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ABSTRACT

This paper deals with the problem of the Direction Of Ar-

rival (DOA) estimation with nonuniform linear arrays. The

proposed method is a combination of the Expectation Maxi-

mization (EM) and the ESPRIT methods. The EM algorithm

interpolates the nonuniform array to an equivalent uniform

array, and then, the application of ESPRIT is possible, in or-

der to estimate the DOA. One of this method novelties lies in

its capacity of dealing with any nonuniform array geometry.

This technique manifests significant performance and compu-

tational advantages over previous algorithms such as MUSIC,

specially in the preasymptotic domain, and the comparison

with the theoretical Cramer-Rao Bounds (CRB) shows its ef-

ficiency.

Index Terms— Antenna arrays, nonuniformly spaced ar-

rays, direction of arrival estimation, EM algorithm, ESPRIT.

1. INTRODUCTION

The problem of estimating the directions of multiple sources

using Nonuniform Linear antenna Arrays (NLA) has attracted

considerable attention for both theoretical and practical rea-

sons. Sometimes, using a nonuniform array yields better per-

formance than using a uniform one [1], or the sensors cannot

be uniformly spaced due to spatial constraints. Except for

spectral MUSIC, high resolution methods cannot be directly

applied on NLA because they exploit the uniform geometry

of the array. Several approaches have been proposed, among

them EM-IQML [1], the interpolated virtual array methods of

Friedlander [2], the methods of Higher Order Statistics (HOS)

[3] and the positive definite Toeplitz completion [4]. The orig-

inality of the proposed method in this paper is the combina-

tion of the EM algorithm, to interpolate the data on a Vir-

tual Uniform Linear Array (VULA), with the ESPRIT method

used for DOA estimation. In fact, the NLA output is treated

as incomplete data which makes the EM algorithm directly

applicable, in an iterative way. The interpolation is based on

the signal model. Hence, the error due to interpolation is re-

duced iteratively when the accuracy of parameter estimation

improves. This error always exists in [2]. ESPRIT is a sim-

ple and accurate method for DOA estimation that achieves a

significant reduction in computational complexity in compar-

ison with IQML and HOS. Also, ESPRIT presents better per-

formance in the preasymptotic domain than IQML. Another

advantage of the proposed method is its ability to deal with

any type of nonuniform arrays. It can be applied to sublat-

tice arrays, which are not necessarily minimum redundancy

arrays, and to nonregular linear arrays, where the intersensor

separation is chosen in an arbitrary way.

This paper is organized as follows. The signal model is

presented in Section 2. In Section 3, the EM-ESPRIT algo-

rithm is described for both types of nonuniform arrays. Simu-

lation results are presented in Section 4 and the main conclu-

sions drawn from them are summarized in Section 5.

2. SIGNAL MODEL

Consider N far-field narrowband sources incident on an M -

elements linear array, from directions θ = [θ1, . . . , θN ]⊤.

The sensors, assumed to be omnidirectional, are situated at

positions dm (m = 1, . . . ,M). Two kinds of NLA are con-

sidered: i) the sublattice array, which can be considered as

a ULA where some elements are omitted, i.e. dm = km∆
where ∆ is the ULA intersensor separation and km is an inte-

ger, and ii) the nonregular linear array, where the intermedi-

ate distances between sensors are chosen in an arbitrary way.

Without loss of generality, ∆ is taken as the half-wavelength.

Grouping the signals received by the M array elements in

the M × 1 vector y(t), the sensor outputs can be written as:

y(t) = A(θ)s(t) + ν(t), (1)

where A(θ) = [a(θ1), . . . ,a(θN )] is the M × N steering

matrix and a(θn) is the steering vector of the n-th source:

a(θn) =
[

e−j2π
d1sinθn

λ , . . . , e−j2π
dM sinθn

λ

]⊤

. (2)

The N × 1 vector s(t) contains the complex amplitude of the

incident signals. The M×1 vector ν(t) represents a Gaussian

additive noise, which is zero mean and such as

E{ν(t)ν(t)H} = σ2I.

The received signal is sampled, and the received data

Y = [y(t1), . . . ,y(tL)] can be expressed as:

Y = A(θ)S + V, (3)



where L is the number of samples, S = [s(t1), . . . , s(tL)] and

V = [ν(t1), . . . ,ν(tL)].

3. DOA ESTIMATION

Since the nonuniform array outputs can be treated as incom-

plete data, the EM algorithm approach can be applied to our

case. The main idea consists of interpolating the sparse array

in a way that a uniform array is realized and then estimating

the DOA through ESPRIT applied to the new VULA. We first

start by studying the case of the sublattice array (case i)).

3.1. Data construction
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Fig. 1. Example of NLA and its equivalent VULA, with

d = [1, 3, 6]λ
2 , p = [2, 4, 5]λ

2 and ℓ = [1, 0, 1, 0, 0, 1].

¤: existing sensors (Y), O: omitted sensors (Ŷp).

Consider the VULA of M ′ sensors (M ′ ≥ M ) formed by

the sensors of the NLA and by the omitted virtual sensors as

represented in Fig. 1. Let X = [x(t1), . . . , x(tL)] be defined

as the unavailable data output of the VULA. The NLA output

Y can be considered as an incomplete data observation of X

and the EM is directly applicable. The linear transformation

mapping X to Y is given by:

Y = G⊤X. (4)

By construction, the noise free parametric model of X is given

by:

µ(θ) = (GA(θ) + ḠAp(θ))S. (5)

The M ′×M matrix G is constructed by eliminating the zero

columns from diag(ℓ), where the M ′ × 1 vector ℓ describes

the binary transformation between X and Y: the m-th com-

ponent of ℓ is 1 if the m-th sensor of the VULA is part of

the NLA, and 0 otherwise. The M ′ × (M ′ − M) matrix Ḡ

describes the relation between X and the missing data, it is

constructed similarly to G. Ap(θ) is the steering matrix of

the omitted sensors. Let the vector p = [p1, . . . , pM ′−M ] of

length (M ′ − M) represent the positions of the omitted sen-

sors. Then, Ap(θ) can be written as:

Ap(θ) = [ap(θ1), . . . ,ap(θN )],

ap(θn) =

[

e−j2π
p1sinθn

λ , . . . , e−j2π
p

M′
−M

sinθn

λ

]⊤

.
(6)

Notice that the model µ(θ) can be rewritten as

µ(θ) = AV ULA(θ)S, (7)

where AV ULA(θ) is the array response of a uniform linear

array, in this case, the VULA.

3.2. The EM general approach

Basically, EM is an iterative approach of the maximum like-

lihood estimator (MLE). Each iteration is composed of two

steps: the Expectation step (E-step) and the Maximization

step (M-step). In the E-step, the conditional likelihood of

the complete data X̂(k), given the incomplete data Y and the

previous estimate of the parameters θ̂(k−1), is estimated. In

the M-step, the parameters θ̂(k) are estimated by maximizing

the conditional likelihood criterion. It can be shown that θ̂(k)

converges to the MLE (see [5]).

A justification of the EM algorithm is as follows. Using

Bayes’ rule, and taking the logarithm of the probability den-

sities,

ln fy(Y | θ) = ln fx(X | θ) − ln fx|Y(X | Y, θ). (8)

Taking the conditional expectation of (8) given Y at a param-

eter value θ′ yields

L(θ) , ln fy(Y | θ) = U(θ | θ′) − V (θ | θ′), (9)

where

U(θ | θ′) = E{ln{fx(X | θ)} | Y, θ′},

V (θ | θ′) = E{ln{fx|Y(X | Y, θ)} | Y, θ′}.

L(θ), the log-likelihood of the observed data, is the func-

tion to be maximized. Knowing that V (θ | θ′) ≤ V (θ′ | θ′)
(Jensen’s inequality), if U(θ | θ′) > U(θ′ | θ′), then

L(θ) > L(θ′). Thus, the maximization of U(θ | θ′) im-

proves the ML criterion. Exploiting this property, the EM

algorithm can be described as follows.

It starts with an initial guess θ̂(0), and maximizes L(θ) by

iterating the E and M-steps, i.e. at iteration k:

E-step: Compute U(θ | θ̂(k−1)).

M-step: Estimate θ̂(k) as θ̂(k) = arg maxθ U
(

θ | θ̂(k−1)
)

.

3.3. EM-ESPRIT

Now, we apply EM to our case. We show that the E-step is

equivalent to estimating the outputs of the omitted elements,

using an interpolation based on the signal model. In the M-

step, the DOA are estimated using ESPRIT. While in the E-

step the proposed approach follows the classical EM estima-

tion, the ESPRIT algorithm in the M-step is a sub-optimal

method in comparison to ML. These steps are explained in

more details in the following.

E-step: As shown in [1], the maximization of

U(θ | θ̂(k−1)) reduces to the minimization of ‖X̂(k)−µ(θ)‖2,

where

X̂(k) = E{X | Y; θ̂(k−1)}. (10)



Thus, we only need to find X̂(k) instead of computing

U(θ | θ̂(k−1)). Using (5) and the results of [6], X̂(k) is given

by:

X̂(k) = GA(θ̂(k−1))Ŝ(k−1) + GAp(θ̂(k−1))Ŝ(k−1)

+ G[GHG]−1(Y − A(θ̂(k−1))Ŝ(k−1)).
(11)

Since [GHG]−1 = I , (11) becomes:

X̂(k) = GY + GAp(θ̂(k−1))Ŝ(k−1), (12)

where Ŝ(k) is estimated by Ŝ(k) = A†(θ̂(k))Y, and the sym-

bol ()† represents the pseudo-inverse.

Thus, the complete data X̂(k) is equal to the measured data

Y for the rows corresponding to the existing sensors, and for

the rows of the missing data, the data are interpolated using

the parametric model µ(θ). Let Ŷ
(k)
p = Ap(θ̂(k−1))Ŝ(k−1)

be the interpolated missing data.

The noise contribution in Ŷ
(k)
p is omitted, because its ex-

pectation is null since the noise is supposed to be zero mean.

M-step: Since the new constructed array is uniform, any

conventional method for DOA estimation in the case of uni-

form arrays can be used. This is justified by (7). Thus, DOA

estimation θ̂(k) can be done by applying the conventional ES-

PRIT method. Therefore, we need to calculate the VULA

data correlation matrix, R̂(k). It is estimated using X̂(k) and

the noise contribution on the interpolated data modeled by

ḠḠH σ̂2, assuming that the noise contribution in Ŷ
(k)
p has

the same statistical properties as ν(t):

R̂(k) =
1

L
X̂(k)X̂(k)H + ḠḠH σ̂2, (13)

where σ̂2 is a consistent estimate of σ2 obtained by averaging

the smallest eigenvalues of the Y covariance matrix.

ESPRIT can be used to exploit the translational invariance

structure of the covariance data of the VULA, R̂(k).

To summarize, the proposed algorithm can be presented

as follows:

1) Initialization: k = 0, choose θ̂(0) and estimate the

noise variance σ̂2.

2) Estimate the complete data X̂(k) using (12) and esti-

mate the covariance matrix R̂(k) using (13).

3) Use ESPRIT to estimate θ̂(k).

4) Check convergence of θ. If not, k = k + 1, go to step

2.

3.4. Extension to the nonregular case

One of the main advantages of the proposed method is its

capacity of being extended to the case of nonregular arrays

(case ii)). In this case, the construction of the VULA is dif-

ferent, leading to a change in the construction of the complete

data X. With respect to the previous case, the VULA is con-

structed by only using the data outputs of the first and last

sensors of the NLA, and interpolating the other (M ′−2) data.

The virtual sensors are uniformly spaced. The array aperture

remains unchanged and the number of sensors in the VULA,

M ′, can be chosen arbitrarily (M ′ > N ). In this case, G is

an M ′ × 2 matrix and p is an (M ′ − 2) vector. Once the

construction of X completed, the algorithm mentioned above

can be applied for the DOA estimation.

Remark: The construction of X proposed for the case ii)

can also be used for the case i).

4. SIMULATION RESULTS

Some simulations have been conducted, exploring different

aspects of EM-ESPRIT and making comparisons with other

techniques. The results are based on 500 trials in each case.

The maximum number of iterations is 30, but in fact, in all

the experiments, not more than 10 iterations are needed for

the convergence, as it will be seen later. 500 snapshots are

used. In almost all the experiments, the initialization of the

angles is done using a simple beamforming.
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Fig. 2. RMS error for the source at -5◦ for the array

d = [1, 3, 6]λ
2 , N = 2 sources.

In the first set of experiments, different array geometries

are used to test the capability of the new method to estimate

the DOA. Consider the subarray described by d = [1, 3, 6]λ
2 ,

where the set of intersensor separations has missing lags, the

nonregular array given by d = [1, 2.32, 4.03, 6]λ
2 and the

d = [1, 2, 5, 8, 14, 16, 19, 24]λ
2 array. The narrowband sig-

nals are generated by two and three sources of equal power

located respectively at [−5◦, 10◦] and [−5◦, 10◦, 45◦]. The

Root Mean Square (RMS) error for the first source is plotted

in function of the Signal-Noise Ratio (SNR). First, consider

the two sources case. Fig. 2 shows the results for the first

array, while the nonregular array results are shown in Fig. 3.

The accuracy of the proposed method is compared to spec-

tral MUSIC and to CRB. The CRB was calculated using the



equations of [7], extended to the case of nonuniform arrays.
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Fig. 3. RMS error for the source at -5◦ for the array

d = [1, 2.32, 4.03, 6]λ
2 , N = 2 sources.

We notice that EM-ESPRIT is a consistent method and it

shows better performance in comparison to MUSIC, specially

in the preasymptotic domain, with lower complexity.

Now, the results of the last angle (45◦) are plotted in Fig. 4,

using the array d = [1, 2, 5, 8, 14, 16, 19, 24]λ
2 , in the case of

three sources. We notice that in this situation also, the EM-

ESPRIT method is consistent, and performs almost as well

as MUSIC for the preasymptotic domain. Similar results are

obtained for the other sources. Thus, we can conclude that

EM-ESPRIT is suitable for any type of array geometry.
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Fig. 4. RMS error for the source at 45◦ for the array

d = [1, 2, 5, 8, 14, 16, 19, 24]λ
2 , N = 3 sources.

For the second experiment, we use the d = [1, 3, 6]λ
2 ge-

ometry, since similar results are obtained for other geome-

tries. The resolution of the method is tested. We consider the

case of two sources, where the fixed angle is 0◦ and the sec-

ond angle is separated by ∆θ. ∆θ varies from 2◦ to 20◦. The

SNR is fixed to 10 dB. Only the second angle is presented in

Fig. 5.
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Fig. 5. Resolution for the second source of the array

d = [1, 3, 6]λ
2 , at SNR =10 dB, N = 2 sources.

EM-ESPRIT presents good resolution, even for close an-

gle values. This result is expected, since ESPRIT is a high-

resolution method.

In the third type of experiments, we test different types of

initialization, to check its influence on the performance. The

array used is d = [1, 2, 4, 6]λ
2 . We consider the case of two

sources located at [−5◦, 10◦]. The results for the source at -5◦

are shown at Fig. 6, where the RMS error is plotted as a func-

tion of the SNR. Three types of initialization are compared:

the beamforming, the real values [−5◦, 10◦] and arbitrary val-

ues taken at [0◦, 40◦].
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Fig. 6. RMS error for the source at -5◦ for the array

d = [1, 2, 4, 6]λ
2 , using different kinds of initialization, N =

2 sources.

This result shows that EM-ESPRIT is not highly sensitive

to the accuracy of the initialization. At low SNR, the perfor-

mances are almost the same when using beamforming or the

exact values, and they decrease when using arbitrary values

far from the exact ones. At high SNR, performances become

independent of the initialization. Similar results are obtained

for the source at 10◦, and for other geometries.
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Fig. 7. RMS error for the sources at -5◦ and -10◦ for the

array d = [1, 2.32, 4.03, 6]λ
2 , in function of the number of it-

erations, N = 2 sources.

Next, we investigate the convergence of EM-ESPRIT. We

use the array defined by d = [1, 2.32, 4.03, 6]λ
2 , at SNR =

10 dB, and we consider two cases: two sources generating at

[−5◦, 10◦], and three sources located at [−5◦, 10◦, 45◦]. The

RMS error for the two angles of the first case is drawn in

function of the number of iterations in Fig. 7, while the RMS

error of the three sources of the second case are shown in

Fig. 8. Iteration 0 means the initialization value obtained with

the beamforming method.
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Fig. 8. RMS error for the sources at -5◦, 10◦ and 45◦ for

the array d = [1, 2.32, 4.03, 6]λ
2 , in function of the number

of iterations, N = 3 sources.

It can be seen that EM-ESPRIT converges in few itera-

tions, even though in the case of three sources the conver-

gence is slower. But in general, not more than 10 iterations

are needed, which means that EM-ESPRIT converges fast,

and the computation time is reduced. Similar results are ob-

tained at other SNR values.

5. CONCLUSION

In this paper, an EM-ESPRIT method for the estimation of

narrowband sources observed by nonuniform arrays is pro-

posed. The algorithm is efficient and consistent. It even out-

performs other methods in the preasymptotic domain and for

lower computational cost. This method has the advantage

of dealing with all types of nonuniform arrays, where other

methods fail to treat the nonregular case, or the sublattice ar-

rays that are not minimum redundancy ones.
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