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NEW FAST ALGORITHM FOR SIMULTANEOUS IDENTIFICATION AND OPTIMAL RECONSTRUCTION OF NON STATIONARY AR PROCESSES WITH MISSING OBSERVATIONS

This paper deals with the problem of adaptive reconstruction and identification of AR processes with randomly missing observations. A new real time algorithm is proposed. It uses combined pseudo-linear RLS algorithm and Kalman filter. It offers an unbiased estimation of the AR parameters and an optimal reconstruction error in the least mean square sense. In addition, thanks to the pseudo-linear RLS identification, this algorithm can be used for the identification of non stationary AR signals. Moreover, simplifications of the algorithm reduces the calculation time, thus this algorithm can be used in real time applications.

INTRODUCTION

In many practical situations, periodically sampled signals with missing observations may be encountered. This is the case, for example, of errors in transmission, or of temporary unavailability of measurement. It is also the case, in coding of audio signals or images, for compression purposes.

Several methods have already been developed for the processing of AR signals with missing data. They are generally of two types:

• Off line methods that use all available data. They are developped for spectral estimation such as in [START_REF] Ferrari | AR spectral analysis with randomly missing observations[END_REF], for identification purposes such as in [START_REF] Isaksson | Identification of ARX models subject to missing data[END_REF][START_REF] Jones | Fitting a continous time autoregression to discrete data[END_REF][START_REF] Wallin | Multiple optima in identification of ARX models subject to missing data[END_REF], or for reconstruction such as in [START_REF] Janssen | Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes[END_REF]. In [START_REF] Jones | Fitting a continous time autoregression to discrete data[END_REF], Jones used a Kalman filter to calculate the exact likelihood function for unequally spaced data. Model's parameters, that most fits the data, are then estimated by a non linear optimization. Isaksson [START_REF] Isaksson | Identification of ARX models subject to missing data[END_REF], proposed an EM algorithm equivalent to a maximum likelihood algorithm but much faster. In [START_REF] Janssen | Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes[END_REF], the estimates of the unknown samples are obtained by minimizing the sum of squares of the residual errors, it involves estimates of the autoregressive parameters. In [START_REF] Wallin | Multiple optima in identification of ARX models subject to missing data[END_REF], the identi-fication of ARX models from incomplete data using least squares is studied.

• On line adaptive methods such as in [START_REF] Albertos | Output prediction under scarce data operation: control applications[END_REF][START_REF] Isaksson | A recursive EM algorithm for identification subject to missing data[END_REF][START_REF] Mirsaidi | LMS like AR modeling in the case of missing observations[END_REF][START_REF] Sanchis | Recursive identification under scarce measurements-convergence analysis[END_REF][START_REF] Zgheib | New fast recursive algorithms for simultaneous reconstruction and identification of ar processes with missing observations[END_REF].

In [START_REF] Mirsaidi | LMS like AR modeling in the case of missing observations[END_REF], an LMS-like algorithm for simultaneous reconstruction and identification is developed. In [START_REF] Sanchis | Recursive identification under scarce measurements-convergence analysis[END_REF], the pseudo-linear RLS algorithm, an adaptation of the RLS algorithm to the case of signals with missing data, is derived. However these two algorithms converge toward biased parameters. In [START_REF] Zgheib | New fast recursive algorithms for simultaneous reconstruction and identification of ar processes with missing observations[END_REF], we proposed an LMS-like algorithm based on the incomplete past predictor [START_REF] Bondon | Prediction with incomplete past of a stationary process[END_REF] for simultaneous optimal identification and reconstruction of AR processes subject to missing data. However, this algorithm is quite time consuming. In [START_REF] Albertos | Output prediction under scarce data operation: control applications[END_REF], the problem of recursive estimation of the output in missing-data situations is addressed. In [START_REF] Isaksson | A recursive EM algorithm for identification subject to missing data[END_REF], Isaksson derives a recursive EM algorithm for the identification of AR processes subject to missing data, based on the offline version of the one described in [START_REF] Isaksson | Identification of ARX models subject to missing data[END_REF]. However, at each time, the inversion of a matrix is required to update the parameters. Therefore, it suffers from a high computational complexity.

In many applications, such as digital communications or systems tracking, on line processing is necessary. We are interested here in on line adaptive reconstruction and identification of autoregressive signals that can be non stationnary with randomly missing observations. The loss of samples process follows a Bernoulli law independent of the signal. In the following, we begin by presenting the RLS identification algorithm [START_REF] Brockwell | Time Series: Theory and methods[END_REF] and its adaptation to the case of missing observations [START_REF] Sanchis | Recursive identification under scarce measurements-convergence analysis[END_REF][START_REF] Albertos | Output prediction under scarce data operation: control applications[END_REF]. In a second part, the prediction of AR processes with missing observations using state space representation and Kalman filtering is discussed. A new adaptive algorithm for simultaneous reconstruction and identification, using combined RLS-like algorithm and Kalman filter, is proposed in the third part. This algorithm is simplified in order to become very fast. Finally, an example illustrates the performances of the new recursive algorithm. It is compared to the previously proposed LMS-like algorithm based on the incomplete past predictor [START_REF] Zgheib | New fast recursive algorithms for simultaneous reconstruction and identification of ar processes with missing observations[END_REF], and to the pseudo-linear RLS algorithm.

PRELIMINARIES

Let {x n } be an AR process of order L with parameters a k . It satisfies the following difference equation:

x n = a 1 x n-1 + . . . + a L x n-L + n . (1) 
Where { n } is the innovation process, a white noise of variance σ 2 . The loss process is modeled by an i.i.d binary random variable {c n }, c n = 1 if x n is available, otherwise c n = 0. The probability to measure x n is:

P {c n = 1} = p = 1 -q. ( 2 
)
Let {z n } be the reconstruction of the process {x n } subject to missing data. It is defined as:

z n = x n if x n is available, i.e., c n = 1 xn otherwise, ( 3 
)
where xn is the prediction of x n . In order to identify, in real time, the AR process subject to missing observations, we propose to use the pseudo-linear RLS identification algorithm.

PSEUDO-LINEAR RLS ALGORITHM

The RLS algorithm [START_REF] Brockwell | Time Series: Theory and methods[END_REF] presents the advantages of the simplicity, the fast convergence and the fast adaptivity in the case of non stationary processes. It is applied to linear systems in terms of the parameters. For an AR process, the RLS identification algorithm equations can be written:

Ψ n+1 = x n = [x n . . . x n-L+1 ] , (4a) 
xn+1 = Ψ n+1 ân , (4b) 
γ n+1 = G n Ψ n+1 λ + Ψ n+1 G n Ψ n+1 , (4c) 
ân+1 = ân + γ n+1 (x n+1 -xn+1 ), (4d) 
G n+1 = 1 λ (I d -γ n+1 Ψ n+1 )G n (4e)
where ân+1 are the estimated parameters at time n + 1, I d the identity matrix and λ ≤ 1 is a forgetting factor that helps to the fast adaptivity of the parameter estimation in the case of non stationary signals.

In the case of missing observations, the regression vector (4a) cannot be constructed with only available samples. Missing data are replaced by their predictions, i.e., Ψn+1 =

z n = [z n . . . z n-L+1 ]
. This leads to a pseudo-linear algorithm where the regression vector depends on the model's parameters.

Moreover, the prediction error cannot be calculated at the instants where the data are missing. The quadratic cost function to minimize is now the mean of the reconstruction error at the instants where the data is available. It can be written as:

J = (x -x) Q Q(x -x), (5) 
where x and x are N -vectors containing respectively the signal and its prediction, and Q is an

N xN diagonal matrix, with Q =    c 1 0 . . . 0 c N   .
The prediction errors at the times of missing data, i.e. c n = 0, are not taken into account in the quadratic cost function thanks to the weighting matrix Q.

Neglecting the dependence in the parameters of the regression vector, the pseudo-linear RLS identification algorithm is given by [START_REF] Sanchis | Recursive identification under scarce measurements-convergence analysis[END_REF]:

Ψn+1 = z n = [z n . . . z n-L+1 ] , (6a) xn+1 = f (â n , z n ), (6b) 
γ n+1 = c n+1 G n Ψn+1 λ + Ψ n+1 G n Ψn+1 , ( 6c 
) ân+1 = ân + γ n+1 (x n+1 -Ψ n+1 ân ), (6d) 
G n+1 = 1 λ (I d -γ n+1 Ψ n+1 )G n (6e) 
where f represents the samples prediction method as a function of the model parameters and the past available and predicted samples. Albertos et al. [START_REF] Albertos | Output prediction under scarce data operation: control applications[END_REF] were interested in the identification and output prediction of SISO linear systems in the case of dual-rate scarce sampling. To predict a sample, they used, in (4b), the regression vector completed by the prediction of the missing data (6a). The predicted sample is then, xn+1 = Ψ n+1 ân . This prediction approach was also used in [START_REF] Ferrari | AR spectral analysis with randomly missing observations[END_REF][START_REF] Isaksson | Identification of ARX models subject to missing data[END_REF][START_REF] Janssen | Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes[END_REF][START_REF] Mirsaidi | LMS like AR modeling in the case of missing observations[END_REF]. It leads to biased estimates using the least squares estimation. The bias was calculated by Wallin et al. [START_REF] Wallin | Multiple optima in identification of ARX models subject to missing data[END_REF]. Indeed, they studied the problem of identification of ARX models with missing observations using the least squares. They showed that least squares estimate of the parameters using any prediction of the data is unbiased if the following holds:

E{ Ψ V } = 0. ( 7 
)
where Ψ is the matrix formed by all the regressors Ψn and V = z -Ψa is the equation error. Thus, for unbiased estimation of the parameters, a suitable predictor must be used. An optimal predictor in the least mean squares sense verifies [START_REF] Isaksson | A recursive EM algorithm for identification subject to missing data[END_REF].

Bondon [START_REF] Bondon | Prediction with incomplete past of a stationary process[END_REF] proposed an expression for the optimal predictor of an AR process with incomplete past, however this predictor is not recursive. Other prediction approaches use state space representation of the signal and a Kalman filter for recursive prediction [START_REF] Isaksson | Identification of ARX models subject to missing data[END_REF][START_REF] Albertos | Output prediction under scarce data operation: control applications[END_REF]. In [START_REF] Isaksson | Identification of ARX models subject to missing data[END_REF], a state space representation with stochastic disturbances in the observation is proposed. In [START_REF] Albertos | Output prediction under scarce data operation: control applications[END_REF], the effect of unmeasured outputs is modelled by a disturbance of infinite variance on the observation. The drawback of this approach is the computational complexity. In addition, the model used is not appropriate to an AR process. In [START_REF] Fletcher | Estimation from lossy sensor data: Jump linear modeling and kalman filtering[END_REF], a Kalman filter for the state estimation of jump linear systems where the discrete transitions are modeled as a Markov chain is presented. In the following, a particular form of the previous Kalman filter is presented, it is used for the case of recursive optimal prediction of AR processes subject to random missing observations.

PREDICTION USING A KALMAN FILTER

State-space representation

Let the observation process {y k } be defined as:

y n = c n x n = x n if x n is available, 0 otherwise, (8) 
Thus, y n can be regarded as the measurement of x n subject to missing data.

For the AR process {x n } with missing observations presented in section 2, we propose the following state space representation:

x n+1 = A x n + n [1 0 . . . 0] y n+1 = c n+1 x n+1 (9) 
where

A =      a 1 . . . . . . a L 1 0 0 . . . . . . 0 1 0     
is a LxL matrix and

x n =    x n . . . x n-L+1   , c n =      c n 0 . . . 0      are L-vectors.

Kalman Filter

The predicted and filtered estimate will be denoted by xn+1|n and xn+1|n+1 , respectively. P n+1|n and P n+1|n+1 are the a priori and a posteriori prediction error covariance matrix, respectively. K n+1 is the Kalman filter gain. The Kalman filter equations can be found in, e.g. [START_REF] Brockwell | Time Series: Theory and methods[END_REF]. In our case, there is no disturbance in the observation, the Kalman filter equations resume to:

P n+1|n = AP n|n A + R , (10) 
where, R = σ 2 [1 0 . . . 0] [1 0 . . . 0].

K n+1 = P n+1|n cn+1 c n+1 P n+1|n cn+1 if x n+1 is available 0 otherwise, (11) 
P n+1|n+1 = (I d -K n+1 c n+1 )P n+1|n , (12) 
xn+1|n+1 = xn+1|n + K n+1 (y n+1 -ŷn+1|n ), (13) 
where,

xn+1|n = Ax n|n , (14) 
and ŷn+1|n = c n+1 xn+1|n .

Due to the state space representation chosen, the previous Kalman filter can be simplified. Indeed, if, at time n + 1, x n+1 is available, i.e., c n+1 = 1, the term P n+1|n c n+1 is equal to the first column of P n+1|n and (c n+1 P n+1|n c n+1 ) -1 is a scalar equal to the first term of the matrix P n+1|n . Consequently the Kalman gain K n+1 is calculated by dividing each element of the first column of P n+1|n by the first element of P n+1|n , which requires L multiplications instead of 2L(L + 1) multiplications. In addition, we deduce that the first element of K n+1 , K n+1 (1), is always equal to 1 if the data is available. Recalling the filter's equation system [START_REF] Fletcher | Estimation from lossy sensor data: Jump linear modeling and kalman filtering[END_REF], the first equation of it gives that when a sample is available:

xn+1|n+1 = xn+1|n + K n+1 (1) (y n+1 -ŷn+1 ) = y n+1 = x n+1 .
An observed sample is then unchanged by the Kalman filter. Otherwise, if x n+1 is missing, i.e., c n+1 = 0, then K n+1 = 0 and the prediction error covariance matrix does not change a posteriori. This is verified by equation ( 12): for K n+1 = 0, we get P n+1|n+1 = P n+1|n . The predicted value xn+1|n is not filtered at time n + 1, and xn+1|n+1 = xn+1|n . However, this value is corrected in the subsequent L steps due to the Kalman filtering of the state when a data is available, corrective terms are added to that prediction. It can be expressed as:

xn+1|n+t = xn+1|n + t i=1 K n+i (i) y n+i -ŷn+i|n+i-1 .
(16) Since we are interested in real time reconstruction, the corrected prediction xn+1|n+t can not be used for the reconstruction, it is only used for the prediction of subsequent samples. Thus {z n }, the reconstruction of the process, is defined as:

z n = x n if x n is available, i.e., c n = 1 xn|n-1 otherwise, (17) 

COMBINED RLS-LIKE ALGORITHM AND KALMAN FILTER

For a real time identification and optimal reconstruction, we propose here to use the proposed Kalman filter as a predictor with the pseudo-linear RLS algorithm. These two algorithms are combined. The Kalman filter uses at each iteration the AR parameters, estimated using the pseudo-linear RLS algorithm, to predict the new state. Hence, at time n + 1, the first line of the matrix A is replaced by â n , the vector of the parameters estimated at time n. The matrix is then named A n+1 . If a new sample x n+1 is available, the pseudo-linear RLS algorithm assigns the Kalman filter predictions, ŷn+1|n and xn|n , to xn+1 and Ψn+1 respectively, to update the model parameters. The optimal reconstruction is z n+1 = xn+1|n+1 . The resulting algorithm can be resumed, at time n + 1, as follows:

A n+1 =      ân,1 . . . . . . ân,L 1 0 0 . . . . . . 0 1 0      , P n+1|n = A n+1 P n|n A n+1 + R , xn+1|n = A n+1 xn|n Ψn+1 = xn|n ŷn+1|n = c n+1 xn+1|n = c n+1 xn+1|n (18) 
If x n+1 is available, i.e. c n+1 = 1,

γ n+1 = G n Ψn+1 λ + Ψn+1 G n Ψn+1 , (19a) 
G n+1 = 1 λ (I d -γ n+1 Ψ n+1 )G n , (19b) 
ân+1 = ân + γ n (y n+1 -ŷn+1|n ), (19c) 
K n+1 = P n+1|n c n+1 (c n+1 P n+1|n c n+1 ) -1 , (19d) 
P n+1|n+1 = (I d -K n+1 c n+1 )P n+1|n , (19e) xn+1|n+1 
= xn+1|n + K n+1 (y n+1 -ŷn+1|n ) (19f) 
Else if x n+1 is absent, c n+1 = 0, the predicted state, xn+1|n , is not filtered by the Kalman filter, and the parameters are not updated using the RLS-like algorithm,

K n+1 = 0, (20a) 
P n+1|n+1 = P n+1|n , (20b) 
G n+1 = 1 λ G n , (20c) 
γ n+1 = 0, (20d) xn+1|n+1 = xn+1|n , (20e) ân+1 = ân . (20f) 
This algorithm uses the Kalman filter to reconstruct the signal in the least mean square sense, the use of that predic-tor with the pseudo-linear RLS algorithm offers a non biased parameter estimation and a fast adaptation in the case of non stationnary AR processes with missing observations. In addition, it is simple and fast.

EXAMPLE

In this section, the proposed algorithm, the pseudo-linear RLS algorithm [START_REF] Sanchis | Recursive identification under scarce measurements-convergence analysis[END_REF] and the LMS-like algorithm based on the incomplete past predictor [START_REF] Zgheib | New fast recursive algorithms for simultaneous reconstruction and identification of ar processes with missing observations[END_REF] are compared. The test signal used is a non stationary AR(2) signal generated over 5.10 4 samples. The parameters of the signal are [1.5, -0.7] for the first 25.10 3 samples and [1, -0.5] for the last 25.10 3 samples. The Bernoulli's probability of sample loss is q = 0.3. For the two first algorithms, the forgetting factor used is λ = 0.999. For the LMS-like algorithm, µ = 14.10 -5 , it is an empirical value, a higher value may cause a divergence in the parameters estimation especially for a Monte Carlo of regenerations of the signal and the loss pattern. The performances of these algorithms are summarized in table 1. b i is the bias existing in the estimation of a parameter and σ 2 i is the variance of an estimated parameter. The MQRE is the normalized mean quadratic reconstruction error. The normalization is done with respect to the power of the signal. The CPU is the computation time (in seconds) required to simulate each one of the algorithms for the above test signal, using MATLAB on a 3 GHz processor. The figure 1 shows the instantaneous mean value of the estimated parameter a 1 with the three algorithms for a Monte Carlo of 1000 regenerations of the signal and the loss pattern.

Figure 1 and Table 1 show that the proposed algorithm and the LMS-like algorithm based on the incomplete past predictor converge, in the mean sense, toward unbiased parameters which is not the case for the pseudo-linear RLS algorithm. Moreover, referring to figure 1, the proposed algorithm and the pseudo-linear RLS algorithm show the same The rate of convergence of the LMS-like algorithm depends on the choice of µ, indeed, for a higher µ, the convergence is faster, however, the variance of the estimated parameters becomes higher, and the algorithm may diverge. Table 1 shows that the proposed algorithm and the LMSlike algorithm offers the smallest MQRE in comparison to the pseudo-linear RLS algorithm. However, the LMS-like algorithm is computationally expensive in comparison to the other algorithms and simulations show that the CPU time increases with q. Indeed, for the prediction using the incomplete past predictor, the inversion of a matrix is required at each time, moreover the size of the matrix depends highly on the loss scheme and may become arbitrarily high for large q. The pseudo-linear algorithm shows the best computational time, it is slightly faster than the proposed algorithm. Moreover, the proposed algorithm and the pseudolinear RLS algorithm show approximatively the same small variance of the estimated parameters in comparison to the LMS-like algorithm. This variance increases with the forgetting factor λ in the case of RLS identification algorithms, and with µ in the case of LMS identification algorithms.

CONCLUSION

A new adaptive algorithm for simultaneous optimal reconstruction and identification of an AR process with missing observations is described. It is based on the pseudo-linear RLS identification algorithm where the predictor used is a Kalman filter. This algorithm allows, at the same time, an unbiased estimation of the parameters, and an optimal reconstruction in the least mean square sense. In addition, due to simplifications, this algorithm is fast. Its complexity is O(L) for a missing sample and O(L 3 ) when a sam-ple is available and is thus less computationnaly intensive than the recursive EM algorithm [START_REF] Isaksson | A recursive EM algorithm for identification subject to missing data[END_REF] and the LMS-like algorithm based on the incomplete past predictor [START_REF] Zgheib | New fast recursive algorithms for simultaneous reconstruction and identification of ar processes with missing observations[END_REF]. Moreover, thanks to RLS identification, this algorithm shows fast convergence toward the true parameters, which is necessary for the processing of non stationary signals.
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 1 Fig. 1. Estimation of a 1 with the three algorithms.
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 1 Comparison of the three algorithms performances

	Algorithm	b 1	b 2
	Proposed algorithm 0.0006 0.003
	Pseudo-linear RLS 0.1811 0.151
	LMS-like algoritm 0.0099 0.005
	Algorithm	σ 1	σ 2
	Proposed algorithm 0.014 0.015
	Pseudo-linear RLS 0.018 0.017
	LMS-like algoritm 0.035 0.035
	Algorithm	MQRE CPU
	Proposed algorithm 0.066	1.5
	Pseudo-linear RLS	0.073	1.3
	LMS-like algoritm	0.068	18.8