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Markov Chain Monte Carlo Posterior Density
Approximation for a Groove-Dimensioning Purpose

José I. De la Rosa, Member, IEEE, Gilles A. Fleury, Sonia E. Osuna, and Marie-Eve Davoust

Abstract—The purpose of this paper is to present a new ap-
proach for measurand uncertainty characterization. The Markov
chain Monte Carlo (MCMC) is applied to measurand probability
density function (pdf) estimation, which is considered as an inverse
problem. The measurement characterization is driven by the pdf
estimation in a nonlinear Gaussian framework with unknown
variance and with limited observed data. These techniques are
applied to a realistic measurand problem of groove dimensioning
using remote field eddy current (RFEC) inspection. The appli-
cation of resampling methods such as bootstrap and the perfect
sampling for convergence diagnostics purposes gives large im-
provements in the accuracy of the MCMC estimates.

Index Terms—Gibbs sampling, indirect measurement, Markov
chain Monte Carlo (MCMC), Metropolis–Hastings (M–H), non-
linear regression, perfect sampling, weighted bootstrap.

I. INTRODUCTION

IN MANY industrial applications, direct access to a measur-
and (m) is not possible; this is due to the inability to use

transducers to measurem directly for any reason such as harsh
environment, long distance, etc. Thus, the measurand process
must be considered as an inverse problem [1], since the measur-
and estimation is needed. The characterization of all statistical
knowledge upon this quantity of interest is naturally driven by
the probability density function (pdf) ℘(m). Probabilistic infer-
ences using Markov chain Monte Carlo (MCMC) methods are
considered as another Monte Carlo simulation technique, and
other measurand pdf estimation alternatives, by using a fully
Bayesian framework [2]–[5]. The “Metropolis algorithm” has
been used to solve difficult problems in statistical physics for
over 40 years (1953). A generalization of this algorithm is in-
troduced by “Metropolis–Hastings (M–H) algorithms” (1970).
In the last few years, other related methods of “Gibbs sampling”
have been applied to problems of statistical inference. The
MCMC methods, such as Gibbs sampling and M–H algorithms,
are powerful Markov-chain methods to simulate multivariate
distributions and they have a real impact on Bayesian statistics
[6], [7]. The M–H algorithms have been extensively used in
physics and, more recently, exploited by statisticians [8].
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The importance of Monte Carlo methods for inference prob-
lems in signal processing has grown in recent years (Trans. on
Signal Process., vol. 50, no. 2, Feb. 2002). This is due to the
explosive increase in accessible computing power. Monte Carlo
methods could be widely exploited, since one has the necessary
computational resources, and these methods can significantly
be used in a large class of problems addressed in practice.
Monte Carlo methods have also a great degree of flexibility
for the solution of challenging computational problems, such as
optimization and integration. These kinds of problems abound
in statistical signal processing. Literature [9], [10] show the
potential usefulness of MCMC in signal processing. For the
solution of our measurand problem, we have successfully used
hybrid algorithms, firstly, an M–H algorithm for sampling from
a complex likelihood density function, and secondly, the Gibbs
algorithm for sampling from the posterior density.

An important problem in MCMC is the convergence sur-
veillance of such methods. The convergence performance of
MCMC can be improved by using a resampling scheme, e.g.,
the weighted bootstrap used in [11] (see also [12] and [13],
which suggest a class of weighted-bootstrap techniques) and
perfect-simulation [14] procedures (see also [15] and [16]).
The final interest is to apply the MCMC methods in a realistic
problem of indirect measurement (measurand estimation). The
remainder of the paper is organized according to the follow-
ing sections: Section II presents the general formulation of
the problem of measurand estimation and the MCMC idea
extended to the measurand uncertainty characterization. The
Bayesian framework for parameter and measurand estimation
is described in a more specified way in Section III, jointly
with the classical MCMC uncertainty characterization. The
analysis of convergence by resampling and perfect-sampling
methods [coupling from the past (CFTP)] are briefly described
in Section IV. A measurement complex problem of groove di-
mensioning using remote field eddy current (RFEC) inspection
is given in Section V, and finally, some concluding remarks are
given in Section VI.

II. MCMC FOR MEASURAND PDF ESTIMATION

The problem of pdf estimation for an indirect measurand
is considered in this paper. This problem has been analyzed
for a nonlinear Gaussian framework, and the results give the
possibility to take up again the problem of pdf estimation in a
more suitable or realistic framework (nonlinear Gaussian with
unknown variance or non-Gaussian). In many applications,
an unknown quantity m has to be estimated from a vector
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of observed values y. This may be encountered in several
domains such as nondestructive testing or the so-called indirect
measurand [17], [18]. Measurement systems are formalized by
two equations [1]:

1) the observation equation, which is described by the clas-
sical nonlinear regression model

y = f(x,θ) + e (1)

2) and the measurand equation (a nonlinear function of the
parametric model)

m� = g�(θ), � = 1, . . . , r, with m = {m�}r�=1

(2)

where y represents the response (observed data, acquired data,
or explained variables), x is the vector of explicative variables
or experimental protocol (for example, the measurand instants
in an instrument, the sensor position, the frequencies used in
the Eddy currents [17], etc.) of dimension p (or matrix n× p),
which is associated with data yi(yi, x�i ), and θ = {θj}pj=1 is
the vector of functional parameters of dimension p, which will
be estimated by an identification procedure. The errors model
the system as a random process and they are given by e. The set
Θ ⊂ R

p represents the admissible subset of parameters θ, and
X ⊂ R

n represents the admissible domain for the explicative
variables. The measurand depends on the nonlinear mapping
m� = G�(f).

We have already presented a methodology based on bootstrap
techniques (see [19] and [20]) to obtain the pdf estimation of
an indirect measurand. Currently, our work is focused on a
Bayesian framework to obtain the posterior-pdf estimation of
such a measurand, using MCMC methods. The idea is to obtain
the posterior pdf

℘(θ|y) ∝ ℘(y|θ)℘(θ). (3)

The measurand depends on the nonlinear mappingm� = G�(f),
and, given the parameters’ posterior pdf, one may assume that
the measurand posterior is obtained directly by the nonlinear
mapping parameters’ posterior pdf

℘(m�|θ) = ℘ (g�(θ|y)) , � = 1, . . . , r. (4)

A complete diagram of the general problem is shown in Fig. 1,
where some other complicated stages are depicted, such as the
parameter estimation criterion J (θ); for example, a classical
criterion to be optimized is given by a functional of the errors

J (θ) =
n∑

i=1

ψ(ei) (5)

the optimization procedure to be used, and the nonlinearity
of the model f(·) retained for the measurand purpose [21], [22].
The propagation of statistical properties of the errors through

Fig. 1. Diagrams to illustrate the parameter and the measurand posterior pdf
estimation using MCMC methods.

the observation equation permits to access statistical properties
of model parameters and then propagate such statistical infor-
mation through the measurand equation to obtain statistical
properties of a measurand. The assumption upon the errors’
probability law is important, and generally, a Gaussian assump-
tion has been taken. Nevertheless, in real problems, where the
variance is unknown or it is nonuniform (heteroscedasticity), a
non-Gaussian assumption also could be more suitable, and the
assumption of different laws such as uniform, approximately
uniform, Laplace, mixture, etc., could be made. The assumption
of an unknown law could also be considered, as assumed in
applications of bootstrap methods.

III. BAYESIAN STATISTICS

The Bayesian framework is a good selection alternative to
take advantage of all possible information known from complex
systems (e.g., analysis of complicated statistical models). The
advent of inexpensive high-speed computers and the simultane-
ous rapid development of stochastic integration methodology
permit to exploit the use of MCMC methods in a Bayesian
framework [6], [7]. The MCMC methods have been used in
several Bayesian problems, e.g., analysis of models of vary-
ing size, multiple changepoints, and finite mixtures. More-
over, MCMC methods solves analytically intractable inference
problems.

The interest of Bayesian statistical inference involves the
task of estimation of complex distributions. It requires an
additional input not required by frequentist procedures such
as maximum likelihood (ML), called a priori probability dis-
tribution for the parameters ℘(θ) and given the nonlinear
mapping m� = G�(f), for the measurand ℘(m�). The intro-
duction of a priori distribution is the crucial element that
converts statistical inference into an application of conditional
probabilistic inference (taking advantage of prior informa-
tion). For the consideration of combining a priori distribution
for the parameters with the conditional distribution for the
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observed data y, let us get a joint distribution for all quantities
related to the problem

℘(θ1, . . . , θp, y1, . . . , yn)

= ℘(y1, . . . , yn|θ1, . . . , θp)℘(θ1, . . . , θp)

℘(θ,y)

=
n∏

i=1

℘(yi|θ)℘(θ). (6)

From this, the Bayes’ rule can be derived for the posterior
distribution of the parameters, given the observed values y

℘(θ|y) =
℘(θ,y)
℘(y)

=

n∏
i=1

℘(yi|θ)℘(θ)∫ n∏
i=1

℘(yi|θ)℘(θ)dθ
. (7)

The posterior distribution can also be expressed as a propor-
tionality in terms of the likelihood

℘(θ|y) = L(y|θ)℘(θ). (8)

This shows how the introduction of a priori distribution con-
verts the expressions of relative plausibility contained in the
likelihood into an actual probability distribution over parameter
space Θ ⊂ R

p and by the final nonlinear mapping over measur-
and space M ⊂ R

r.
The final goal is therefore to obtain an accurate statistical

characterization of the measurand quantity m�. Once the pa-
rameters posterior (θ|y) is simulated, the measurand vector
induced by the mapping G�(f(·)) is given as

m̂� = g�(θ|y), � = 1, . . . , r. (9)

The measurand pdf ℘(m) is then approximated by the empir-
ical measurand pdf ℘(m̂), which is induced by m̂1, . . . , m̂N

using the different replications (θ̂|y)1, . . . , (θ̂|y)N in the
nonlinear mappings {G�(f(·))}r�=1, taking advantage of the
MCMC process (N is the number of simulations). Note that
marginal measurand pdfs are also obtained, solving the integral

℘(m̂�|θ) = ℘ (g�(θ|y)) =
∫
M

℘(m̂)dm̂−� (10)

where dm̂−� = dm̂1 · · · dm̂�−1dm̂�+1 · · · dm̂r.
In cases where the parameter space has very high dimen-

sionality, and the posterior distribution is very complex (for
models where the dimension p > 2 and r > 1), obtaining a
Monte Carlo estimate may then require the use of Markov-chain
sampling methods. This obviously will happen in the evaluation
of the integrals over parameter and measurand spaces (as will
be seen in Section V), and it could be computationally very
demanding. However, the Monte Carlo estimation could be suc-
cessfully applied, since these methods only require calculation
of probability densities for parameter values up to an unknown
constant factor, and thus, it is not necessary to evaluate the
integral in the denominator of (7).

IV. MCMC CONVERGENCE IMPROVEMENT

An important problem in MCMC is the convergence surveil-
lance of such methods. We present two different strategies to
accelerate the convergence of an MCMC algorithm. The term
acceleration is used in numerical analysis to indicate hastening
of convergence, diminishing the number of the chain transitions
(t) (e.g., draws). The first approach is through resampling and
the second one proposes a perfect-sampling scheme (see also
exact sampling) based on CFTP procedures.

A. Weighted Bootstrap

A weighted-bootstrap scheme was introduced in [11]. The
task is to compute a resample from the set θt,j , j = 1, . . . , q,
independent identically distributed (i.i.d.) with ℘(θt,j); the
new sample is θ∗t,j , j = 1, . . . , q∗, whose distribution ℘(θ∗t,j) is
closer to ℘(θ) than ℘(θt,j) is. Note that j indicates the size of a
random vector of each one of the parameters θ = [θ1, . . . , θp]�.
The weights are given as follows:

wj =
℘(θj)
℘(θt,j)

and zj =
wj

q∑
j=1

wj

where θt,j are resampled according to the probabilities zj . The
resampled draw θ∗t,j will be applied to the next transition of
the sampling algorithm to obtain θ(t+1),j . Instead of using this
approach, we have used a slightly different approach proposed
for resampling the residuals r̂i = yi − f(xi,θt), where the
random vector to be resampled now is of the same size as
y. The idea is the same; it also provides the same effect that
the new resample gives: θ∗t ∼ ℘(θ)→ θ∗t,j ∼ ℘(θ). Such an
approach was introduced by Shao [13] to approximate ℘(θ)
via nonparametric bootstrap simulation. We also assume that
under regular conditions, ∆t = limt→∞ ‖℘(θ∗t)− ℘(θ)‖ → 0.
Bootstrapping a modified residuals vector gives a weighted
(or smoothed) version of residuals that can lead to a consistent
estimator (e.g., weighted bootstrap)

r =
1
n

n∑
i=1

r̂i

êi =

√
n
nq

(r̂i − r)√
1− p

n

(11)

where êi corresponds to êi = yi − f(xi,θ
∗
t). The procedure

of bootstrapping recentered residuals (under symmetric as-
sumptions of the error distribution) can be modified; in lin-
ear regression, the bootstrap sample size of êi∗ is modified
(i = 1, . . . , nq , such as nq < n). However, in nonlinear re-
gression, the nq factor value is modified such as nq < n and
satisfying nq/n→ 0, but the bootstrap sample size remains
fixed (i = 1, . . . , n). A restriction on nq is that p/nq should be
reasonably small. For practical uses, nq needs to be specified
for a fixed n, and its optimal choice depends on the parameter-
vector size. For example, one could begin with nq = n and then
decrease this value till nq/n = 0.5 if n is small, and nq/n→ 0
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if n→∞. The resampled draw êi
∗ produces indirectly the

draw θ∗t that will influence the next transition of the sampling
algorithm to obtain θ(t+1).

B. Perfect-Simulation Algorithms

The perfect-simulation techniques or exact sampling ideas
were introduced by Propp and Wilson in 1996 [15]. The main
task is to use CFTP and to use repeatedly the same sampler for
generating upper and lower Markov chains started increasingly
further back in time until the two chains are coupled at time
0 or coalesce when their transitions are determined by the
same random numbers and then return the result as an exact
simulation from a given target distribution. In the last works of
Møller [14], the CFTP technique has been applied to improve
convergence of conditional specified multivariate models such
as autogamma and establishes the application of perfect simu-
lation for an M–H algorithm for the same model.

1) Gibbs Perfect Simulation: Suppose that we want to
make simulations from a target distribution ℘(θ|y) with
θ = [θ1, . . . , θp]� being a p-dimensional discrete vector; sup-
pose also that ℘(θ|θ−k), with k = 1, . . . , p is the condi-
tional distribution, where θ−k = [θ1, . . . , θk−1, θk+1, . . . , θp].
Let Fk(·|θ−k) denote the cumulative distribution function
(CDF) of ℘(θ|θ−k) when the probability P{θ−k} > 0. We
can then generate a Markov chain θt,k ∈ [θt,1, . . . , θt,p], t =
0, 1, . . ., started at θ0,k = 0 and using cyclic Gibbs sampling
by setting

θt,k = F−k {Rt,k|θt,k←}

where

Rt,k ∼ U(0, 1)

and

θt,k← = [θt,1, . . . , θt,k−1, θt−1,k+1, . . . , θt−1,p]

are the p− 1 states of the components just before the kth update
at time t, and F−1(x) = min{y : F (y) ≥ x}. We assume that
θt,k follows the irreducibility property. Suppose now that Rt,k

are also defined back in time t = −1,−2, . . .; then, the CFTP
is obtained by reusing these random numbers in the following
construction of lower Lt(nt) = [Lt,1(nt), . . . , Lt,p(nt)] and
upper Ut(nt) = [Ut,1(nt), . . . , Ut,p(nt)] processes, which are
started at times nt and generated forwards in time. Then, at
each integer nt ∈ Z, put

Ln(nt) = 0

Lt,k(nt) =F−k {Rt,k|Ut,k←(nt)} , t > nt (12)

and

Un(nt) =D(nt)

Ut,k(nt) =F−k {Rt,k|Lt,k←(nt)} (13)

with dominating chain D(nt) = [D1(nt), . . . , Dp(nt)] given
by the mutually independent components

Dk(nt) = F−k {Rnt,k|0−k}

and extending the definition of Fk(·|θ−k) when probability
P{θ−k} = 0. For k ∈ {1, . . . , p} and θ−k ∈ R

p−1, define

Fk(·|θ−k) = max {Fk(·|β−k) : β−k ≤ θ−k, P{θ−k} > 0}

which ensures that Fk(θk|θ−k) is increasing in θ−k. For
the perfect-simulation algorithm, we use a strictly decreasing
sequence of nonpositive starting times nt = nj (0 ≥ n1 >
n2 > . . .), where j = 1, 2, . . ., and repeat to generate lower
and upper processes (L(nt), U(nt)) until coupling happens
at time t = 0, where we generate (Lt(nt), Ut(nt)), t =
nt, . . . , 0, until L0(nt) = U0(nt); then S = L0(nt), where S
is the state selected as the perfect simulation from the target
distribution ℘(·). For application cases, it has been suggested
to set nt = −2j (see [14] and [15] for more details). Moreover,
we must satisfy at least the condition U0,k(nt)− L0,k(nt) ≤ ε,
returning the perfect simulation S = (L0(nt) + U0(nt))/2
with accuracy ε, where ε > 0, and it is a “user-specified
parameter.”

2) M–H Perfect Simulation: On the other hand, we present
a generalization of the perfect M–H algorithm, which is used
when the Gibbs perfect sampling from the target distribution
℘(·) is impossible to do. In this case, we consider that

L(y|θ) ∝ α(θ)
p∏

k=1

q(θk)

where q(·) is the candidate generating density, and α(θ) is the
probability of move α(θ) = α(θt−1,k,θt,k).

1) The first proposal Dt,k is generated from q(·) together
with Rt,k ∼ U(0, 1).

2) Second, set

θt,k =
{
Dt,k, if Rt,k ≤ min {αk{Dt,k,θt−1,k,θt,k←}, 1}
θt−1,k, otherwise

where

αk{dk,θk,θ−k} =
℘(θ1, . . . , θk−1, dk, θk+1, . . . , θp)q(θk)
℘(θ1, . . . , θk−1, θk, θk+1, . . . , θp)q(dk)

which is larger than 1 if dk ≤ θk, whereas it decreases
from 1 to 0 as a function of θ−k when dk > θk.

Then, the CFTP algorithm is described as follows. At each
integer nt, put

Ln(nt) = 0 t > nt

Lt,k(nt) =


Dt,k, if Rt,k ≤ αk {Dt,k, Lt−1,k(nt)

Ut,k←(nt)}
Lt−1,k(nt), otherwise

(14)
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and

Un(nt) =D(nt)

Ut,k(nt) =


Dt,k, if Rt,k ≤ αk {Dt,k, Ut−1,k(nt)

Lt,k←(nt)}
Ut−1,k(nt), otherwise.

(15)

The coalescence time is almost surely finite, satisfying the con-
dition U0,k(nt)− L0,k(nt) ≤ ε, and the output S = (L0(nt) +
U0(nt))/2 follows the target distribution ℘(·).

V. MCMC ESTIMATION WITH A

MEASURAND APPLICATION

The measurand-estimation problem presented in [21] and
[17] is considered here again, as an example of a real prob-
lem. The RFEC inspection technique is used for dimensioning
grooves that may occur in ferromagnetic conductive pipes. This
task involves the depth and the length estimation of corrosion
grooves from measurands of a picked-up coil signal phase yi
at different positions xi closest to the defect. A finite-element
calculation was performed in [17] to obtain a parametric model
of the physical phenomenon. The dimensions of the groove
to be estimated are linked to the parametric model through
a polynomial function [see (17)]. The previous knowledge of
the relationship between the groove parameters (length and
depth) and the observed data (detector phase) is needed. A
finite-element modeling has been used to obtain such a rela-
tion. In order to make statistical inferences about parameters
and groove estimators, first, we propose the use of MCMC
techniques. Secondly, we compare the obtained MCMC results
with those obtained by using a primitive Monte Carlo (PMC)
scheme. In this last scheme, we choose the hypothesis of
errors normality (ei ∼ N (0, σ̂2

ML)), where σ̂2
ML is an unbiased

variance estimate. The PMC scheme builds a likelihood em-
pirical population by using the nonlinear least squares (NLS)
estimator. In both cases, we suppose a modeling error plus
acquisition error (e.g., errors between the observed data and
the nonlinear model) whose distribution is assumed as Gaussian
with unknown variance.

Fig. 2 illustrates the typical experimental apparatus used for
groove dimensioning; the sensor is pushed inside the pipe and
along with the coil position x, the phase of the detector voltage
y is acquired. The distance (2L) between the exciter and the
detector coils is chosen so that the remote field condition is
satisfied.

Taking into account the symmetry and the range of the
data, several mathematical functions (e.g., nonlinear models)
have been considered in [17] and [21] to approximate y. The
nonlinear model structure retained in [21] [f2 (p = 3)] as the
best model is considered here

f(x,θ)= θ1(arctan(θ2(x+θ3+L))−arctan(θ2(x−θ3+L))

+ arctan(θ2(x+θ3−L))−arctan(θ2(x−θ3−L)))

(16)

Fig. 2. Schematic illustration of the sensor pipe in the (RFEC) inspection
problem.

where L is an experimental constant (half distance between
coils equal to 17.5 mm), the length of vectors x, and y is
n = 118. Fig. 3 shows an example of simulated observed data
(circles) computed by a finite-element code for given groove
parameters.

The measurement goal is to estimate the size of the defect
[depth (d) and length (l)] from the knowledge of detector
phase. The measurand quantity can be expressed as a function
of the optimal parameters of the model. An algebraic form for
g is chosen; g can be taken as a bilinear polynomial function of
θ, which may be written as follows:

d̂ = gd(θ) =
∑
k,h

cdkhθkθh +
∑

k

cdkθk

l̂ = gl(θ) =
∑
k,h

clkhθkθh +
∑

k

clkθk. (17)

The coefficients (cdkh, c
d
k) and (clkh, c

l
k) have been computed in

the least squares sense [17], for several real defect dimensions.
Thus, for the candidate model, an analytical form for the
measurand vector m̂ = [d̂, l̂]� as a function of θ is obtained.

A. Approximation by a Gibbs Sampling Scheme

For the MCMC approximation, we use firstly a simple
Gibbs sampler in a Bayesian framework. Since errors and
parameter densities are unknown, and starting off observing
from the empirical errors histogram (see Fig. 4), we will make
some assumptions. The assumptions of complete ignorance of
parameter density are reflected by the uniform distribution.
Nevertheless, Fig. 4 shows that error density tends to be
of zero mean. At the moment, we could assume that errors
are normally distributed (classical assumptions) with unknown
variance; we also assume that the complete conditional distri-
bution of σ2 is inverse gamma σ2 ∼ IG(α, β). Thus, in this
case, the Bayesian framework is equivalent to the ML, and
also to the least squares principle. To evaluate the estimation
performance of m, its probability density has been analyzed.
The parameters and measurand pdf estimation is determined by
MCMC asymptotically. We have taken as reference the second
example given in [8] and more general results given in [23] for
autoregressive moving average (ARMA) models.
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Fig. 3. Full line is the data fitted by the model using the mean parameter estimates from PMC-NLS, (. . .) from Gibbs and ( ) from Gibbs M–H versus the
simulated data (circles).

Fig. 4. Error vector obtained by y − f(x, θ̂NLS).

In a first normal corrected approach, the likelihood function
given {yi}ni=1 (n = 118) samples is the following:

L(y|θ) =
1√

2πn|Σ|

× exp
[
−1

2
(y − f(x,θ))�Σ−1 (y − f(x,θ))

]
(18)

where Σ = σ2
I, and the a priori distribution is given by the

conditional distribution

℘(θ) ∝ π(θ)π(σ2) (19)

where π(θ) = 1 (e.g., parameters are assumed to be uniformly
distributed), and where the complete conditional distribution of
σ2 is inverse gamma σ2 ∼ IG(α, β), with

α =
n+ p

2

and

β =
1
2

n∑
i=1

(yi − f(xi,θ))
2 .
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Fig. 5. Histograms of the posterior measurand pdfs for 5 × 104 PMC-NLS iterations, reference values ( ), and mean values (· · ·). The axis y indicates the
nonnormalized empirical probability.

The parameter estimator is given by

θ̂ = arg min
θ∈Θ
J (θ) (20)

where J (θ) =
∑
− log℘(e) (ML), so the likelihood is sim-

ulated from L(y|θ) = N (θ|θ̂ + b(θ̂),F (θ̂)−1) assuming the
stationarity and inversibility of the nonlinear regression model,
and the covariance matrix given by the inverse of the Fisher
information matrix

F (θ̂)−1 =

[
1
σ2

n∑
i=1

∂f(xi, θ̂)

∂θ̂

∂f(xi, θ̂)

∂θ̂
�

]−1

(21)

and bias b is approximated using (22), also given in [24]

b(θ̂) = −1
2
F (θ̂)−1

n∑
i=1

1
σ2

∂f(xi, θ̂)

∂θ̂

× tr

{
F (θ̂)−1 ∂

2f(xi, θ̂)

∂θ̂∂θ̂
�

}
. (22)

In this case, the N simulated samples are obtained from
π(σ2,θ|y), which is based on the full conditional densities of
σ2 and θ given by

1) the density of σ2 given θ and y, π(σ2|y,θ);
2) density of θ given σ2 and y, π(θ|y, σ2).
The posterior probability is given by ℘(θ|y) ∝ L(y|θ),

which is obtained sampling from its full conditional den-
sity π(σ2,θ|y) (e.g., Gibbs sampler), then one calculates the
nonlinear mapping g�(θ) at each sample, which is straight-
forward, obtaining the posterior probability density ℘(m�|θ).
Results obtained by a PMC procedure are compared versus
Gibbs single chain (MCMC1) for 6× 103 replications [the first
1000 replications have been ignored (burn in), collecting the

next 5000] and Gibbs perfect sampling (MCMC2, double
chain) for 4500 replications (the first 500 replications have been
ignored, collecting the next 4000). The results obtained after ten
MCMC independent simulations of a single chain and perfect
sampling has shown that there is almost convergence to the
parameters and measurand pdfs.

Fig. 3 illustrates the data fitted using the mean parameter
estimates (pointed line) from the Gibbs sampler. In this case, we
have used the noncentered weighted bootstrap for convergence
control. Figs. 5 and 6 also show the difference between mea-
surand populations with the Gibbs perfect-sampling scheme
(MCMC2) and the PMC-NLS scheme. In the comparison be-
tween these figures, it is clear that the Gibbs approach is in the
measurand population neighborhood (see also Table I), but the
nonlinearity of parameters and that one of the measurand is not
taken into account by the normal approximation of L(y|θ). The
Pázman approach could be a better alternative to describe these
nonlinearities, also with normal error assumptions. However,
in such a case, we need to use the M–H algorithm. Finally,
Table I presents some statistics approximated by both Gibbs
schemes (resampling and perfect-simulation algorithm); the
nonlinearity of θ2 is remarkable by the large difference between
the mean and the median values obtained by PMC-NLS and
MCMC. The PMC-NLS simulation mean time is 30 times
more expensive than both Gibbs normal approaches to obtain
the approximated statistics shown in Table I. Moreover, if the
nonlinearity of the model f(·) decreases, the Gibbs approaches
proposed here will give a better approximation with the quick-
est convergence.

B. Approximation by a Gibbs M–H Scheme

The second MCMC approach is derived by changing the
likelihood function; this function will be approximated by the
deterministic Pázman parameter density. Our first interest is
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Fig. 6. Histograms of the posterior measurand pdfs for 6 × 103 Gibbs (MCMC2) iterations, reference values (—), and mean values (· · ·). The axis y indicates
the nonnormalized empirical probability.

TABLE I
STATISTICS OBTAINED BY THE GIBBS SAMPLER WITH RESAMPLING (MCMC1) AND PERFECT-SIMULATION

ALGORITHMS (MCMC2) VERSUS PMC-NLS FOR θ AND THE MEASURAND

sampling from the likelihood pdf, extracting samples from the
whole joint probability density; second, we use these samples
to complete the posterior sampling. Pázman [25] proposes a dif-
ferential geometrical approach, which leads to an estimation of
the whole parameter pdf under standard assumptions (Gaussian
error assumptions). Considering a nonasymptotical case (finite
sample n), Pázman has given a formula to approximate the pdf
of the classical least squares parameter estimate. The formula is
expressed in terms containing zeroth-, first-, and second-order

derivatives of f(·); it is computed at the point θ̂, since θ̄ is
unknown. The whole pdf evaluation is driven by (e.g., the joint
probability density)

℘̂(y|θ̂) =
detQ(θ̂)

(2π)
p
2 det

1
2 F (θ̂)

× exp
{
−1

2

∥∥∥P (θ̂)
[
f(x, θ̂)− f̄

]∥∥∥2

Σ

}
(23)
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Fig. 7. Histograms of the posterior measurand pdfs for 4500 Gibbs M–H (G-MH2) iterations, reference values ( ), and mean values (· · ·). The axis y indicates
the nonnormalized empirical probability.

where f̄ is the true mean of y, F (θ) is the (p× p) Fisher in-
formation matrix [see (21)], with Σ−1 = 1/σ2

I (n× n) matrix
for a given error variance σ2, P (θ) is the (n× n) projection
matrix

P (θ) =
p∑

i,j=1

∂f(x,θ)
∂θi

F−1
ij (θ)

∂f�(x,θ)
∂θj

Σ−1

andQ(θ) is a (p× p) matrix

Qij(θ) = F ij(θ) +
(
f(x,θ)− f̄

)
(I− P (θ))

∂2f(x,θ)
∂θi∂θj

.

As the formula suggests, the θ ∈ Θ has a support that ex-
ists and could be defined as a local support if the “real”
parameters are known. The target density used for the M–H
algorithm is then L(y|θ) = ℘̂(y|θ) according to (23). Multi-
dimensional integration and support searching are driven by the
M–H autoregressive algorithm, the performance of which is
generally better than the M–H random walk [8].

An autoregressive chain is represented by a vector autore-
gressive process of order 1. This algorithm is due to the
following procedure of candidate production

θ(t+1) = θ0 +B(θt − θ0) + z (24)

where θ0 is a vector and B is a matrix, both can be confirmed
with θt, and z has p2(·) as its density. Then, the transition
kernel is q(θt,θ(t+1)) = p2(θ(t+1) − θ0 −B(θt − θ0)). This
autoregressive version is an intermediate between independent
(B = 0) and random-walk (B = I) versions. If B = −I, this
algorithm produces chains that are reflected about the point θ0

and is a simple way to induce negative correlation between
successive elements of the chain (θt and θ(t+1)), and it permits
a quick scanning of the surface ofL(y|θ). The algorithm is sim-
ilar to the M–H basic algorithm, where q(θt,θ(t+1)) = p2(·),

and z is a random vector drawn by sampling from the uniform
distribution z ∼ U(0,∆), with ∆ = diag(δ1, . . . , δp).

The basic M–H algorithm is summarized as follows.

1) The initial value of θ0 is given by the real parameter value
or the nonlinear least squares estimate.

2) For t = 1, . . . , N , repeat.
3) Generate θ(t+1) ∼ q(θt, ·) [see (24)] and u ∼ U(0, 1).
4) If u ≤ α(θt,θ(t+1)), where

α
(
θt,θ(t+1)

)
=

min
{

π(θ(t+1))q(θ(t+1),θt)
π(θt)q(θt,θ(t+1))

, 1
}
, if π(θt)q

(
θt,θ(t+1)

)
> 0

1, otherwise.

Then, set θ(t+1) = θ(t+1).
5) Else, set θ(t+1) = θt.
6) Return the values {θ1,θ2, . . . ,θN}.

The initial value of θ is the “real” parameter vector θ0 (un-
known in practice) or its ML estimate. The ∆ matrix can
also be given by λK(θ), where K(θ) is obtained by the
Cholesky decomposition of F (θ)−1, where λ = 3.2; it was
chosen heuristicaly. The a priori distribution ℘(θ) is given as
in the normal likelihood approach (Section V-A), and the rest
of the algorithm is similar.

The PMC-NLS results are also compared versus Gibbs M–H
single chain (G-MH1) for 6000 replications and versus Gibbs
M–H perfect sampling (G-MH2 double chain) for 4500 replica-
tions. Fig. 3 illustrates the data fitted using the mean parameter
estimates (dashed line) from the Gibbs M–H scheme. In this
case, we compare results obtained by Gibbs perfect sampling
and Gibbs M–H perfect sampling versus PMC-NLS results.
Figs. 5 and 7 show also the difference between the measurand
populations with the Gibbs M–H perfect-sampling scheme and
the PMC-NLS scheme. Finally, it is clear that the Gibbs M–H
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TABLE II
STATISTICS OBTAINED BY THE GIBBS M–H SAMPLER WITH SINGLE CHAIN (G-M-H1) AND

PERFECT SIMULATION (G-M-H2) ALGORITHMS FOR θ AND THE MEASURAND

TABLE III
MEAN ESTIMATES OBTAINED FOR d AND l BY THE PMC-NLS AND THE MCMC SCHEMES AND BOTH MSE MEASURES

approach is close to the measurand population neighborhood
of PMC-NLS (previously seen in Fig. 5), and the nonlinearity
of parameters and the measurand is best described than by the
normal approximation of L(y|θ) (see Fig. 6).

The percentage of acceptance of the Gibbs M–H single
chain diminishes to 18.35%, obtaining 81.65% of rejected
samples, which assures almost convergence of this scheme. The
PMC-NLS simulation mean time is six times more expensive
than the Gibbs M–H perfect-sampling simulation procedure
to obtain the approximated statistics shown in Table II. The
simulation time is also a great issue. For example, for the
5× 104 PMC iterations of the NLS scheme for the model used
for RFEC application, the time needed to achieve convergence
of simulation was 7.32 h, whereas the Gibbs M–H simulation
time was in the interval of 72.07–46.67 min when using an ultra
Sparc 5 system (256-MB RAM), and MATLAB version 6. On
the other hand, the level of approximation not only depends
on the model f(·) but also on the polynomial (nonlinear)
measurand mapping g�(·).

Finally, we have taken advantage from the mean parameter
and measurand estimates to obtain the mean-squared error
(MSE) from the different schemes studied here, with the pur-
pose of comparing the MSE in the fitting sense: MSEθ =
1
n

∑n
i=1 (yi − f(xi, θ̂))2 and the MSE in the measurand sense:

MSEm = 1
2

∑2
j=1 (mrj − m̂j)2. The best parameter mean

values are those estimated with the G-MH2 sampling scheme
(see Table III), since the MSE in the fitting sense is the
smallest. On the other hand, the best measurand mean values
are those obtained by the PMC-NLS scheme. In the case of this

application, the normal error assumptions could be verified by
means of the analysis of its CDF or other tests.

VI. CONCLUDING REMARKS

Generally, the MCMC methods offer an easy pdf estimation
in a Bayesian framework. The nonlinearity of the parametric
model and the measurand is best described by using the Pázman
approach as likelihood target joint pdf with respect to the
normal approximation (i.e., Gibbs). Both MCMC Bayesian
proposed approaches give a good statistical approximation,
and since the Bayesian framework presented in this case is
equivalent to the ML, both are comparable. Nevertheless, in
the Bayesian framework, it is supposed that the error variance
follows a conditional pdf, which is not the case in the PMC
approach, where the error variance must be well specified with
a fixed value (one can use a good variance-estimate version).
If the nonlinearity of the model f(·) diminishes, then the
normal likelihood approximation gives good results with the
quickest convergence. Moreover, we can preserve the same
MCMC schemes when the a priori distribution on parameters
is other than the noninformative a priori one. The current
work considers non-Gaussian assumptions of errors, where the
Gibbs sampler seems to be more complex, and M–H could
help to find the problem solution; here also, one can postu-
late hybrid MCMC algorithms. The weighted resampling and
acceptance–rejection percentage methods are nowadays well
understood; however, perfect-sampling methods are recent and
interesting tools, which could be exploited in a large class of
problems [16], since the convergence improvement using CFTP
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could be reached. Finally, some recent research works point
toward the use of slice sampling methods [26]; thus, we propose
a study of these methods in order to apply this new idea for
future works on the measurand-estimation problem.
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