
HAL Id: hal-00258945
https://centralesupelec.hal.science/hal-00258945v1

Submitted on 26 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Convex Semi-Definite Positive Framework for DTI
Estimation and Regularization

Gilles Fleury, Radhouène Neji, Noura Azzabou, Nikolaos Paragios

To cite this version:
Gilles Fleury, Radhouène Neji, Noura Azzabou, Nikolaos Paragios. A Convex Semi-Definite Positive
Framework for DTI Estimation and Regularization. International Symposium on Visual Computing,
Nov 2007, Lake Tahoe, United States. pp. 220-229. �hal-00258945�

https://centralesupelec.hal.science/hal-00258945v1
https://hal.archives-ouvertes.fr


A Convex Semi-Definite Positive Framework for
DTI Estimation and Regularization

Radhouène Neji1,2, Noura Azzabou1, Nikos Paragios1, and Gilles Fleury2
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2 Département Signaux et Systèmes Electroniques, Ecole Supérieure d’Electricité,
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Abstract. In this paper we introduce a novel variational method for
joint estimation and regularization of diffusion tensor fields from noisy
raw data. To this end, we use the classic quadratic data fidelity term
derived from the Stejskal-Tanner equation with a new smoothness term
leading to a convex objective function. The regularization term is based
on the assumption that the signal can be reconstructed using a weighted
average of observations on a local neighborhood. The weights measure
the similarity between tensors and are computed directly from the diffu-
sion images. We preserve the positive semi-definiteness constraint using
a projected gradient descent. Experimental validation and comparisons
with a similar method using synthetic data with known noise model, as
well as classification of tensors towards understanding the anatomy of
human skeletal muscle demonstrate the potential of our method.

1 Introduction

Diffusion tensor imaging (DTI) is an emerging non-invasive modality allowing
the quantitative investigation of water protons diffusion within biologic tissues.
Since diffusion is sensitive to the presence of organized structures, DTI is used
mostly in brain studies and has become a tool to infer white matter connectivity
[1]. Such a modality offers measurements of the amount of diffusion of water
molecules in several different directions. One then can infer the estimation of a
tensor which is a 3×3 symmetric positive definite matrix representing the uncer-
tainty on the position of water protons with a Gaussian model of displacement.

However, the DTI experimental protocol yields noisy observations due to
the diffusion-sensitizing magnetic gradient. Furthermore, the clinical protocols
refer to relatively low magnet strength, or a rather low signal-to-noise ratio.
Therefore, signal reconstruction is crucial to obtain an appropriate estimate of
the tensor field and for subsequent use of this estimate in applications like fiber
tractography.

Several methods have been proposed to address diffusion tensor regulariza-
tion. In [2], a two-step regularization was proposed consisting of the restoration
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of the principal diffusion directions using a total variation-model followed by
the smoothing of the eigenvalues using an anisotropic tensor-driven formulation.
In [3], the maximization of a log-posterior probability based on the Rician noise
model is considered to smooth directly the diffusion-weighted images. A Bayesian
model based on a Gaussian Markov Random Field was used in [4] to smooth
the diffusion tensors. In [5], the authors consider the tensors as lying on a Rie-
mannian manifold and use the corresponding distance to derive a local weighted
averaging for DTI denoising. Tensors are assumed to be positive-definite matri-
ces which was taken into account in [6] where an anisotropic filtering of the L2

norm of the gradient of the diffusion tensor was considered and their proposed
PDE scheme constrains the estimation to lie on this space. Such a concept was
further developed in [7] where a variational method was proposed that aimed
to minimize the Lp norm of the spatial gradient of the diffusion tensor under
a constraint involving the non-linear form of Stejskal-Tanner equation. A non
linear diffusion scheme is described in [8] where smoothing is made direction-
dependent using a diffusion matrix in the PDE system. More recently, in [9] a
joint reconstruction and regularization was proposed in the context of an energy
minimization in a Log-Euclidean framework. The existing variational methods
focused disproportionately on enforcing the positive-definiteness constraint, with
the regularization term usually chosen as a function of the norm of the gradi-
ent. The main limitation of most of the above-mentioned methods is the nature
of the cost function (non-convex) that entails a preliminary initialization step,
while little attention was paid to defining appropriate smoothness components
that account for the expected nature of tensors.

In this paper we propose a new variational approach to jointly estimate and
regularize diffusion tensor images. We use a convex energy functional which
combines the linearized form of Stejskal-Tanner equation as a data fidelity term
and a new regularization term involving precalculated weights which measure
the similarity between neighboring tensors. We show the results of our method
both on synthetic datasets and real data of diffusion tensor muscle images.

2 DTI Estimation and Regularization

Let us assume that n DTI acquisitions (Sk)k=1...n with respect to different mag-
netic gradient directions (gk)k=1...n are available. Ideally, the expected signal at
a voxel x for the direction k as explained in [10] should respect the following
condition

Sk(x) = S0(x) exp
(
− bgt

kD(x)gk

)
with the tensor D being the unknown variable and b a value that depends on the
acquisition settings. The estimation of the tensors in the volume domain Ω can
be done through direct inference (6 acquisitions are at least available), which is
equivalent to minimizing:

Edata(D) =
∫

Ω

n∑
k=1

(
log

(
Sk(x)/S0(x)

)
+ bgt

kD(x)gk

)2

dx



This energy is based on the linearized diffusion tensor model which is reasonable
for moderate values of SNR [11]. Such a direct estimation is quite sensitive to
noise, on the other hand, it refers to a convex term, which is rather convenient
when seeking its lowest potential. The most common approach to account for
noise is through the use of an additional regularization term which constrains the
estimation of D to be locally smooth. One of the most prominent uses of DTI
is fiber extraction. Therefore it is natural to assume that locally these fibers
do have similar orientations. In such a context, the tensor can be expressed
as a linear combination of the tensors lying in its neighborhood since they are
likely to represent the same population of fibers. Such a regularization constraint
was introduced in the case of image restoration in [12]. This assumption still
holds at the boundaries between different groups of fibers as long as the linear
combination is thoroughly chosen to ensure that the contribution of tensors
belonging to a different fiber population is negligible. It is also more accurate
than the underlying assumption of total-variation based approaches where the
tensor field is considered piecewise constant. This leads us to define the following
regularization component:

Esmooth(D) =
∫

Ω

∣∣∣∣∣∣∣∣D(x)− 1
Z(x)

∫
y∈Nx

w(x,y)D(y)dy
∣∣∣∣∣∣∣∣2

F

dx

where w(x,y) reflects the similarity between tensors D(x) and D(y), ||A||F be-
ing the Frobenius norm ||A||F =

√
tr(AtA) and Z(x) is a normalization factor,

i.e Z(x) =
∫
y∈Nx

w(x,y)dy. The most critical aspect of such an approxima-
tion model is the definition of weights, measuring the similarity between tensors
within the local neighborhood. The use of Gaussian weights is a common weight’s

selection, i.e
[
w(x,y) = e

−d2(D(x),D(y))
2σ2

]
, where d(.; .) is a distance between ten-

sors and σ a scale factor. In the context of direct estimation and regularization
it is more appropriate to define similarities directly on the observation space
rather than the estimation space. Such a choice will lead to a tractable estima-
tion, while preserving the convexity of the cost function. Our distance definition
as well as our minimization step are based on the representation of symmet-
ric positive semi-definite matrices S3

+ as a convex closed cone in the Hilbert
space of symmetric matrices S3, where the standard scalar product is defined
by 〈A,B〉F = tr(AtB) which induces the corresponding Frobenius norm.

2.1 Measuring Similarities from diffusion weighted images

We aim at simultaneously estimating and smoothing the tensor field, therefore
the weights w(x,y) in Esmooth should be precalculated using the raw data.
The most straightforward estimation of the distances can be done through the
algebraic distance between the log(Sk/S0) for two neighborhood voxels in any
direction

d
(
D(x),D(y)

)
=

1
b

√√√√ N∑
k=1

(
log

(
Sk(x)/S0(x)

)
− log

(
Sk(y)/S0(y)

))2



One can easily show that such an expression does not reflect similarity between
tensors according to the norm ||.||F . In fact, this leads to

d
(
D(x),D(y)

)
=

√√√√ N∑
k=1

(
gt

k

(
D(x)−D(y)

)
gk

)2

=

√√√√ N∑
k=1

< D(x)−D(y),Gk >2
F

where Gk = gkgt
k do not form necessarily an orthonormal basis. We use a

Gram-Schmidt orthogonalization scheme to calculate an orthonormal basis G̃k

such that G̃k =
∑

l αklGl (each new vector of the new basis is a linear com-
bination of the vectors of the initial basis). This procedure allows us to have
an approximation of ||D(x)−D(y)||F directly from the raw data Sk and S0 as
follows

||D(x)−D(y)||F =

√√√√ N∑
k=1

< D(x)−D(y), G̃k >2
F

=
1
b

√√√√ N∑
k=1

( ∑
l

αkl(log
(
Sk(x)/S0(x)

)
− log

(
Sk(y)/S0(y))

))2

2.2 Semi-Definite Positive Gradient Descent

One now can seek the lowest potential of the cost function towards recovering
the optimal solution on the tensor space. Unlike the Riemannian approaches
where non convex functionals are minimized [6], the present framework consists
of a convex energy with a unique minimum which can be reached using a pro-
jected gradient descent on the space of semi-definitive positive matrices. The
projection from S3 onto S3

+ denoted by ΠS3
+

is well defined and has an explicit
expression. Indeed, projecting M amounts to replacing the negative eigenvalues
in its spectral decomposition by 0 [6, 13]. Note that we minimize over the set of
semi-definite positive matrices because it is topologically closed, as opposed to
the set of definite positive matrices. In the current setting, the problem is well
posed and the projected gradient descent algorithm is convergent for a suitable
choice of the time step dt. Using a weighting factor λ between the data attach-
ment term and the regularization energy, the gradient descent can be expressed
as the following equation

Dt+1(x) = ΠS3
+

�
Dt(x)− dt

∂E

∂D(x)
(Dt)

�

= ΠS3
+

�
Dt(x)− dtλ

∂Esmooth

∂D(x)
(Dt)− dt

∂Edata

∂D(x)
(Dt)

�



where
∂Esmooth

∂D(x)
(D) = 2D(x)− 2

Z
y∈Nx

w(x,y)

Z(x)
D(y)dy

− 2

Z
y∈Nx

w(x,y)

Z(y)

�
D(y)−

Z
z∈Ny

w(z,y)

Z(y)
D(z)dz

�
dy

∂Edata

∂D(x)
(D) = 2b

NX
k=1

�
log

�
Sk(x)/S0(x)

�
+ bgt

kD(x)gk

�
Gk

Let us define the norm ||.||TF over the whole tensor field D as ||D||TF =∫
Ω
||D(x)||F dx. Considering two tensor fields D1 and D2, we show in the fol-

lowing that the gradient of our energy functional is L-Lipschitz. The constant L
will allow us to choose automatically a time step that insures the convergence
of the algorithm.∥∥∥∥∂Edata

∂D(x)
(D1)−

∂Edata

∂D(x)
(D2)

∥∥∥∥
F

= 2b2
N∑

k=1

< Gk,D1(x)−D2(x) >F

≤ 2b2
N∑

k=1

||Gk||F ||D1(x)−D2(x)||F

Therefore ‖∇Edata(D1)−∇Edata(D2)‖TF ≤ 2b2
∑N

k=1 ||Gk||F ||D1 − D2||TF .
Besides, we can easily show the following inequality

‖∇Esmooth(D1)−∇Esmooth(D2)‖TF ≤ 2(1 + 2|Nx|+ |Nx|2)||D1 −D2||TF

where |Nx| is the number of the considered neighbors. Thus the gradient of
the objective function is L-Lipschitz with L = 2b2

∑N
k=1 ||Gk||F + 2λ(|Nx| +

1)2. Choosing 0 < dt < 1
b2
PN

k=1 ||Gk||F +λ(|Nx|+1)2
makes the projected gradient

descent convergent [14].
We can give an interpretation of our regularization energy in terms of diffusion-

weighted images smoothing. It can be easily verified that for each direction kZ
Ω

< D(x)−
Z
y∈Nx

w(x,y)

Z(x)
D(y)dy,Gk >2

F dx =

1

b2

Z
Ω

�
log

�Sk(x)

S0(x)

�
− log

� Y
y∈Nx

�Sk(y)

S0(y)

�w(x,y)
Z(x)

��2

dx

Using Cauchy-Schwartz inequality we obtain :

1
b2

∫
Ω

[
log

(Sk(x)
S0(x)

)
− log

( ∏
y∈Nx

(Sk(y)
S0(y)

)w(x,y)
Z(x)

)]2

dx ≤ Esmooth||Gk||2F

We can see that minimizing Esmooth has a direct implication on the normalized
diffusion weighted images Sk

S0
. Reconstructing the tensors using a linear com-

bination of the tensors in its neighborhood leads to the reconstruction of the
normalized signals using a weighted geometric mean of the neighboring signals
where the weights are not calculated only with a single volume Sk but also with
the volumes obtained from the other magnetic gradient directions.



3 Experimental Validation

In order to validate the performance of the method we (i) have generated artificial
tensors volumes corrupted with synthetic noise, (ii) used manual segmentation
on T1 muscle images and tried to improve the separability of classes in the DTI
space after regularization.

3.1 Artificially Corrupted Tensors

Let us consider two volumes, one that consists of two classes with orthogonal axes
on a 20×20×20 lattice and a helix in which the internal voxels are anisotropic and
the external ones are spheric [Fig.1-b]. For the first volume, the tensor fields for
each region are D1 = 0.001× [1 0.5 0.5 0 0 0] and D2 = 0.001× [0.2 0.4 0.2 0 0 0]
where D is presented in the form of D = [Dxx Dyy Dzz Dxy Dxz Dyz]. The helix
dataset can be found at [15]. We considered for both datasets a field strength
b = 700s.mm−2, a constant value for S0 = 60 for all volume voxels and twelve di-
rections for diffusion gradient, which are used to generate the DTI corresponding
to such tensor estimations. The chosen directions are the following : 1 1 1 1 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

0.41 −0.41 −0.41 0.41 0.41 1 1 0.41 −0.41 −1 −1 −0.41
−0.41 −0.41 0.41 0.41 1 0.41 −0.41 −1 −1 −0.41 0.41 1


The images were corrupted with a white zero-mean Gaussian noise forming

a data set where ground-truth on the tensor are available. An estimation of the
tensor field relative to the noisy images provides the noisy tensors data.

Then, to perform comparisons we considered the regularization algorithm
on noisy tensors presented in [6]. The following parameters were used for our
method: λ = 50, Nx = 3 × 3 × 3, dt = 10−7 with 50 iterations. To evaluate
the performance of these methods, we considered the average sum of squared
differences (SSD) between the regularized tensors and ground truth ones. In
[Table 1], we can see that our estimation and regularization approach achieves
better results and produces a tensor close to the ground truth. Our method
outperforms the one of [6] when the level of noise is relatively important. In
fact, our method considers a more robust resemblance degree between voxels.
Such a criterion insures a better selection of neighboring tensors involved in
the estimation of a given tensor. On the other hand, the anisotropic diffusion
based regularization relies on gradient information which is not robust in case
of high noise. In order to assess qualitatively our algorithm, we reported in [Fig.
1] the resulting tensors using our regularization method and the constrained
anisotropic one. We can observe that our method achieves a better direction
preservation, even in the presence of a strong noise.

3.2 DTI towards Understanding the Human Skeletal Muscle

In order to perform validation using real data, the following experiment was con-
sidered. DTI acquisitions of human skeletal muscle (calf) using 12 directions were



Helix dataset Homogeneous regions

σn 0.5 1.2 3 1.5 4 9

Noisy Tensor 1.08 6.24 39.54 9.82 71.25 393.38
Method in [6] 0.33 1.60 10.57 3.32 22.47 120.70

Our Method 0.41 1.38 3.78 0.44 4.23 18.30

Table 1. Average Sum of Square Differences (SSD)×104. Comparisons between our
method and the one in [6]

(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 1. Tensors on a volume slice: (a) Noisy tensors (b) Ground-truth (c) Result ob-
tained with [6] (d) Result obtained with our method

carried out on a 1.5 T MRI scanner with the following parameters : repetition
time (TR)= 3600ms, echo time(TE) = 70ms, slice thickness = 7mm and b value
of 700s.mm−2. In order to improve the signal-to-noise ratio, the acquisition was
repeated thirteen times (one can use the average of the measurements) while a
high resolution T1-weighted volume was also obtained and manually segmented
[Fig. 2]. The muscles that were considered in our study were the soleus (SOL),
lateral gastrocnemius (LG), medial gastrocnemius (MG), posterior tibialis (PT),
anterior tibialis (AT), extensor digitorum longus (EDL), and the peroneus longus
(PL). Several previous studies investigated the use of diffusion tensor imaging
to study the architecture of skeletal muscle and to separate these muscle groups
according to different properties (fiber orientation, mean diffusivity, fractional
anisotropy . . . )[16, 17].

In order to proceed with an evaluation of the proposed method, the follow-
ing scenario was considered: Using the manual segmentation, and the observed
measurements of a given acquisition (12 directions), we have constructed seven
weak linear classifiers (in our case a multi-class linear SVM[18]) separating each



class of muscle versus all others. Then, the success rate (percentage of voxels
being attributed to the right class) from the classifier with respect to the ground
truth was determined. We remark that linear separation is hardly achieved for
PT, PL, EDL and AT while it yields quite satisfactory results for the MG, LG
and to a lesser extent SOL which form the major part of the muscle. We have
performed this test thirteen times for: (i) direct estimation (DE), (ii) direct es-
timation and regularization (DER), as well as using direct estimation of the
average measurements of the thirteen acquisitions (ADE) . One would expect
that since muscles consist of myo-fibers of the same nature, the classification
should be improved if the estimation of the tensors is properly done, i.e. with
appropriate regularization. However, it is important to note that the aim of this
paper is not automatic classification of voxels in different muscle regions using
DTI (in such a case more advanced classifiers can be used).

Fig. 2. A slice of the T1-weighted volume, different muscle groups segmented manually

In [Table 2], we present quantitative validation of the present framework
for the linearly separable muscles. One can see that our method leads to an im-
provement in the correct classification rates with respect to a plain direct estima-
tion. We also obtain better results when compared to the averaging+estimation
method. We also show the result of our regularization on a slice of the volume
in [Fig. 3].

Overall MG LG SOL

DE 78.1% 86.16% 51.1 % 84.43%

ADE 84.46% 90.47% 65.72% 88.43%

DER 86.45% 91.82% 69.76% 89.97%

Table 2. Correct classification rates for the different methods and for each muscle
group. The first and third row show the average correct classification rates for the set
of 13 volumes



Fig. 3. Estimated tensors without regularization, tensors obtained with our method

4 Discussion

In this paper a novel approach to direct estimation and regularization of diffusion
tensor images was proposed. The main strength of our approach is the novel reg-
ularization term that assumes linear approximation of neighborhood tensors as
well as the convex nature of the proposed cost function which can be easily opti-
mized. Our method was compared and outperformed the anisotropic constrained
regularization using generated data with known noise model, and significantly
improved human skeletal muscle segmentation/classification through DTI using
real data.

The selection of the bandwidth σ is a critical parameter of the process. Data-
driven variable bandwidth models is a natural extension of the method. One
would expect that the optimal bandwidth depends on the form of the observed
anatomical structure which varies spatially. Another possible extension of this
work is to replace the Frobenius norm in the energy functional by the Riemannian
metric [5] or the Log-Euclidean metric [9]. However this will be done at the
expense of the convexity of the function and the computational time.

The use of DTI towards understanding the human skeletal muscle as well as
providing means of diagnosis for muscular diseases is a more long-term objective
of our research. The ability to understand the remodeling of myofibers due to
muscular diseases using non-invasive means is a great perspective.
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