired. It may
consist of statistics that approximate some of its moments,
if it is random or of some set where it takes its values if it
is deterministic. So the estimation method has to come face
to face with the propagation of the information from the
model’s data to what is to be estimated. The management
of uncertainty within dynamical models implies stochastic
processes calculus; McShane’s theory is used in this instance
[3].
The model concerned here comes from finance, it is the
following stochastic differential equation (SDE):

dSt = rStdt + VtStdBt, (1)

where St is the price of an asset at time t, 0 ≤ t ≤ T , and Bt

is the Brownian motion. The parameter r is called interest
rate, and assumed known. We observe the price at discrete
equally spaced instants tn. The stochastic process (Vt)2 is
called (instantaneous) volatility. It is of unknown dynamics
and thus of unknown probability distribution; our objective
is to estimate both of them.
The paper is organized as follows. Section 2 describes the

model construction for the volatility dynamics based on
prior information about such a process. Section 3 is the
calibration or identification of the above model based on
equation (1) and the observations. Sections 4 and 5 go further
into modeling and estimation respectively. Conclusions are
given in the final section.

II. MODELING

According to the nomenclature in the introduction, the
process (Vt)2 which is the quantity to be estimated, is also an
unknown data in the model (1). The prior information about
this unknown is its stationarity and square integrability, and
a parametric model for its covariance function. Anyhow, the
latter is the starting point in the estimation of the process
dynamics under the form of a SDE (and thus the estimation
of its probability distribution). Let the covariance function
of the process (Vt)2 be given by the following formula

k(τ) = D

m∑
j=1

e−αj |τ |, αj > 0, (2)

where D is the process variance. This type of covariance
function allows to fit the observed time dependence in the
returns; it includes short-term and long-term memory in the
correlation pattern of the volatility. We consider the case
where m = 2. Then the spectral density of (Vt)2 is given by
the formula

s(ω) =
1
2π

∫
R

k(τ) exp(−jωτ)dτ,

=
1
2π

2D (α1 + α2)(ω2 + α1α2)
(ω2 + α2

1)(ω2 + α2
2)

.

Let’s denote P (ω) = 2D (α1+α2)(ω2+α1α2) and Q(ω) =
(ω2 + α2

1)(ω
2 + α2

2). If we factorize the polynomial P (ω),
select the factors corresponding to the roots disposed in the
upper half-plane of the complex variable ω and add the
factor jn √

p2n (2n and p2n are the degree of P (ω) and
the coefficient of ω2n in this polynomial, respectively), then
we represent P (ω) in the form

P (ω) = H(jω)H(−jω), ω ∈ C,

where

H(jω) = j
√

2D (α1 + α2)(ω − j
√

α1α2),

=
√

2D (α1 + α2)(jω +
√

α1α2).
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When ω ∈ R, H(−jω) = H(jω) as all the coefficients of
the polynomial P (ω) are real, so

P (ω) = |H(jω)|2, ω ∈ R.

With exactly the same reasoning applied to the polynomial
Q(ω) we represent it in the form

Q(ω) = |F (jω)|2, ω ∈ R,

where
F (jω) = (jω + α1)(jω + α2).

So the spectral density s(ω) is rewritten as:

s(ω) =
1
2π

∣∣∣∣H(jω)
F (jω)

∣∣∣∣
2

, ω ∈ R.

Notice now that

Φ(s) =
H(s)
F (s)

, s ∈ C,

represents the transfer function of some stationary linear
system; this system is furthermore stable as all the roots
of H(s) and F (s) are disposed in the left half-plane of
the complex variable s. Recalling that 1/2π is the spectral
density of a white noise of intensity 1, we come to the
conclusion that (Vt)2 may be considered as the response of
the filter whose transfer function is Φ(s), to a white noise
with unit intensity.
The differential equation describing such a filter is:

ẍ+(α1 +α2)ẋ+α1α2x =
√

2D (α1 + α2)(u̇+
√

α1α2u),

where u(t) is the input and x(t) is the output of the filter. If
we set X1

t = x and X2
t = ẋ−√2D (α1 + α2)u, we obtain

the following SDE as a model for the volatility (Vt)2 = X1
t :

dX1
t = X2

t dt +
√

2D (α1 + α2)dWt

dX2
t = [−α1α2X

1
t − (α1 + α2)X2

t ]dt −√
2D (α1 + α2)[α1 + α2 −√

α1α2]dWt

(3)

where Wt is a stochastic process with independent and
stationary increments (or Lévy process). It is worth noting
that for m = 1, by the same calculus, we fall in with
the well documented SDE of Ornstein-Uhlenbeck for the
volatility.
We assume existence for solutions of the SDE (3) when the
increments of Wt are positive (implying positivity of the
volatility process X1

t ).

According to the notation of (3), (1) is rewritten in
the form

dSt = rStdt +
√

X1
t StdBt. (4)

(4) accompanied with (3) form what we call a stochastic
volatility model for the asset price. In the following we shall
calibrate this model on the known data (i.e. the observations).

III. ESTIMATION

The lemma of Ito for the log price Yt = log St together
with (1) give the SDE

dYt =
(

r − X1
t

2

)
dt +

√
X1

t dBt. (5)

In the following we shall study integrals or aggregations of
the instantaneous log-returns dYt, and those of the instanta-
neous volatility X1

t , over intervals of length ∆

Yn =
∫ n∆

(n−1)∆

dYt = Y (n∆) − Y [(n − 1)∆],

X1
n =

∫ n∆

(n−1)∆

X1
t dt.

We shall prove, firstly that

cov
(
(Yn)2, (Yn−k)2

)
= cov

(
X1

n,X1
n−k

)
, (6)

up to infinitesimals of higher order of ∆, and secondly that

cov
(
X1

n,X1
n−k

)
=

D

α2
1

(
e−α1(k−1)∆ − 2e−α1k∆ + e−α1(k+1)∆

)
+

D

α2
2

(
e−α2(k−1)∆ − 2e−α2k∆ + e−α2(k+1)∆

)
.

(7)

It follows that D and α1, α2 may be obtained by nonlinear
least squares of the difference between the approximation
of the covariance function of the series of squared log-
returns {(Yn)2}n≥1, calculated from the observations, and
the covariance function of the series of integrated volatilities
{X1

n}n≥1, given by formula (7).

A. Proof of (7)

If we write ξ, D and k(τ) respectively as the mean, the
variance and the covariance function of the instantaneous
volatility X1

t (= (Vt)2), then

cov
(
X1

n,X1
n−k

)
= E

(
X1

nX1
n−k

)− E
(
X1

n

)
E
(
X1

n−k

)
,

=
∫ n∆

(n−1)∆

∫ (n−k)∆

(n−1−k)∆

[k(u − v) + ξ2]du dv − (ξ∆)2,

=
∫ n∆

(n−1)∆

∫ (n−k)∆

(n−1−k)∆

k(u − v)du dv.

If we replace k(u− v) by its expression in (2), with m = 2,
we obtain the formula in (7).

B. Proof of (6)

A consequence of (5) is that

Yn = r∆ − 1
2
X1

n +
∫ n∆

(n−1)∆

√
X1

t dBt.

Then, up to infinitesimals of higher order of ∆, it follows
that

E
(
(Yn)2

)
= ξ∆,
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E
(
(Yn)2(Yn−k)2

)
= E



(∫ n∆

(n−1)∆

√
X1

udBu

)2

×

(∫ (n−k)∆

(n−1−k)∆

√
X1

vdBv

)2

 ,

= E

{(∫ n∆

(n−1)∆

X1
udu

)(∫ (n−k)∆

(n−1−k)∆

X1
vdv

)}
,

= cov
(
X1

n,X1
n−k

)
+ (ξ∆)2.

But

E
(
(Yn)2(Yn−k)2

)
= cov

(
(Yn)2, (Yn−k)2

)
+

E
(
(Yn)2

)
E
(
(Yn−k)2

)
,

= cov
(
(Yn)2, (Yn−k)2

)
+ (ξ∆)2.

Therefore (6) follows immediately.

C. Illustration

We observe each 10 minutes the price of some action
during one month, which represents about 22 active or
trading days (transactions take place from 9 a.m. to 17:30
p.m.). The variance D and the rates α1, α2, that give a
good fit between empirical approximation of the normalized
covariance function and its model, amount around 556.6
and 0.02, 4.91 respectively. This confirms that a model
for the volatility dynamics as an Ornstein-Uhlenbeck SDE
is not satisfactory, and points towards the use of sum of
exponentials with different persistence rates when modeling
the covariance function of the volatility.

IV. FURTHER INTO MODELING

In this section we shall develop the link between the
stationary solution of an SDE of the same type as (3) and
the generating or driving process in this SDE (i.e. the Lévy
process). We need in this instance to introduce the notion
of self-decomposability of a probability distribution; more
precisely, we need to know the relation between this property
and Lévy processes.

A. Theorem

A probability distribution is self-decomposable, i.e. its
characteristic function φ satisfies

φ(λ) = φ(ρλ)φρ(λ)

for some family of characteristic functions φρ, ρ ∈ (0, 1), if
and only if there is a Lévy process Wt such that the random
variable ∫ ∞

0

exp(−As)BdWs

follows this distribution, for some A and B.

B. Proposition

Let Wt be a Lévy process, denote the Lévy measure of
W (1) by P , suppose moreover that P has p as density.
The specification

Xt =
∫ ∞

−t

exp[−A(s + t)]BdWs

determines a stationary process if and only if p satisfies∫
|x|≥1

log |x| p(x)dx < ∞. (8)

It follows, by change of the integration variable, and
from increments stationarity of a Lévy process that∫ ∞

0

exp(−As)BdWs,

has the same probability distribution as X(t) for all t > 0.
So according to the theorem, this probability distribution is
self-decomposable. It is worth noting that the process Xt of
the proposition is a solution of the following SDE:

dXt = −AXt dt + BdWt, (9)

and that SDE (3) is of this form with

A =
(

0 −1
α1α2 α1 + α2

)
,

B =
√

2D (α1 + α2)
(

1
α1 + α2 −√

α1α2

)
.

The results in subsections A and B are promoted by [1][2],
where one-dimensional case is treated. We admit the results
for multidimensional case (the matrices A and B are n× n
and n × 1 respectively).

V. FURTHER INTO ESTIMATION

In the present section we shall achieve our objective about
estimating both the dynamics and the probability distribution
of the volatility modeled as a stochastic process. We proceed
in this way: we specify the Lévy measure of the SDE
generating process, we ensure that the condition of the
proposition applies, i.e. the SDE has a stationary solution
and then we recover the probability distribution of the latter.
Our approach to do that is to simulate the stochastic process
Xt. It is easy to show that

X(t) = exp(−At)X(0) +(∫ 0

−t

exp(−As)dWs

)
exp(−At)B,

= exp(−At)X(0) +
(∫ t

0

exp(As)dWs

)
exp(−At)B.

(10)

So we have to simulate from∫ t

0

exp(As)dWs.
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We shall use infinite series representation of this type of
integrals [1][2]. The desired result is that: for an arbitrary
function f , when the integral exists,∫ t

0

f(s)dWs =
∞∑

i=1

f(uit)P−1

(
ti
t

)
,

where {ui} is an i.i.d. sequence of random variables follow-
ing the uniform distribution on [0, 1], and {ti} are arrival
times of a Poisson process with intensity 1. P−1 denote the
inverse of the upper tail integral function

P+(x) = P ([x,∞)).

A. Illustration

Let the Lévy measure P of W (1) have support R+ and
be such that

P+(x) = ν exp (−αx) ,

with α > 0 and ν > 0. Then

p(x) = αν exp (−αx) ,

which satisfies (8). In this case P+ can be analytically
inverted:

P−1(x) = max
{

0,− 1
α

log
(x

ν

)}
.

Consider the histogram approximating the probability dis-
tribution of the squared log-return on 1 unit-of-time; it is
also an approximation for the probability distribution of the
volatility process X1

t . It is easy to see that by elementary
handling of equation 5. So this histogram is our reference for
identifying α and ν; we find α = 1 and ν = 887.88 10−5.

VI. CONCLUSION

A probabilistic approach to manage uncertainty for es-
timation in dynamical models is proposed when illustrated
on an application from financial engineering: volatility es-
timation. We consider the volatility as a stochastic process;
we construct a model for its dynamics under the form of
a stochastic differential equation, driven by a Lévy pro-
cess, and obtain at one go the probability distribution of
the volatility process. The conformity between theoretical
and practical issues, together with the accuracy of results
within low simulation cost, prove to my satisfaction the
performance of the approach.
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