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Abstract: Extreme events are defined as extreme high (or low) values of whatever statistics
of the output of the system we are interested in. These values play an important role
because they may correspond to abnormal or dangerous operating conditions. Classical
statistical inference techniques provide a good description of central behaviour, but not
of extreme events. This was our motivation for resorting to extreme-value theory, which
provides a framework and tools to model these extreme events. We show in this paper
how some of these tools can be used in the context of system reliability, and the resulting
methodology is illustrated on an example of circuit design, representative of a wide new
field of applications for extreme-value theory.
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1. INTRODUCTION

This paper is about estimation of the largest (or small-
est) values that may be taken by some quantity of
interest in an uncertain system. Uncertainty in this
system may be captured in its mathematical model
via external perturbations, random inputs, a large dis-
persion of the design parameters, etc. The quantity of
interest may be the value taken by some system output
or state variable, or some statistic of this value.

This is a problem of obvious practical importance,
as extreme values may correspond to abnormal or
dangerous operating conditions, and characterizing
these extreme values is the first step towards designing
the system so as to bring them within acceptable
bounds.

Classical statistical inference is aimed at describing
central behaviour rather than extreme events, and thus

1 Supported by the EADS Company Foundation
(www.fondation.eads.net)

not suited to the task. This was our motivation for
resorting to extreme-value theory, or EVT, a branch
of statistics that appeared in the late 50’s, and for
adapting it to an engineering context.

EVT was formulated initially by Gumbel in the 30’s,
see (Gumbel, 1958) for a synthetic presentation. Gen-
eral texts on the subject include (Embrechts et al.,
1997) and (Coles, 2001). It is now a well established
branch in statistical modelling when treating problems
in hydrology (Coles and Tawn, 1996), climatology
(Carter and Chalenor, 1981) and sport data (Robinson
and Tawn, 1995). See (Kotz and Nadarajah, 2000) for
an overview of the domains of application considered
so far. Applications to system identification do not
seem to have been reported yet.

This paper is divided into two parts. The first part is
an overview of extreme-value theory, based mainly on
(Embrechts et al., 1997) and oriented toward statistical
modelling. For the sake of simplicity, we restrict the
presentation to the one-dimensional case, but most of



it can be extended to higher-dimensional problems.
In the second part of the paper we propose the first
steps of a methodology for applying EVT to analysis,
prediction and design in the context of system reliabil-
ity. This methodology is finally applied to an example
of circuit design, illustrative of a wide new field of
applications for EVT.

2. EXTREME-VALUE THEORY

In what follows, the system is considered as a black
box, which means that analytical equations describing
its operating mode are not needed. Instead, the model
is built from some data collected either by performing
experiments on the actual system or by employing a
detailed simulator (computer experiments).

Section 2.1 describes the family of distributions used
for modelling the maxima of a series of random vari-
ables. The theoretical result supporting the choice of
such a family is recalled in Section 2.2. Section 2.3
presents the generalized Pareto distribution, which
is suitable (as shown in Section 2.4) for modelling
threshold excesses. Section 2.5 discusses the practi-
cal relevance of these results and contrast EVT with
classical inference results.

2.1 Generalized extreme-value distribution

Just as the normal distribution is the limiting distribu-
tion for sample sums and averages, as made explicit
in the central limit theorem, another family of dis-
tributions proves important in the study of limiting
behaviour of sample extrema. This is the family of
extreme-value distributions, which can be subsumed
under a single parameterization known as the Gener-
alized Extreme Value (GEV) distribution. It is defined
as

Gξ(x) =

{
exp

(
− (1 + ξx)

−1/ξ
)

if ξ 6= 0 ,

exp (− exp (−x)) if ξ = 0 ,

where x is such that 1 + ξx > 0 and ξ is known as
the shape parameter. Three well known distributions
are special cases of the GEV: if ξ > 0 we have the
Fréchet distribution with shape α = 1/ξ, if ξ < 0 we
have the Weibull distribution with shape α = −1/ξ
and if ξ = 0 we have the Gumbel distribution.

This family of distributions can be extended by intro-
ducing a location parameter µ and a scale parameter
σ > 0 to get the extended GEV

Gξ,µ,σ (x)
∆
= Gξ ((x − µ) /σ) .

Gξ,µ,σ is then said to be of type Gξ .

2.2 Fisher-Tippet theorem

The Fisher-Tippet theorem is the fundamental result
of EVT and can be considered as having the same
status in EVT as the central limit theorem in the
study of sums. It describes the limiting behaviour of
appropriately normalized sample maxima.

Let X1, X2, . . . , Xn be a sequence of i.i.d ran-
dom variables from an unknown distribution F (see
(Leadbetter and Rootzén, 1988) for more general
cases). Denote the maximum of the first n observa-
tions by Mn = max(X1, X2, . . . , Xn). Assume that
sequences of real numbers (an > 0) and (bn) can be
found such that M∗

n = (Mn − bn) /an, the sequence
of normalized maxima, converges in distribution. That
is

P{M∗
n ≤ x} = F n (anx + bn)

n→∞
−→ G(x) , (1)

for some non-degenerate distribution G(x). If this
condition holds, F is said to be in the maximum do-
main of attraction of G and we write F ∈ MDA(G).

Fisher and Tippet showed that

F ∈ MDA(G) =⇒ G is of type Gξ for some ξ.

Thus, if suitably normalized maxima converge in
distribution, then the limit distribution must be an
extreme-value distribution for some value of the pa-
rameters ξ, µ and σ. Note that the family of limit
distributions does not depend on F .

The class of distributions for which Condition (1)
holds is large. A variety of equivalent conditions may
be derived (Kotz and Nadarajah, 2000).

If ξ > 0 the tail of the distribution decays like a power
function, with the weight of the tail an increasing
function of ξ. The Pareto, Burr, log-gamma, Cauchy
and t-distributions belong to the MDA (Gξ>0). Distri-
butions in the maximum domain of attraction of the
Gumbel distribution (MDA(G0)) have an exponential
decay and include the normal, exponential, gamma
and lognormal distributions. Uniform and beta dis-
tributions are bounded and belong to the domain of
attraction of the Weibull distribution (MDA (Gξ<0)).

The Fisher-Tippet theorem suggests fitting the GEV
to data on sample maxima, when such data can be
collected. When the number of data points is large
enough, it indicates that the distribution of the maxima
might behave as a GEV distribution, independently of
the distribution F .

2.3 Generalized Pareto distribution

Further results in EVT describe the behaviour of the
observations that exceed large thresholds, and these
are the results that we are going to use for estimating
extremal values of quantities of interest. Extreme val-
ues thus receive a new meaning, as they are no longer



restricted to the maximum of a series, but correspond
to every value that turns out to be higher than a given
threshold. This approach thus uses a higher number of
observations for the estimation procedure than fitting
the GEV data to sample maxima, and the estimation
variance is therefore smaller. However, the fact that
the threshold has to be chosen makes the method more
complicated to use.

The Generalized Pareto Distribution (GPD) becomes
appropriate in this context. It is usually expressed as a
two-parameter distribution with distribution

Hξ,β(x) =





1 −

(
1 + ξ

x

β

)−1/ξ

if ξ 6= 0 ,

1 − exp

(
−

x

β

)
if ξ = 0 ,

where β > 0 and the support is x ≥ 0 if ξ > 0 and
0 ≤ x ≤ −β/ξ if ξ < 0. The GPD again subsumes
other distributions under its parameterization. When
ξ < 0 it is a parameterized version of the usual Pareto
distribution with shape α = 1/ξ, if ξ < 0 it becomes
a Type II Pareto distribution with shape α = −1/ξ
and for ξ = 0 it corresponds to the exponential
distribution.

Again the family can be extended by adding a location
parameter µ. The extended GPD Hξ,µ,β (x) is defined
as Hξ,β (x − µ). The presence of β makes it unneces-
sary to introduce a new scale parameter.

2.4 Pickands-Balkema-de Haan theorem

We are interested in excesses above some threshold u,
that is, in the amount by which observations exceed u.

Let x0 be the finite or infinite right endpoint of the
distribution F . That is to say,

x0 = sup{x ∈
�

: F (x) < 1} ≤ +∞ .

The distribution function of the excesses over u
(Fu(x)

∆
= P{X > u + x|X > u}) turns out to be

Fu(x) =
F (x + u) − F (u)

1 − F (u)
,

where 0 ≤ x < x0 − u.

The Pickands-Balkema-de Haan theorem states that
under the MDA Condition (1) the generalized Pareto
distribution is the limiting distribution for the ex-
cesses, as the threshold tends to the right endpoint.
That is, one can find a positive measurable function
β(u) such that

limu→x0
sup0≤x<x0−u|Fu(x) − Hξ,β(u)(x)| = 0 ,

if and only if F ∈ MDA(Gξ).

This theorem suggests that, for sufficiently high
thresholds u, the distribution function of the excesses

may be approximated by Hξ,β(x) for some values of
ξ and β. Equivalently, for x − u ≥ 0, the distribution
function Fu(x − u) of the extreme values above a
sufficiently high threshold u (the excesses plus u) may
be approximated by Hξ,β(u) (x − u) = Hξ,u,β (x).

The statistical relevance of the Pickands-Balkema-
de Haan theorem is that we may attempt to fit the GPD
to data which exceed thresholds. This theorem gives
theoretical grounds to expect that for sufficiently large
thresholds, the data above these thresholds will show
generalized Pareto behaviour.

2.5 Statistical aspects

The Fisher-Tippet and Pickands-Balkema-de Haan
theorems supply a mathematical background that sup-
ports the choice of the GEV and GPD distributions
when modelling the maxima or the threshold excesses
respectively. However, as F is in practice unknown,
the MDA condition cannot be checked. Moreover even
if it could, these theorems only give asymptotical re-
sults, when the actual number of data points is al-
ways finite. Moreover, even when the MDA condition
is satisfied the convergence may be slow if F does
not have an exponential or polynomial decay, and
other approaches may be preferred (Kaufmann, 2000).
However, the choice of a GEV or a GPD distribution
seems much more justified than some arbitrary choice
between other families of distributions.

The main difference between EVT and classical infer-
ence techniques is that EVT uses only the largest sam-
ple values to perform estimation. This is appropriate
when looking for the tail distribution. Classical infer-
ence methods, by contrast, use the whole set of data
(and may even discard extreme samples as outliers) as
they are oriented towards central behaviour.

3. EVT FOR SYSTEM EVALUATION (AND
DESIGN)

3.1 General methodology

Design specifications for systems most often require
that some performance characteristics remain within
known bounds whatever the fluctuations in the char-
acteristics of the components of the system. A first
step towards ensuring the satisfaction of these re-
quirements is the analysis of extreme values of these
performance characteristics for a given value of the
design parameters. It is this first step of analysis that
is considered in this paper. Since we are interested in
the tail distribution and not only in maxima, choosing
the generalized Pareto distribution seems to be more
appropriate. This choice is supported by the Pickands-
Balkema-de Haan theorem. Therefore we assume that
(for a large enough threshold u)



Fu(x) = P{X − u > x|X > u}

= 1 −

(
1 + ξ

x

β(u)

)−1/ξ

,

where x belongs to the set

{
x : x > 0 and 1 + ξ

x

β(u)
> 0

}
.

We choose the POT (Peaks Over Threshold) method
to estimate the parameters of our model (Davison and
Smith, 1990), i.e., we choose the threshold u using
the mean excess plot and then compute the maximum-
likelihood estimates of β and ξ. The asymptotic prop-
erties of maximum-likelihood estimators apply if
ξ > −0.5 (Smith, 1985).

The mean-excess-plot method assumes that a gener-
alized Pareto distribution is valid as a model for the
excesses over the threshold u0. It can then be proved
(Coles, 2001) that

E[X − u|X > u] =
β(u)

1 − ξ
=

β(u0) + ξu

1 − ξ
.

Thus, for u > u0, E[X − u|X > u] is an affine
function of u. E[X − u|X > u] may be estimated by
1

nu

∑nu

i=1(x(i)−u), where x(1), x(2), . . . , x(nu) are the
nu observations above u, which have been reordered
for convenience. The plot of

{(
u,

1

nu

nu∑

i=1

(x(i) − u)

)
: x(nu) > u

}
,

is called the mean excess plot, and the threshold
should be chosen so as to keep only its affine part. The
larger the threshold the better the approximation, but
the higher the variance, because the number of data
points used for the estimation decreases. This can be
seen as a bias-variance trade-off.

There exist other approches that use numerical meth-
ods for the choice of the threshold u (Beirlant et
al., 1996). For the sake of simplicity, we concentrate
on the POT method.

3.2 Stabilized voltage source

The following example illustrates how EVT can be
put at work in the context of system analysis. We are
interested in the output voltage of a stabilized bandgap
voltage source. Bandgap voltage sources are temper-
ature corrected (i.e., their temperature coefficient is
minimized) by compensating the positive temperature
coefficient of a voltage source with the negative tem-
perature coefficient of another voltage source. Both
transistors of Figure 1 are polarized to provide a con-
stant voltage. The temperature coefficient of the circuit

is minimum when having the gap voltage ('1.2V) at
the basis of the transistors. The resistances are there-
fore adjusted to achieve this. Both outputs C1 and C2
are fedback using an operational amplifier and two
resistors, which makes it possible to tune the output
voltage.

Vcc

C1

C2Vadjust

Fig. 1. Bandgap circuit

The values of several technological parameters of
the circuit (such as the engraving width and length)
fluctuate during manufacturing. As a result of these
fluctuations, the output voltage varies from one circuit
to another (Fig. 2). The success of the fabrication
chain depends on the number of circuits whose output
voltage is between two prespecified values. In order
to study the consequences of circuit variability and
compute the extreme possible outputs, the EVT is
going to be applied.

We have developped a Matlab simulator of the cir-
cuit of Figure 1 based on the analytical expressions
describing the behaviour of the bandgap circuit. The
beta (current gain) of the transistors, engraving width
w and length l are taken to vary indepently from one
realization to another and according to a 3-σ trun-
cated Gaussian law (σbeta = 10, σw = 0.1µm and
σl = 0.1 µm are, respectively, the standard deviations
of the beta, engraving width and length). The power
voltage (Vcc) and the temperature of the system are
assumed to vary according to a uniform law (from
3.5V to 3.75V and from 263K to 323K respectively).
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Fig. 2. Realizations (top) and histogram (bottom) of
the output voltage.



3.3 Results

The first step is the choice of a threshold. We choose
û = 0.138, because we consider that the graph is
affine after this threshold (Fig. 3).
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Fig. 3. Mean excess plot. The solid lines present the
95% confidence intervals.

Eight hundred output voltages were generated, cor-
responding to as many independent realizations of
the system simulated. Only 23% turned out to be
above û = 0.138 and the corresponding threshold
excesses were used to estimate β and ξ. By maximum-
likelihood estimation, we found ξ̂ = −0.2136 and
β̂ = 0.0022. Since ξ̂ > −0.5, the asymptotic proper-
ties of the maximum-likelihood estimators can be used
to obtain confidence intervals (Smith, 1985). The 95%
confidence intervals are found to be [−0.32,−0.05]

for ξ̂ and [0.0018, 0.0026] for β̂. The operation was
repeated 1000 times, and Figure 4 shows the resulting
scatter plot of parameter estimates.
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Fig. 4. Realizations of the estimators β̂ and ξ̂

As ξ̂ < 0 the probability density function is bounded
at the right and its right endpoint x0 can be computed
easily. This tends to indicate that there does exist a
maximum output voltage among the expected values,
which is not surprising if one remembers that the dis-
persion of the technological parameters was bounded.
Then

x̂0 = u −
β̂

ξ̂
= 0.1482 .

Figure 5 shows the histogram of the estimator of the
right endpoint.
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Fig. 5. Distribution histogram for the right endpoint

ξ̂ β̂

based on −0.2233 0.0022
105 data points [−0.2333,−0.2133] [0.0022, 0.0022]

based on −0.2445 0.0023
800 data points [−0.3467,−0.1423] [0.0019, 0.0027]

based on −0.2262 0.0023
400 data points [−0.3827,−0.0698] [0.0017, 0.0029]

based on −0.5476 0.0036
100 data points [−0.7765,−0.3186] [0.0019, 0.0054]

Table 1. Estimates of ξ and β with their
95% confidence intervals

Figure 6 shows the distribution function for the values
of the output voltage that are higher than the esti-
mated threshold û. The dots represent the empirical
distribution computed from the sample points used for
the estimation. The solid line displays the estimated
distribution function.
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Fig. 6. Tail distribution. The solid line corresponds
to the estimated tail distribution, the dots to the
empirical distribution

If our model is correct, reducing the number of sam-
ples used for estimation only affects the variance of
the estimators. Table 1 and 2 show how the perfor-
mance of the estimation depends on the number of
samples used. As no prior information is available
about F , it is not possible to speak about the con-
vergence rate of the estimator and therefore about the
number of points needed for a good estimation vari-
ance.

Note that even with a very small number of points, the
estimation of the endpoint of the distribution remains



x̂0

based on 0.1479
105 data points [0.1473, 0.1573]

based on 0.1474
800 data points [0.1409, 0.1539]

based on 0.1482
400 data points [0.1390, 0.1573]

based on 0.1446
100 data points [0.1263, 0.1629]

Table 2. Estimate of the right endpoint of
the distribution with its 95% confidence

intervals

quite good. To explain this seemingly surprising re-
sult, it is interesting to look at the asymptotic proper-
ties of the maximum likelihood-estimator. Using the
Fisher information matrix it is easy to find that asym-
potically

(
ξ̂N

β̂N

)
∼ N

[(
ξ
β

)
,

1

N

(
(1 + ξ)2 β(1 + ξ)
β(1 + ξ) 2β2(1 + ξ)

)]

In order to find the expression of the asymptotic distri-
bution for the estimator x̂0 we used the delta method
(Coles, 2001). Let θ̂0 be the large-sample maximum
likelihood estimator of the parameter vector θ0, with
approximate variance-covariance matrix Vθ. Then if
a parameter φ is a scalar function of θ (φ = g(θ)),
then the maximum likelihood estimator of φ0 = g(θ0)
satisfies

φ̂0 ∼ N (φ0, Vφ) ,

where
φ̂0 = g(θ̂0) ,

and
Vφ = 5φ T

0 Vθ 5 φ0 ,

with

5φ0 =
∂g

∂θ
|
θ̂0

.

We thus get the following asymptotic distribution for
the estimate of the endpoint of the distribution:

x̂0N ∼ N

[
x0 ,

1

N

(1 + ξ)β2

ξ2

(
1 − ξ + 2ξ2

ξ2

)]

In this example the variance of x0 is very small
(0.002/N ). This contributes to explaining the results
reported in Table 2.

4. CONCLUSIONS AND PERSPECTIVES

Extreme-value theory gives a probabilistic framework
to model extreme events. Two different definitions
for extreme events have been recalled: maxima of a
series and threshold excesses. Extreme-value theory
reduces the study of large values of a performance of
a system to an estimation problem. After estimation,
the resulting parametric tail distribution can be used

to infer the information we are interested in. This
paper summarized the basic extreme-value theory in
the one-dimensional case, but further developements,
including the treatement of the multivariable case, can
be found in the litterature.

The example treated confirms that, at least, for some
systems of interest, it is indeed possible to estimate
extreme values accurately from a limited number of
experiments or simulations. This makes it possible
to study the influence of the design parameters on
the extreme values of the performance characteristics,
for instance with any of the non-parametric methods
based on reproducing kernel Hilbert spaces. We tend
to favor Kriging, because of its statistical basis. The
use of the model thus obtained to modify the value of
the design parameters so as to better meet the spec-
ifications regarding the extreme values of the perfor-
mance characteristics is one of the perspectives of this
paper.
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