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ABSTRACT

A new criterion for sequential design of experiments for linear
regression model is developed. Considering the information
provided by previous collected data is a well-known strategy
to decide for the next design point in the case of nonlinear
models. The paper applies this strategy for linear models.
Besides, the problem is addressed in the context of robustness
requirement: an unknown deviation from the linear regression
model (called model error or misspecification) is supposed to
exist and is modeled by a kernel-based representation (Gaus-
sian process). The new approach is applied on a polynomial
regression example and the obtained designs are compared
with other designs obtained from other approaches that do
not consider the information provided by previously collected
data.

Index Terms— Sequential design of experiments, Gaus-
sian process, linear regression, robust design.

1. INTRODUCTION

Consider the following linear regression model:

t(x) =
d∑

j=1

θj φj(x) = φ�(x)θ (1)

where θ is the regression parameters vector and φ is the re-
gression vector. The design of experiments (DOE) problem
consists in choosing the design points xi in order to best esti-
mate θ.

Suppose that: i) a set of n collected data {(xi, yi) ∈ X ×
R, i = 1, ..., n} is given, where X is the experimental domain.
The xi’s form the design denoted by ξn = [x1, ..., xn]�. The
yi’s are noisy observations of the targets ti = t(xi):

yi = ti + ei (2)

where the observations errors ei are normal and i.i.d., and ii)
the least squares estimation has been chosen to estimate the
regression parameters.

Then, the problem of sequential DOE is to choose the next
experiment xn+1 to carry out in order to refine the parameters
estimation.

Moreover, if the target function t(x) is not perfectly rep-
resented by the regression model in (1) (i.e. a model error or
misspecification exists), then standard DOE methods that do
not take into consideration the misspecification will introduce
a bias in the parameters estimation [1]. An important work
that solves such drawbacks was done by Yue and Hickernell
[1].

In this paper, a new sequential DOE criterion for linear
models with misspecification is derived. The new criterion
takes into consideration the information provided by previ-
ously collected data. Based on previous works that deal with
robustness ([1] and [2]), the misspecification is modeled by
a kernel-based representation (here a Gaussian process as in
[2]).

The paper is organized as follows. Next section presents
some previous works on model-robust DOE, and discusses
the misspecification model selection. Afterwards, the pro-
posed sequential DOE criterion is derived. Finally, the new
proposed criterion is applied on a polynomial regression ex-
ample showing the benefits of this approach over other ap-
proaches that do not take into consideration the information
provided by previously collected data.

2. MODEL-ROBUST DOE

Design robustness with respect to the model error was first
discussed by [3] who studied the effect of taking a one-degree
polynomial regression model when the target is two-degree.
After that, many authors ([4], [5] for instance) have further
discussed and developed this idea with different assumptions
about the misspecification. Two important works on model-
robust DOE ([1] and [2]) consider the following linear model
with misspecification:

t(x) =
d∑

j=1

θj φj(x) + r(x) (3)

The unknown model error (misspecification) r(x) is modeled
by a Gaussian process as in [2] (see [6] for a Gaussian process
tutorial). A Gaussian process is a random field defined by its



mean and covariance function:

E
r
{r(x)} = 0, ∀ x ∈ X

E
r
{r(x)r(x′)} = c(x, x′), ∀ (x, x′) ∈ X2

The relevance of modeling the misspecification as a Gaussian
process rises because for some classes of covariance func-
tions, Gaussian processes span a rather large space (infinite-
dimensional). Therefore, this type of representation matches
the robustness requirement: the design point xn+1 that we
look for must lead to good estimation performance over a
wide range of possible misspecifications.

Let yn be the n × 1 vector of known observations yi, rn

the n × 1 vector of the misspecifications r(xi), and en the
n × 1 vector of the observations error e(xi). Then,

yn = Φnθ + rn + en = Φnθ + zn (4)

where, Φn is the n×d model matrix whose i-th line is φ�(xi),
and zn is the observations-model errors vector generated by a
Gaussian process z(x) with mean 0 and covariance c(x, x′)+
σ2

eδ(x − x′).
Let t̂ be the estimator of t obtained by a least squares es-

timation of θ :
t̂(x) = ψ�(x)yn+1 (5)

where

ψ(x) = Φn+1(Φ�
n+1Φn+1)−1φ(x)

is a (n+1)×1 vector. Φn+1 is the (n+1)×d extended model
matrix, and yn+1 is the (n + 1) × 1 extended observations
vector.

Given t̂ in (5), the goal is to find the design point xn+1

which maximizes the estimator performance (e.g. minimizes
the prediction error over all the experimental domain and over
a wide range of possible misspecifications). Therefore, the In-
tegral Quadratic Error (IQE) is defined as (classical L2-norm):

IQE(x1, ..., xn+1, e1, ..., en+1, r) =
∫

X

|t − t̂|2dx (6)

The observation errors are unknown, so an expectation over
these errors is taken to ensure a good performance averagely
over their realizations. Similarly, the misspecification is un-
known but our idea of robustness states that the chosen design
point must guarantee a good level of performance (on aver-
age) over the set of potential misspecifications. A statistical
representation for r allows to take expectation, hence the idea
of modeling it by a Gaussian process. Taking the total expec-
tation of the IQE in (6), the Integral Quadratic Risk (IQR) can
be written as follows:

IQR(xn+1) = E
(e1,...,en+1,r)

[∫
X

|t − t̂|2dx

]
(7)

The optimal design point x∗
n+1 is the minimizer of (7):

x∗
n+1 = arg min

xn+1∈X
[IQR(xn+1)] (8)

Using equation (5), the IQR is rewritten as follows:

IQR = E
(e1,...,en+1,r)

∫
X

[
|r(x) −ψ�(x)zn+1|2

]
dx (9)

where zn+1 = [zn ; zn+1] = [rn ; r(xn+1)]+[en ; en+1] is
the extended observations-model error vector (”;” is a vertical
concatenation). Expanding the previous equation, one finds:

IQR =
∫

X

{
E

(e1,...,en+1,r)
[r2(x)]

}
dx

+
∫

X

{
E

(e1,...,en+1,r)
[ψ�(x)zn+1z

�
n+1ψ(x)]

}
dx

− 2
∫

X

{
E

(e1,...,en+1,r)
[r(x)ψ�(x)zn+1]

}
dx

(10)

As all the variables are Gaussian, the expectation in equation
(10) can be computed [2] and optimized according to the cri-
terion in equation (8).

3. CONSTRUCTION OF THE PROPOSED DOE
CRITERION

This part is the core of the presented work. Having a set of
collected data (xi, yi) provides information about the random
variables (ei, r(x)). Thus, the criterion to be optimized in
equation (7) has been modified:

IQR(xn+1) = E
(e1,...,en+1,r)/CD

[∫
X

|t − t̂|2dx

]
(11)

where /CD means that all the probability density functions
are calculated conditionally to the already collected data.

The expectation calculation in equation (11) becomes a
bit more complicated by taking into consideration previous
information. It is detailed in this section.

By writing the relation in (4) satisfied by the collected
data, a set of k = n − d independent linear constraints on the
random variables zn appears. The constraints are computed
as follows:
The model matrix Φn in equation (4) is not necessarily square
because in DOE the number of xi’s is usually greater than the
number of parameters d. Then, the model matrix is divided
into two sub-matrices ΦB and ΦB̄ . ΦB is a d × d reversible
matrix and ΦB̄ is a k×d matrix. Also, yn and zn are divided
into yn = [yB ; yB̄ ] and zn = [zB ; zB̄ ] respectively.
Therefore, equation (4) is spread in two equations:

yB = ΦBθ + zB (12)

and
yB̄ = ΦB̄θ + zB̄ (13)

Therefore, the unknown parameters are calculated from (12):

θ = Φ−1
B (yB − zB) (14)



Injecting equation (14) in equation (13) gives:

yB̄ − (
ΦB̄Φ−1

B

)
yB = − (

ΦB̄Φ−1
B

)
zB + zB̄ (15)

Let Mk = [−ΦB̄Φ−1
B , Ik] (Ik is the identity matrix) be the

constraints matrix, then equation (15) can be written in matrix
form as follows:

Mk[zB ; zB̄ ] = Mk[yB ; yB̄ ] = ck (16)

The constraints matrix dimension is k × n, which means that
there are k constraints over zn. The corresponding constraint
vector ck is the vector containing the constraints values (pre-
vious information on zn), its PDF is:

P (ck) ∝ exp
[
−1

2
c�k

∑−1

C
ck

]
(17)

where
∑

C is the covariance matrix of ck given by:∑
C

= Mk

∑
Z
M�

k (18)

where
∑

Z
is the covariance matrix of ZN . Because of the

linearity and the jointly Gaussian character of the constraints,
all the random variables remain Gaussian and therefore the
expression in (11) may be computed. It is expanded in three
terms as in (10) with the difference that the expectations are
computed while taking into consideration the constraints. The
expectation in the three terms are calculated using the Gaus-
sian character of the variables.

The expectation in the first term is given by:

E/ck
[I] =

(
mr/ck

(x)
)2

+ σ2
r/ck

(x) (19)

where, /ck
means that the probability density function is cal-

culated conditionally to the constraints values. mr/ck
(x) and

σ2
r/ck

(x) are respectively the mean and variance of r(x)/ck
.

Using Bayes rules:

P (r(x)/ck
) =

P (r(x), ck)
P (ck)

∝ exp

[
−1

2

(r(x) − mr/ck
(x))2

σ2
r/ck

(x)

] (20)

The probability of (r(x), ck) is given by:

P (r(x), ck) ∝ exp
[
−1

2
[r(x) c�k ] S−1 [r(x) ; ck]

]
(21)

where S is the covariance matrix of [r(x) ; ck]. The iden-
tification of (20) with (21) gives the mean and variance of
r(x)/ck

:

mr/ck
(x) =

−∑k+1
i=2 (S−1)1,i × ci−1

(S−1)1,1

σ2
r/ck

(x) =
1

(S−1)1,1

(22)

In the second term of (10), [zn+1z
�
n+1] is a (n + 1) ×

(n + 1) symmetric matrix. Therefore, the expectation in the
second term is given by:

E/ck
[II] = tr{ψ(x)ψ�(x)E/ck

[zn+1z
�
n+1]} (23)

Similarly to the first term computation,

E/ck
[z2

i ] =
(
mzi/ck

(x)
)2

+ σ2
zi/ck

(x) (24)

where zi is the i-th element of zn+1. The mean and variance
of zi/ck

are computed from (22) with the difference that S is
now the covariance matrix of [zi ; ck]. On the other hand,

E/ck
[zizj ] = (mzi/ck

(x))× (mzj/ck
(x)) + σ2

zizj/ck
(x) (25)

By following the same mathematical procedure as in first term
calculation, the variance of zizj/ck

is found to be:

σ2
zizj/ck

(x) = (S−1
zizj

)1,2 (26)

where Szizj
is the 2 × 2 matrix in the upper left corner of S:

Szizj
= (S−1)1→2,1→2 (27)

and S is the covariance matrix of [zi ; zj ; ck].
The expectation in the third term of (10) can be written as

follows:

E/ck
[III] = −2ψ�(x)E/ck

[r(x)zn+1] (28)

with,

E/ck
[r(x)zi] = (mr/ck

(x))× (mzi/ck
(x))+σ2

rzi/ck
(x) (29)

where σ2
rzi/ck

(x) is computed using (26) and (27) with S the

covariance matrix of [r(x) ; zi ; ck].
The integrals in equation (10) are calculated using approx-

imate integration (Midpoint method).

4. ILLUSTRATIVE EXAMPLE

Consider the quadratic model with cubic contamination ([4]
and [5]) to be the illustrative example. That is, the regression
model is a two-degree polynomial whereas the target is three-
degree.

Here the target is precisely:

t(x) = x3 + x2 + x + 1 (30)

The Gaussian kernel is used because it is the most used kernel
for the Gaussian process covariance [6]:

c(x, x′) = s2 exp

[
−

(
x − x′

λ

)2
]

, ∀(x, x′) ∈ X2 (31)



where, s (Gaussian process variance) and λ (correlation dis-
tance) are the Gaussian process parameters. The correspond-
ing space is infinite-dimensional. The kernel is used with the
Gaussian process parameters values s = 0.8 and λ = 0.4.
The approach used to choose these values is based on a max-
imin efficiency criterion (see [2] for more details).

The design ξn = [−0.8,−0.4, 0, 0.4, 0.8] is taken to be
the initial design. The centered interval [−1; 1] is taken to be
the experimental domain X.

The proposed approach is applied by varying the number
of added points in the design from 1 to 50. The IQE PDF
are computed by Monte-Carlo method with 100 sequences of
noise where the observations error variance σ2

e = 0.05.
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Fig. 1. Comparison among the three criterions

Figure 1 shows the performance (in terms of IQE) of the
proposed approach, uniform design, and the IQE obtained by
considering equation (7) (i.e. without taking into consider-
ation the collected data as prior information). The results
shows a faster convergence to the minimum IQE of the pro-
posed approach over the other two approaches.
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Fig. 2. IQE histograms

Another way of comparison is to compare the IQE his-
tograms of the three designs for a fixed number of added de-

sign points. Figure 2 compares the IQE histograms of the
three designs where 10 design points are added. The cor-
responding IQE means are shown in Table 1 (WOPI means
the design without considering previous information). It is
clear that the proposed approach is the most efficient because
it gives the smallest IQE.

Uniform WOPI Proposed
〈IQE〉 0.0907 0.0845 0.0713

Table 1. IQE Means

5. CONCLUSION

This paper has proposed a sequential model-robust DOE cri-
terion for linear models with misspecification. Modeling the
misspecification with a Gaussian process, a sequential crite-
rion that finds the design points sequentially while taking into
consideration previously collected data is derived. Finally, a
comparison between the proposed approach designs, and ap-
proaches that do not take into consideration previous informa-
tion has shown that the proposed approach will give a better
performance (in terms of IQE).
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