
HAL Id: hal-00260795
https://centralesupelec.hal.science/hal-00260795

Submitted on 5 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Issues of Hierarchical Heterogeneous Modeling in
Component Reusability

Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj

To cite this version:
Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj. Issues of Hierarchical Heterogeneous
Modeling in Component Reusability. IEEE International Conference on Information Reuse and Inte-
gration (IEEE IRI 2005), Aug 2005, Las Vegas, United States. pp.84-89. �hal-00260795�

https://centralesupelec.hal.science/hal-00260795
https://hal.archives-ouvertes.fr

Issues of Hierarchical Heterogeneous Modeling in Component Reusability

Mokhoo Mbobi

Mokhoo.Mbobi@supelec.fr

Frédéric Boulanger

Frederic.Boulanger@supelec.fr

Supélec - Computer Science Department

Plateau de Moulon, 3 rue Joliot-Curie

91192 Gif-sur-Yvette cedex, France

Mohamed Feredj

Mohamed.Feredj@supelec.fr

Abstract

Heterogeneous systems are systems that obey different

functioning laws. For instance, during the design of embed-

ded systems, it is generally necessary to study both the con-

troller and the environment that it controls, these two sub-

systems being clearly different in nature. Moreover, data

processing applications are also increasingly heteroge-

neous, mixing different technical domains such as telecom-

munications, man-machine interface, analog and digital

electronic, signal processing algorithms. To combine these

different technology domains, modeling languages and plat-

forms generally use a hierarchical approach.

This paper highlights how the hierarchy of the model and

the changes of model of computation are coupled and why

this coupling forbids the use of components that have inputs

or outputs that obey different models of computation. In

addition, this paper shows that what happens when data

crosses the boundary between two domains depends on the

modeling environment and it gives some means of managing

component in the same level of the hierarchy.

1 Introduction

1.1 Economic and scientific modularity stakes

The latest studies [19] [2] had highlighted the increase

and segmentation of embedded systems market, and the re-

lated mentioned reasons are durable. So, new kinds of em-

bedded systems will appear, existing systems will change,

the services around them will develop and the number of

familiar objects containing an embedded processor will in-

crease in a continuous way in the future.

To master this unceasingly growing market with a short

increasingly time-to-market, researchers and equipment

suppliers are required to respectively deal with technical

and economic constraints.

According to the economic constraints, economic

choices must be judiciously made in order to maintain the

balance between the average price of the embedded com-

ponents that is increasingly weak and their performances

that increase exponentially. For example, today, a cellular

telephone able to modify its ringing by downloading a poly-

phonic musical sequence, to check the schedule of plane, to

film video sequences and to send them by electronic mail

costs less than one tenth of the price of its ancestor in the

first GSM generation whose the functioning was limited to

the simple communication. Therefore, the great economic

challenge for equipment suppliers will remain the mastery

of the ambivalence ”increase in performance and drop in

prices”.

On looking at both the economic constraints and the mar-

ket trends of embedded systems the ”design-development-

production” cycle of components must be shortened. That

imposes a major change towards the distributed and indus-

trial production modes, promoting more and more modular

applications containing reusable components and that are

easily maintainable. Thus, in [20], the author affirms that

the development of embedded systems follows a process

shared by several actors, implementing a co-operation be-

tween equipment suppliers and manufacturers and that the

concept of components reuse is a strong argument to reduce

the study and factory costs. Bringing another economic ar-

gument, in [12], the author confirms that the use of modular

methodology involves an investment that is amortized only

on the long term, after reuse.

According to the technical constraints, they are intrin-

sic with the embedded system and are taken into account

in its different design phases. These constraints are at the

functional and operational level and are closely related to

the essence of the embedded system. Their taking into ac-

count allows the embedded system to guarantee its opera-

tional functioning in continuous reactivity with its immedi-

ate environment in a sure and safe made way. Such as the

pacemaker whose electrodes are well introduce inside a hu-

man heart with that it interacts to control its beats in contin-

uous reactivity and in a sure and safe made way. The design

of such a systems requires a multidisciplinary of scientific

knowledge, from where the need of several specialists in

different domains. Moreover, since the cycle of life of some

systems is very long compared to the components used for

their manufacturing, the impact of degradations and obso-

lescence in these systems must be limited. Finally, this dou-

ble statement implies to take into account the solutions that

use modular architectural techniques. According to the hi-

erarchical heterogeneous approach, it couples the change of

hierarchical level with the changes of model of computation

on the modeling. This corrupts the modularity, reduce the

reusability of the components and reduce also the maintain-

ability of the system.

1.2 Modularity, Reusability, Maintainability

Systems must be designed in a modular way. They must

be elementary or composite components assembled accord-

ing to a well-defined communication diagram that imple-

ments a communication and interfaces syntheses. In [5],

the author supports this concept by specifying that currently,

the multi partner character of industrial projects requires the

modular development capacities, in particularly to be able

to separately and independently compile each application

component in the form of executable processes, software

or hardware, then to integrate them within a final architec-

ture. In the same way, in [3], the author specifies that the

reuse is intrinsically a phenomenon arising at the construc-

tion phase. It implies the modification of data and algo-

rithms structures that are in the components, and that re-

main fixed during the execution. Relaying the above ideas,

in his development presented in [11], the author shows that

the models as their building blocks must be reusable and

as autonomous as possible . Then, it specifies that an ap-

proach must not only allow expressing the essential proper-

ties of a system, but must also guarantee an easy maintain-

ability of the models. Moreover, the evolution of the models

must follow that of the embedded systems without calling in

question all of what already exists. Consequently, a design

approach must provide effective mechanisms of reusabil-

ity that allows to add, to remove or to specify the model

elements without calling into question all the description

of the system. Whether the stakes are economic or scien-

tist, the modularity in the embedded systems supports the

reusability and improves the maintainability. Moreover the

increase of the reusability of the components implies that

of the productivity of the designer. This is why, modular-

ity and reusability are currently perceived like a strong ar-

guments in the design of the components. So, embedded

system must be designed in a modular way. It consist of

the interconnection of several different modules where arise

embedded systems that contain other embedded systems.

2. Heterogeneous Modeling

In [4], modeling is defined as a formal representation of

a given concept, system or subset whereas the design gener-

ally implies the implementation of several successive mod-

els, each one being a refinement of the precedent. The first

model can be seen as the formal system specification, and

the last model can be seen as its implementation. So, the

goal of the modeling is the exploration of the models for a

final design when the goal of the design remains the imple-

mentation [18]. Design and modeling are obviously closely

interdependent.

On an abstract level, a model of a system can be regarded

as a combination of different technical domains that have

different methods of modeling and design. These differ-

ent domains have different methods of modeling and de-

sign that consider their components and their relationship

in different ways. Consequently, in each domain, the inter-

actions between components are governed by a specific set

of physical law called ”Model of Computation-(MoC)”. A

comparative and detailed study of models of computation is

presented in [13].

Currently, the modeling and design of complex systems

calls naturally for the use of several models of computation

that correspond to the different technical implementations.

To illustrate this heterogeneity, we consider the simple ex-

ample of a third generation multi-media cellular telephone

shown in the figure 1. It uses several technical domains of

that algorithms of image and signal processing, software,

physical interfaces, micro-waves and radio features, opto-

electronic, electronic and electricity techniques, networks,

etc. . .

Figure 1. An example of heterogeneity

The organization of such a system and the interactions

between its different subsystems imply a connection of the

subsystems that are not already using the same model of

computation. Such a system that uses different models of

computation is called ”Heterogeneous System”.

Heterogeneous modeling is simply a modeling by using

a number of MoCs. Since most systems are heterogeneous

in nature, heterogeneous modeling provides more natural

and more complete models. For instance, being able to use

both state machines and synchronous data-flows allows to

describing explicitly the control in the model of a digital

signal processing system. If we were limited to the syn-

chronous data flow MoC, control and data processing would

have to be coded together and the model would be less ex-

pressive and much more difficult to maintain [6].

Current heterogeneous modeling tools allow to take into

account and to structure diversity of applications domains.

In order to mix different MoCs, each of existing modeling

tools can use either an amorphous or a hierarchical hetero-

geneity approach.

Although being largely used, the hierarchical approach

presents some disadvantages we present in this paper.

3. Heterogeneous Modeling Approaches

3.1 Amorphous Approach

Many modeling and design environments support het-

erogeneous modeling, but they generally focus on a fixed

set of MoCs that are generally continuous and discrete sig-

nals for electrical engineering or state machines and dif-

ferential equations for hybrid systems. Since they use few

MoCs that are known beforehand, they can define the union

of these MoCs, and the total knowledge of the interactions

between these MoCs allows to compute the behavior of a

heterogeneous model. This approach is called ”Amorphous

Approach”. A digital to analogical signal converter with

digital inputs and analog output is an example of this sys-

tem. SIMULINK and VHDL-AMS are the examples of this

modeling and design environments.

3.2 Hierarchical Approach

Modeling and design tools that support an open set of

MoCs cannot build the union of these MoCs because of

their high number that moreover are not known beforehand.

These tools require that each component obeys only one

MoC. Since components that are connected obey the same

MoC, all the components that are interconnected must obey

the same MoC. However, the hierarchical abstraction makes

it possible to use a MoC to model a component that is dif-

ferent from the outer MoC in which the component is used.

Therefore changes of MoC can only occur at the boundary

of a component: this leads to the ”hierarchical heteroge-

neous modeling” paradigm used by several modeling and

design environments such as el Greco [7], PTOLEMY II [4]

etc. . . .

This hierarchical approach is obviously an effi-

cient way of managing the complexity of a sys-

tem [14] [15] [10] [18] [6]. This complexity can come from

the structure or the behavior of the system; from where the

structural hierarchy called also architectural hierarchy and

the behavioral hierarchy [1].

Structural hierarchy is used to identify self-contained

sub-systems and to define their interface to the other sub-

systems [16]. This interface may consist of a set of signals.

At a higher abstraction level, it may consist of the commu-

nication channels that encapsulate more complex communi-

cation protocols. This hierarchy allows to design each part

of a system in a separate way once the interfaces have been

specified.

Behavioral hierarchy is a way of considering a complex

process as the result of sequential or concurrent simpler pro-

cesses. The composition of processes makes use of commu-

nication and synchronization primitives such as termination

detection, process activation or suspension, rendezvous or

exceptions. Exception handling may be considered as be-

havioral hierarchy since it can be seen as the termination of

a process and the activation of the exception handling pro-

cess [8]. There is also another type of hierarchy called “syn-

chronization hierarchy” that can be considered as a special

case of behavioral hierarchy.

The fundamental question is not this hierarchy in itself,

it is rather the impact of its coupling with the changes of

MoC on the modeling, the design and the maintenance of

the applications. This corrupts the modularity, reduce the

reusability of the components and reduce the maintainabil-

ity of the system. We rather think that the hierarchy in a

heterogeneous model should not depend on the modeling

tools. It should rather represent the compositional structure

of a system following its functional decomposability.

In the next section, we present the different issues of this

hierarchical approach.

4 Issues of hierarchical approach

Hierarchy manages the complexity of a system by hid-

ing internal details that are not pertinent at a given level of

modeling [16] [17] [6].

When you look inside a component, you may either see

a low level description of the behavior of the component

when the component is atomic or primitive, or you may see

a model of this component in the same modeling environ-

ment when the component is composite. In both cases, the

interface of the component hides its hierarchical level to the

internal details of its behavior. So the inner and the outer

MoCs can be different. It is still necessary to define how

the inner and the outer MoC interact and how data is trans-

formed when crossing a domain boundary [18] [6].

Currently, different modeling tools largely used the hi-

erarchical approach in order to make easier the interac-

tions between two heterogeneous components. But, this ap-

proach has some drawbacks which are in the root of the

issues that we present bellow:

• the hierarchy of the model is coupled with the changes

of MoC and may not reflect the effective structure of

the system;

• components that have inputs or outputs that obey dif-

ferent MoCs cannot be used;

• what happens when data crosses the boundary between

two domains depends on the modeling environment

4.1 First issue

From the coupling between the hierarchy and the change

of MoC arise ad hoc constructions at the boundary between

two models of computation. This issue can be solved either

by preserving the semantics properties or by changing the

semantic properties across models of computation.

4.1.1 Preserving semantic properties across MoCs

Here, only terminals that obey the same MoC can be con-

nected, but a component may obey several models of com-

putation. This way preserves the semantic properties along

connection between terminals.

D1 D1 D2 D2

}

A CB

Preserving sematic properties

Change of semantic properties
 - Conversion of protocol
 - Formatting data

Figure 2. Component obey several MoCs

Since component can obey several models of computa-

tion, we can use a third component dedicated to the change

of semantics between two heterogeneous components in the

same hierarchical level as shown in figure 2. These com-

ponents are called ”Heterogeneous Interface Components,

(HIC)”. Then, the heterogeneous behavior of the system can

occur inside those components as part of their behavior and

is therefore an explicit part of the model of the system.

4.1.2 Change of semantic properties across MoCs

Here, components obey only one MoC, but we can make

connections between terminals across MoCs as shown in

figure 3.

D1 D2 D2 D3

}

A CB

Change of semantic properties
 - Conversion of protocol
 - Formatting data

Figure 3. Component obey only one MoC

To achieve this way, the change of semantic properties

mechanism between MoCs must be implement either in the

core or in the ends of the connection. But to implement

change of semantic properties mechanism between MoCs

in the core of the connection requires from this connection

to become active, so that it must be able to provide both the

conversion of communication protocol and the data format-

ting mechanisms as shown in figure 3.

The challenge is how to do so that from one model of

computation to another, the connection is able to achieve

the three conditions below, presented in [21] :

1. to translate the common semantic property

2. to ignore the semantic properties in the first MoC that

are not present in the target MoC

3. to create the semantic properties in the target MoC that

are not present in the first MoC

In the same way, to implement change of semantic prop-

erties mechanism between MoCs in the end of the connec-

tion requires from this terminal to become active.

To achieve this, some approaches use the mechanism of

Remote Procedure Call (RPC) in that a component can call

a communication primitive of a connection by reading from

or by writing on the interface port. As shown in figure 4, the

Fa

Fc

Fb

SYSTEM

Component1 Component2

P11

P12

P13

Connections

P21

P22

P23

Communication

Protocols

Protocol Library

Component 2 writes on the port 21
and read from the port 22

Componet 1 invokes a
connectionprimitive

C
ho

os
e

of
 p

ro
to

co
l

 primitives supply

communication

Protocol

Port

Interface

C2

C1

Figure 4. Using RPCs

component M1 choices the communication protocol in the

protocols library. Since it can have several implementations

in this library, the synthesis process choices the appropriate

protocol to the MoC used by the components M1 and M2

and provides the necessary primitive for the connection.

In object-oriented philosophy, this concept of protocols

library is often replaced by the power of the polymorphism

technique. Note that in PTOLEMY II for instance, this con-

cept is replaced by the dual concept of polymorphism and

hierarchical abstraction but on different hierarchical levels.

4.2 Second issue

The second issue of this approach forbids the use of com-

ponents that have terminals that obey different MoCs in the

same hierarchical level. For instance, an analogical to digi-

tal converter could be modeled in a continuous time domain,

the digital outputs being considered as continuous signals

with sharp changes. If such a model is close to the real-

ity, it is not at the right abstraction level when you want to

consider the outputs as discrete sequences of values. On

the contrary, the analogical to digital converter could be

modeled using a discrete domain where the continuous in-

puts would be considered as sequences of discrete samples,

turning the device into a resampler or a no-op. To solve

this problem, a Heterogeneous Interface Component must

be used.

4.3 Third issue

The third issue hides the transformations that occur at

the boundary of two domains inside the edge of the compo-

nents. These transformations depend on the modeling tool

and are therefore not explicitly stated in the model of a sys-

tem. And the designer of the system has neither the clear

comprehensibility nor the complete control of what happens

when data crosses the boundary between two domains. So,

he has not the complete control of the heterogeneous be-

havior of its system. To solve this problem, two approaches

may be used :

• The first approach advocates to allow the designer to

edit the edge of the components to specify how data is

transformed when it goes through it. If the heteroge-

neous mode is in the same level of the hierarchy, these

edge looks like to the “HIC” presented in section 4.1.1

• The second approach advocates to move these transfor-

mations from the edge to the core of the components.

This makes the internal specification of the component

depend on the domain in that it is used, what impairs

modularity and reusability.

4.4 Example

Consider the simple example given in [6]Mbobi4 and

shown in figure 5. A signal rectifier illustrates the issue of

the hierarchical heterogeneous models. The top level uses

flows of data samples, and the behavior of the detector is

modeled using discrete events. When the flow of samples

enters the detector, it is converted to a sequence of valued

events. When an event is produced at the output, its value

is used to build a data sample in the outer domain. This is

only an example of what may happen at the boundary of a

component, and the important point is that these transfor-

mations depend on the modeling tool and are not specified

in the model of the system. Since the data flow MoC in

that the detector is used requires that a sample of data be

produced on the output each time a sample is consumed on

the input, the discrete event behavior of the detector must

respect this condition. So even if the input signal does not

change its sign and no event has to be produced, the detector

must produce something on its output to obey the seman-

tics of the outer domain. Here, we have put a sampler that

uses the value of the last emitted event to produce an output

each time an input sample is consumed. We have to put this

sampler in the internal model of the detector because of the

semantics of the external MoC, so the implementation of

the detector depends on the context in that it is used, what

impairs modularity and reuse.

discretes events

floow of samples

Detector

di
sc

re
te

s
ev

en
ts

Top Level

Figure 5. Example of implicit transformation

5. Conclusion

To support heterogeneity arising from the use of differ-

ent technical domains, modeling hierarchically tools nest

different models of computation that characterize these dif-

ferent technical domains.

In this paper, we have discussed the issues that we iden-

tify in hierarchical heterogeneous approach . These ap-

proach lead to the coupling between hierarchy of the model

and the changes of model of computation. So that the com-

ponents that have inputs or outputs that obey different mod-

els of computation cannot be used and what happens when

data crosses the boundary between two domains cannot be

explicitly specified. In addition, we gave some strategies of

managing component in the same level of the hierarchy.

References

[1] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F.

Ivancic, V. Kumar, I. Lee, P. Mishra, G. Pappas, and

O. Sokolsky, “Hierarchical Hybrid Modeling of Em-

bedded Systems”, University of Pennsylvania, Avail-

able online at http://www.seas.upenn.edu/hybrid/

[2] M. Auguin, “Systèmes sur Puce : vers l’exploration

en milieu complexe”, Ecole Thématique sur les

Systèmes Enfouis, I3S, Université de Nice Sophia

Antipolis, CNRS, INRIA, novembre 2003

[3] P.G. Basset, “The theory of practice of adaptive

reusse”, In SSR, page 2-9, 1997.

[4] S.S. Bhattacharyya et al, “Heterogeneous Concur-

rent Modeling and Design in java, Volume I to III”,

Memorandum UCB/ERL M01/12 eecs, University

of California at Berkeley, March, 2001

[5] F. Boniol, “Une approche synchrone multi-

formalismes pour la conception de systèmes

temps-réel distribués”, Technique et science in-

formatiques, Hermès, volume 17, n9/1998, pages

1099-1128.

[6] F. Boulanger, M. Mbobi and M. Feredj, “Flat Het-

erogeneous Modeling”, Proceedings of the confer-

ence of Internet Processing Systems Interdisciplinar-

ies, Venice, Italy, November 10 to 15, 2004

[7] J. Buck and R. Vaidyanathan. “Heterogenous mod-

eling and simulation of embedded systems in el

Greco”, Proceedings of the 8th international work-

shop on Hardware/software codesign, San Diego,

California, USA, Pages: 142-146, 2000, ISBN:1-

58113-268-9.

[8] J.M. Daveau, “Spécification système et synthèse

de la communication pour le Co-Design Logi-

ciel/Matériel”, Ph.D. Thesis INPG, TIMA Labora-

tory, Decembre, 1997

[9] F. Vahid and D. Gajski, ”Specification Partitioning

For System Design”, Proceedings of the IEEE De-

sign Automation Conf., pages 219-224, June, 1992.

[10] A. Girault, B. Lee, and E. A. Lee, Fellow, IEEE,

“Hierarchical Finite State Machines with Multiple

Concurrency Models”, Proceedings of the DATE99

conference, pp.382-383, March99.

[11] R. Hamouche, “Modélisation des systèmes em-

barqués base de composants et d’aspects”, Ph.D.

Thesis, Laboratoire des Méthodes Informatiques,

Université d’Evry Val d’essone, Juin, 2004.

[12] L. Lagadec, “Abstraction, modélisation et outils de

CAO pour les architectures réconfigurables”, Ph.D.

Thesis, Université Renne 1, Décembre 2000.

[13] E.A. Lee and A. Sangiovanni-Vincentelli, “A

Framework for Comparing Models of Computa-

tion”, IEEE Transactions on computer-aided design

of integrated circuits and systems, Vol. 17, no. 12,

December 1998.

[14] B. Lee and E.A. Lee, “Hierarchical Concurrent Fi-

nite State Machines in Ptolemy”, University of Cali-

fornia at Berkeley, Proceeding of International Con-

ference on Application of Concurrency to System

Design, p. 34-40, Fukushima, Japan, March 1998.

[15] B. Lee and E. A. Lee, “Interaction of Finite State

Machines and Concurrency Models”, University of

California at Berkeley, Proceeding of Thirty Second

Annual Asilomar Conference on Signals, Systems,

and Computers, Pacific Grove, California, Novem-

ber 1998.

[16] M. Mbobi, F. Boulanger and M. Feredj, “Non-

hierarchical heterogeneity”, International CCCT,

IEEE Computer Society July-August, 2003, Or-

lando, FlorideUSA,. International IIS, Volume III,

ISBN 980-6560-05-01, pp. 430-435.

[17] M. Mbobi, F. Boulanger and M. Feredj, “Execution

Model for Non-Hierarchical Heterogeneous Model-

ing”, Proceedings of The 2004 IEEE International

Conference on Information Reuse and Integration,

November 8-10, 2004, Las Vegas, USA, IEEE,

ISBN 2004113902, pages 139 144

[18] M. Mbobi, “Modélisation Hétérogène Non-

Hiérarchique”, Ph.D. Thesis, Supélec, Université

Paris XI (Orsay), Décembre, 2004.

[19] RNTL, Rapport du groupe de travail ”système em-

barqué et temps réel, co-développement”, 2001,

Availlale on line at http://www.telecom.gouv.fr/rtnl

[20] F. Simonot-Lion, J.P. Elloy, Y. Trinquet.

“AIL Transport : Un langage de description

d’architecture électronique embarquée dans

l’automobile”, Veille Technologique, 45, juin, 2002,

p. 34-36.

[21] W-T. Chang, S. Ha, and E.A. Lee, “Heteroge-

nous simulation - mixing discrete-event models with

dataflow”, Journal of VLSI Signal Processing 15,

127-144, Kluwer Academic Publishers, 1997.

