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ABSTRACT In many applications, such as digital communications or
systems tracking, on line processing is necessary. We are

s . o ; "UChterested here in on line adaptive reconstruction andtiden
tion and identification of AR processes with randomly miss- P

. b i Th ; f ous| fication of autoregressive signals with randomly missing ob
ing observations. The performances of a previously praposes e ations. The loss of samples process follows a Bernoulli
real time algorithm are studied. Two new alternatives, bas

h i 4 Th e biased Claw independent of the signal. In section 2, we begin by de-
on other predictors, are proposed. They offer an unbiased €g.iping and analyzing the performances of a previously pro

timation of the AR parameters. The first algorithm, based on,,qeq'| Ms-like algorithm [11]. In section 3, new solutions,
the h-step predictor, is very simple but suffers from a Iargebased on different predictors, are proposed. Finally, #ve n

reconstruction error. The second one, based on the inCorfscrsjve algorithms are studied and compared in section 4.
plete past predictor, offers an optimal reconstructionrarr

the least mean square sense. 2 LMS.LIKE ALGORITHM

1. INTRODUCTION 2.1 Destription
The LMS-like algorithm [11, 12] is based on the stochastic
radient principle. It minimizes a quadratic predictionoer
estimate the AR parameteis= [ay,...,ap| . Leta, be
the vector of the estimated parameters at timieis updated
using the following equation [10]:

In many practical situations, periodically sampled signal
with missing observations may be encountered. This is th
case, for example, of errors in transmission, or of temporar
unavailability of measurement. It is also the case, in cgdin
of audio signals or images, for compression purposes.

Several methods have already been developed for the pro- i1
cessing of autoregressive signals with missing data. Theey a anr1=an— U ) as Q)
generally of two types: S PE

o Off line methods that use all available data. They are deghere, at timen+1, J,.1 is the instantaneous quadratic pre-
velopped for spectral estimation such as in [5], for iden-jction error.
t!flcanon purposes suchasin[6, 9, 14], or for reconstruc- | et yn be an AR process of order subject to missing
tion such as in [8]. In [9], Jones used a Kalman filter 5hservations, and, its reconstruction. The principle of the
to calculate the exact likelihood function for unequally raconstruction approach used in [5, 6, 8, 11, 12, 13] is to re-

spaced data. Model's parameters, that most fits the datgjace each missing observation by its predicted value. Then
are then estimated by a non linear optimization. Isaks-

son [6], proposed an EM algorithm equivalent to a max- . { Y if yn is available,

imum likelihood algorithm but much faster. In [8], the Vi otherwise, (2

estimates of the unknown samples are obtained by mini-

mizing the sum of squares of the residual errors that in- . p o .
hereyn = 3", &z,—i. Due to missing observations, a sam-

volve estimates of the autoregressive parameters. In[14 | b dicted in t fh dicti f ous|
the identification of ARX models from incomplete data P'¢ M3y D€ predictedin terms ot tne prediction of previously
lost samples. lIts predictiony,”is therefore non linear with

using least squares is studied. respect to the parameters
* Real time adaptive methods such as in [1, 7, 11, 13]. The square prediction error cost function is then non lin-

In [11], an LMS-like algorithm for simultaneous recon- . X A
struction and identification is developed. In [13], an 1521 in terms of the parameters and its derivative is thezefor

tempt to recursive identification based on pseudo-linear 3dn %
regression has been derived. In [1], the problem of esti- Fa —2(Yn —)7n)a—. 3)
mating the output in missing-data situations is addressed. a a

In [7], Isaksson derives a recursive EM algorithm for theThe termdy,/da is a vector of dimensiop whose elements
identification of AR processes subject to missing dataare:

based on the offline version of the one described in [6]. OoYn 0Zip:laaznq _ P 07y

This algorithm uses a smoothing Kalman filter for the da, day - Z“—k+_;a‘ day (4)
prediction. In addition, at each time, the inversion of a =

matrix is required to update the parameters. Therefore, ivhere,dz,_;/da = 0 if y,_; is available, andz,_;/da =
is not a real time algorithm. 0Yn—i/0a otherwise. Therefore, the terdy,/da is obtained



by the following recursive equation [12]: the equation (7), is the orthogonal projectionygfonto the
space generated by the previous available observatiorts. Le

OYn - 0za| 9Zn_p a 5) (£n) be the innovation process 6fy),
da da da . .
—VYn=— ans—'g —J» 7
wherez,, — [anln-zn—p]T- Yn—Yn sZOwSJZO jén—j (7)

The vector is updated only when a new sample is avail-

like algorithm as proposed by Mirsaidi et Al. [11] will be

referred to by Mirsaidi’s algorithm in the following. U (o, Yr,....4) " = (1,0,...,0)" (8)
2.2 Performanceanalysis U is the nonsingulafl + 1) x (L + 1) matrix with elements
One of the major interest of Mirsaidi’'s algorithm is its sim-

plicity. Unfortunately, simulations show that it yieldsalsed RALT _ L
estimations of the parameters, for AR signals of order 2 and Uvw = j; an,—jan,—j WW=0,...,L. (©)

above. The biases increase wighthe Bernoulli's proba-

Eg‘%g ; aeizg]r?tl ((a)ft(t)htée L?rztr'n gfgrrf ior:ﬁg”tzhaetig'nasxﬁigﬁﬁ t%ince(yn) is supposed to have an AR representation, the pre-
P P ’ dictory, has an AR representation for any finite set of miss-

to prove that Mirsaidi's algorithm converges toward a globa.n data. This representation is unique [3] and is given b
minimum of the cost function. This assumption is confirmed"Y ' P q 9 y

by Wallin et al. [15]. According to their work, randomly

missing data should not cause a multiple optima problem in Yn= ) > " MkYn—k: (10)
the AR parameters estimation. Besides, they maximize the e
likelihood probability function to estimate the paramstdn
the case of AR processes (Gaussian process), it is equivalen L neAk
[4] to minimize the mean square prediction error as in [11]. rg =0 — Z)(IJS Z)ans_jak_j. (112)
s= j=
3. PROPOSED ALTERNATIVES
In the case of an ARY) processy, = Zﬂfoiw Yn—k-

In order to avoid the observed bias problem, we propose new '
LMS-like alternatives based on two other predictors. 3.1.3 Example
31 Prediction Let us consider, for example, the following observation pat

. tern {101101Q where 0 stands for a missing observation.
3.1.1 H-step predictor We predicty;, for an AR(2) process, using the different pre-

The best linear combination of ¥k, ...y, for predicting dictors presented in this paper.

Ynih 1S Ynih = PnYnin, Where P, denotes the orthogo- 1. The predictor used in [11]:

nal projection mapping onto the subspagegenerated by

1,v1,...,Yn- According to the projection theorem, thus Y7 = a1ys + a1asys + a3ys. (12)
defined is the unique element of for which the distance

[I¥nih — Ynenl| is minimal and it is the best mean square pre-2. Theh-step predictor:

dictor of y,.p In . [4]. The recursive equation of the best

h-step predictor for an ARp), deduced from [4], is: Y7 = (&3 + 2a1a0)ys + (a2ay + a3)ys. (13)

3. The incomplete past predictor:

3 2
N a1 a; ajap + ar &
. ) y7r= (al+ . 22> Y6+ <ala2 i 21 2) Y4
For an ARQ), Yn+1 = Pnyni1 = /1 &Yn+1i, SO using the 14a 1+ay

recursive equation (6) we get that, , is a linear combina- ( afa% )
_|_

p
Yn+h = PnYnih = ziaj PnYn+h—i- (6)
=

(14)

tion of yn_py1,...,¥n. In the case of missing observations,
a sample (at tima + h) is predicted in terms of the pre-
ceeding consecutive available samples. Hence, minimizing
the square prediction error in terms of the parameters IeaQﬁC
to solvep equations fop variables, whatever the observation
pattern is. If all the data betweerandn+ h are missing, i.e.
Znihi = Ynanoi fori =1,... h, this predictor is equivalent to
the previous one.

The predictor used in [11] and the incomplete past pre-
tors predict the missing observation using all the previ
ous available data up to and including the last blop ¢in

the case of an ARp)) consecutive available observations.
Hence, they use more information than tietep predictor.
The orthogonal projection aof,, on its incomplete past has

) a unique AR representation of coefficiemgsgiven by the
3.1.2 Incomplete past predictor incomplete past predictor [3]. As we can see from this exam-
To predicty,, we shall assume that the datan,, ...,¥n—n,  Pple, the predictor used in [11] has a different AR represen-
are missing with O< n; <...< ng <...< n_ and letM =  tation than the incomplete past predictor. The coefficignts
{n—ny,...,n—n_}. Bondon [3] has proved th§}, givenby  obtained with the incomplete past predictor contain adeliti



corrective terms compared to those obtained with the prediavith respect tog) is,
tor used in [11]. We conclude that the predictor used in [11]

is not an orthogonal projection on the incomplete past. Thus 5Jn L 5L,Us ns/k

it is not optimal in the least mean squares sense. In [7], it = zbans O]

was noticed that the expectations of the state based on the (15)
observed data will not just replace a partially unknownestat

by its predicted value but there will also be a correctiomter + ZOLIJS i,k,ns) + A(i, ns, k)]

based on the prediction error covariance matrix. Withoist th

correction, it would correspond to an ordinary least square . )

solution on reconstructed data which was the predictiod useiip, Ali k1) = A1 +i ifO<l—i<IAk

in [11], and this will typically converge to biased estinate 0 otherwise

The same problem of bias is present with the pseudo lineafote here thasip = 1 anda; =0 for j > p.

RLS proposed in [13]. The problem of identification ARX  To calculated s/ da;, we differentiate the matrix system
models with missing observations using the least squaies hé8) with respect t@;, which gives,

been studied by Wallin et al. [15]. They showed that least

squares estimate of the parameters using the predictor used U o(o,...,¢)" T 16

in [11] is biased. They calculated an expression of that bias ~oa —a—ai(ll—’oa---,wL) : (16)
and concluded that the bias is zero for any optimal predictor

in the least squares sense. This explains the bias of the es- The matrixdU /da; is formed by the derivative of each
timated AR parameters with Mirsaidi's algorithm, and will element oU with respect to the parametar Thus, we get
lead us to use thi-step and the incomplete past predictorsp matrices corresponding to the derivativelbivith respect

as predictors in LMS-like algorithms. to each of thep parameters. In the same way as in (15),
OUwy . .
3.2 Proposed Algorithms o Al v, ) + Al M, Ny) 17)

The difference between the three proposed methods relies on
the used predictor and consequently on the computation ?bn
0Jn/0a to update the model parameters.

In opposition to the two previous algorithms, the predic-
and the calculation ofJ,/da;, for this algorithm, are
not recursive. Consequently the systems (8) and (16) must
be solved at each time, which is computationally intensive.
3.21 LMSike using the h-step predictor 4. COMPARISON
Hhe test signal, used to compare the performances of the
three algorithms, is an AR(2) process of parameters [1.5, -
0.7] generated over 2&amples. The Bernoulli’s probability
of sample loss ig = 0.3. Due to the missing sampleg,
must have smaller values than for the classical LMS. Sim-
Mations are done withy = 7.10°3. Algorithms Misaidi, A
and B stand, respectively, for Mirsaidi's algorithm andaks
ternatives using thk-step predictor and the incomplete past
predictor. The figure 1 shows the estimation of the parameter
a for the three algorithms, and figure 2 shows the behaviour
after the convergence.

The h-step predictor is equivalent to the one used in [11
when all the samples between the last blockpafonsecu-
tive available samplesj_py1,...,Yn, and the current sam-
ple y,.n, are lost. This algorithm is therefore simply de-
duced from Mirsaidi’'s algorithm. The unique difference is
to consider, for the next predictions, an observed sample
missing until a new block op consecutive available sam-
ples is formed. So, in the subsequent steps;, s used
for the prediction andy,n/0da is used in (5), instead of
0. In opposition, if at timen+ h, a new block ofp con-
secutive available samplegs n_p:1,...,Yn+h, is formed,
their observed values are used for the next predictions. TF
next samples are predicted in terms of thessamples so, 18-
0Zyn/0a,...,0Z hpr1/0aare equal to 0.
This algorithm is very simple and leads to unbiasedesti [ _ __ _ .
mated parameters. On the other hand, this method is high 14}
dependent on the observation pattern armhn become ar-

1.6
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bitrarily large. In particular, in the case of high-order AR L2y —__
signals with missing observations, blocks ptonsecutive W e
available samples are rarely formed. This may leadtoalarg ¢ Algorithm B
mean square reconstruction error and consequently toa lar 08f J ~ — — Original parameters

variance on the parameter estimation, increasing with o6l
0.4H"

3.2.2 LMSike using the incomplete past predictor

0.2

Since the incomplete past predictor is optimal in the leas ‘ ‘ ‘ ‘ ‘
mean square sense, we propose to use it as a predictor 0 2 4 6 8 10
a LMS-like algorithm. We consider its AR representation x10
given by equations (10) and (11). The cost function to opti- . o . )

mize is therd, = (Yn — Y ken_m MYn_k)2. Its partial derivative Figure 1: Estimation o&; with the three algorithms.




a; is estimated with the three algorithms. For each one, the

— empirical distribution of; at a timetg after the convergence
— - — - Algorithm Mirsaidi .
165} Algorithm A is deduced.
Algorithm B
161 — — — Original parameters| |
0.9 : : :
— - — - Algorithm Mirsaidi
08t Algorithm A
Algorithm B
< 1.45f 0.7t
14+ n
0.6} "
- I‘- e o ~ !
1'351 ‘\'/\ } v Ay ’\// ‘/\‘JN/\ \/l S 05 | y‘
13| ¥ i .
041 ! |
1251 I |
0.3t ! 1
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Figure 2: Estimation o after the convergence of the three S ‘ Y ‘ ‘ ‘
algorithms. £25 13 135 14 145 15 155 16 165 17

The performances of these algorithms are summarized ipigure 3: Empirical estimator distribution @f; with the
table 1.b; is the bias existing in the estimation of a parametekhree algorithms.

and g; is the standard deviation of a parameter estimation.

The MQRE is the normalized mean quadratic reconstruction . . N .
error. The normalization is done with respect to the power of _Figure 3 shows that the empirical distribution for the esti-
the signal. For a signal generated odesamples, it is given mator ofa; using algorithm B is centered on 1.5 which con-

by the following equation:

firms that this estimator is not biased. The estimation;of
using the algorithm A, is slightly biased since the emplrica

ZN (Vi — )2 distribution is centered on49. This is hot normal since this
MQRE = % (18) estimator is supposed to be unbiased, this may be the result
> k=1Yk of the high variance of this estimator and of the empirical

estimation of the distribution (it is limited to 2000 genera

The CPU is the computation time, in seconds, needed to sinfions). However, for Mirsaidi's algorithm, the empiricakel

ulate each one of the three algorithms for the above test sigribution is centered on.24 which shows that this estimator
nal, using MATLAB on a processor of 2.4 GHz.

Table 1: Comparison of the three algorithms performance

is strongly biased.

According to table 1 and figures 2 and 3, for all LMS-
like algorithms, the variance of the parameters estimator i
Selated to the signal prediction error. Indeed, the estimat

Algorithm | by b, o | 0 of the algorithm B offers the smallest varianaesand o2,
Mirsaidi | 0.166 | 0.137| 0.019| 0.018 however, in the case of the algorithm A, they Eea%/e the Izargest
A 0.026| 0.014 0.029| 0.0298 values. This observation was expected since the update of
B 0.004] 0.009| 0.014| 0.016 the parameters using equations (1) and (3) is proportional t
Algorithm | MQRE | CPU the prediction error.
Mirsaidi | 0.07 [ 5 Finally, figure 4 shows the evolution of the MQRE in
A 0.11 4 terms ofg, for the three algorithms and for the same test sig-
B 0.061 | 38 nal as above. Referring to figure 4, the MQRE obtained for

Misaidi's algorithm is still close to the optimal one, evean f
Table 1 and figures 1 and 2 show that Mirsaidi’s algo-largeq.

rithm converges toward biased values of the parameterswhil
the estimation with the two other algorithms is not biased. 5. CONCLUSION
Moreover, referring to the table 1, the algorithm B is compu-
tationally expensive and simulations show that the CPU tim@wo new adaptive algorithms for reconstruction and identi-
increases withy, this may be due to the increasing size of thefication of an AR process with missing observations are de-
matrices to be inverted. However, the algorithms Mirsaidiscribed. The first one based on thetep predictor, which
and A are much faster and the CPU time does not increass very simple, offers an unbiased parameter estimation, bu
with g. On the other hand, the algorithm B offers the smallespresents a large quadratic reconstruction error. The secon
prediction error comparing to the others while the alganith one is based on the incomplete past predictor. This algo-
A has the largest one. rithm allows, at the same time, an unbiased estimation of
Moreover, figure 3 shows, for each algorithm, an empiri-the parameters, and an optimal reconstruction in the least
cal distribution for the estimator @f;. For 2000 generations mean square sense. It can be noticed from figure 4, that the
of the signal and of the observation scheme, the parametquadratic reconstruction error for algorithm B is, effeely,



— - — - Algorithm Mirsaidi
07l Algorithm A [10]
— Algorithm B
0.6
[11]
[12]
%Al 012 013 014 0‘.5 0‘.6 0.‘7 018 [13]
Bernoulli’s loss probability q
Figure 4: MQRE in terms of the loss probabiliy [14]

minimal comparing to the other techniques. However, this
algorithm is quite time consuming.

In conclusion, the analysis of the three algorithms shows; 5
that Mirsaidi’s algorithm, while not suited for identifiéan,
is useful for real time reconstruction of a signal. On thesoth
hand, algorithm A is more suited for real time identification
However, for applications where computation time does not
present a limitation, algorithm B presents the best perfor-
mances.
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