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A model selection approach to signal denoising using
Kullback’s symmetric divergence

Maiza Bekara®*, Luc Knockaert®, Abd-Krim Seghouane?, Gilles Fleury?

*Ecole Supérieure d’ Electricité—Servicedes Mésures, 3 rue Joliot Curie 91192 Gif-sur-Yvette Cedex, France
"IMEC-INTEC-UGENT, St. Pictersnieuwstraat 41, B-900, Gent Belgium,

Abstract

We consider the determination of a soft/hard coefficients threshold for signal recovery embedded in additive Gaussian
noise. This 1s closely related to the problem of variable selection in linear regression. Viewing the denoising problem as a
model selection one, we propose a new information theoretical model selection approach to signal denoising. We first
construct a statistical model for the unknown signal and then try to find the best approximating model (corresponding to
the denoised signal) from a set of candidates. We adopt the Kullback’s symmetric divergence as a measure of similarity
between the unknown model and the candidate model. The best approximating model 1s the one that minimizes an
unbiased estimator of this divergence. The advantage of a denoising method based on model selection over classical
thresholding approaches, resides in the fact that the threshold i1s determined automatically without the need to estimate the
noise variance. The proposed denoising method, called KICc-denoising (Kullback Information Criterion corrected) is
compared with cross validation (CV), minimum description length (MDL) and the classical methods SureShrink and
VisuShrink via a simulation study based on three different type of signals: chirp, seismic and piecewise polynomial.

Keywords: Signal denoising; Model selection; Information criterion

1. Introduction assumed to be 1.1.d Gaussian random variables with

zero mean and variance of and let f, = (f(z),

In this paper, we consider the problem of f(t2),....f(t)' . Our objective is to obtain f,, an

recovering an unknown signal from sampled noisy estimate of f, based on the.observations g, .
data. Given a set of observed data g, = (g, Classically, this problem has been solved by linear
gs,...,4,) , which is assumed to be generated from processing through dynamic filtering. However, in
the model: many interesting cases, linear methods fail to give

. 1 satisfactory results. Effective denoising methods are
gf ""'f(tf) + iy ( ) f . .

| | | requently based on some nonlinear processing,

where f 1s the unknown function to be estimated which consists of a cascade of three mappings:

sampled at the instants ¢;, g are noise samples

Y ——— 1. linear mapping W, that transforms the data by

E-mail addresses: Maiza.Bekara@supelec.fr (M. Bekara), projecting it on a basis, usually taking to be an
knokaert@intec.rug.ac.be (L. Knockaert). orthogonal one (wavelet, fourier, spline, ...). The




resulting transformed data y, = Wg,, i1s called
the coefficients.

2. nonlinear mapping F(.), used to map the
coefficients y, to obtain a new vector of
coefficients, i.e., ¢, = F(y,). Two known map-
ping functions, which are called thresholding
functions are defined as:

Hard-thresholding: Fn(y, A) = yI(ly|>A),

Soft-thresholding:
Fs(y,A) = sgn(|yl — )(\y| — DI(|y| > 4),

where I(.) and sgn(.) are indicator and sign
functions, respectively. A is a positive real, known
as the threshold.

3. Linear mapping: an inverse transformation, W !
is applied to the denoised signal, ie., f, = W'¢,.

Under the above scheme, the problem of denoising
1s reduced to that of finding an appropriate value of
A. This choice 1s very crucial and may lead to
oversmoothing (if A is too large) or undersmoothing
(1f A 1s too small). Donoho and Johnstone proposed
simple and explicit expressions to compute the
optimal threshold. VisuShrink [1] and SureShrink
[2] are two methods widely used in signal proces-
sing. However, their implementation needs to
compute an estimate of the noise variance and
therefore making their performance highly depen-
dent on the quality of this estimation. |

Since the thresholding 1s applied to the coeffi-
cients, it sounds to think that the problem of finding
an optimal value for A is not really a continuous
optimization problem as considered in [1,2], but a
discrete one. In this case, the denoising problem is
viewed as that of finding the most significant
projection bases (coefficients) rather than finding
the numerical value of the threshold. This is
equivalent to a model selection formalism for linear
regression which 1s aimed to find the best predictor
to explain a dependent variable. Here, the number
of all possible predictor (bases) is equal to the
number of data points n. It is required to select the &k
most significant bases out of the n possible, there-
fore setting the rest (n — k) bases to zero, and this is
equivalent to thresholding. Viewing the denoising
problem in this way is of great interest because it
leads to an automatic determination of the thresh-
old without the need to directly estimate the noise
variance.

In this paper, we extend the class of denoising
methods based on model selection. We propose an

information theoretical approach to signal denoising
based on Kullback’s symmetric divergence. We first
assume a statistical framework for the unknown
generating model and then we try to find the best
approximating model within a nested parametric
classes of models of increasing complexity k. We
adopt the Kullback symmetric divergence, known
also as the J-divergence [3] as a measure of
similarity between the true unknown model (ideal
signal) and the approximating model (denoised

signal). We then select the model that minimizes

an exactly unbiased estimate of this divergence.
The rest of the paper is organized as follows.
Section 2 reviews the main model selection criteria
for signal denoising. Section 3 presents the proposed
denoising method which we call the KIC,.-denoising.
In Section 4 we present our simulation results along
with some discussions and concluding remarks.

2. Denoising and model selection

The model selection approach to signal denoising
1s not a new issue and has already been described 1n
the hterature. We roughly discuss two major
approaches:

@ The principle of minimium description length
(MDL) introduced by Rissanen [4] and rooted in
coding theory was the first model selection
approach to be applied for signal denoising
[5,6] and 1mage enhancement [7]. The MDL
principle suggests that the best model among a
given collection of candidate models is the one
that gives the shortest description of the data and
the model itself. As a consequence, the noise is
defined as the part of the data that cannot be
compressed by the model, while the rest defines
the meaningtul 1nformation-bearing signal.
Therefore, the MDL principle simultaneously
provides the best denoising and compression of
the signal. A comprehensive paper on MDL-
denoising 1s given by Rissanen [8].

® Vapnik—Chervonenkis (VC) theory i1s another
principle for function estimation which emerged
from learning theory [9]. VC-theory provides an
analytical upper bound of the prediction risk,
which can be used for model selection. The
strength of -VC-theory resides in the fact that the
proposed bound is obtained for finite samples,
therefore avoiding asymptotic approximations
and 1t i1s distribution independent, i.e., no need to
have an assumption about the noise distribution.




However, the so called VC-denoising suffers

from some drawbacks. To compute the bound
it 1s required to provide an accurate estimate of
the candidate model’s VC-dimension., Generally
it 1s very hard to obtain a closed form expression
of the VC-dimension and hence 1t 1s roughly
approximated by the number of free parameters
in the model. Others implementation difficulties
are encountered when VC-denoising 1s applied;
some constants in the definition of the upper
bound are set without formal arguments and the
proposed model’s structures are not theoretically
justified [10]. Moreover, the performance of VC-
denoising shows interesting results only 1f the
assessment 1s based on ‘“‘best worse-case” of the
quadratic risk,’ whereas the classical assessment
1s based on ‘“‘best average-case”. For the above
reasons we will consider only MDL denoising 1n
the simulations examples.

The approach we propose is different from the
previous ones in the following sense. First, as
compared with VC-denoising, it 1s based on an
unbiased estimnate of the risk rather then an upper
bound. Secondly, it avoids the dual objective of
compression and denoising achieved by the MDL
principle and concentrates only on denoising which
is the objective of interest.”

3. KIC ~denoising

Let us introduce the binary vector 7y=
(y,,yz,...,yn)T e {0,1}" as an index of 2" possible
models .#,. The elements of y specify which
regressor 1s included in the model, hence we have:

C,-'-‘ﬁO '})’=1
ci=0 v,=0

Under the model .#,, the vector of data g, exhibits
the Gaussian distribution

P(g ?: c‘}?: J?: M?)

-n/2
= (271:02) exp{—Illg — W '¢,l|°/203}, (2)

Y

'Best worse-case is indicated by lower 75% and 95% marks of
the mean squared error when Monte Carlo simulations are
performed.

“In fact denoising results in compression and vice versa.
Therefore, all the denoising methods based on thresholding
results in data compression. However, for the MDL case, the
compression objective is put forward rather than being a result.

where ¢, 1s the vector of coefficients which are
nonzero at the locations indexed by y and af,
1s a parameter which corresponds to the noise
variance.

Let My = {.#,13 " y;<k} denote the family of
models with at most k regressors. The Mj’s have a
form of nested structure of models, 1.e.,
My € Mgyi. In order to reduce the number of
candidate models, we try to find the best model
within a given family of complexity k. For that
purpose we consider the model m; € M, that
maximizes the log likelihood over 1ts class, 1.e.,

myc = arg max logp(g,ly, ¢y, oy, My). (3)

Let ¢, denote the maximum likelihood estimation

(MLE) of the coefficients for the model my, formally
obtained by:

A . - T,. 12
Cr = drgrrim{llg,, - W el%}
H

: 2 2
arg min{[ly, > — lic,>}.
Y

Clearly, in the family of models My, the best
approximating model is the one obtained by taking
the k& largest coefficients in absolute value. We
denote this vector by ¢;. Now instead of selecting
the best model from a set of 2" candidates, we will
have to compare only n models. Similarly, if of
denotes the MLE of the noise variance under the
model my;. It will be equal to:

ot = {lIyalt* = N&kll*}/n. (4)

Let us assume that the true model has a complexity
ko € [0,n]. This is a strong assumption, but it is
usually employed 1in developing model selection
criterion. Although the requirement may seem
strong, a criterion developed under this assumption
often achieves its intended objectives, even when
the assumption 1s violated (see [11, pp. 20-22}).
This assumption i1s in fact equivalent to say that the
ideal signal has at most kg nonzero wavelet
coefficients and the rest (n — k) are zeros. Every
test signal considered in our simulations fulfill this
assumption.

There exist different measures of similarity
between probability density functions. The most
frequently used measure is probably the Kullback—
Leibler divergence, also known as the I-divergence
or ssmply Kullback directed divergence. The Kull-
back directed divergence between two statistical




models p(x|0y) and p(x|0;) is defined as:

B p(x]0p)
21(09, 0y) = IEU{z logp(XIek)}

= d(0, 0r) — d(0o, 6p), (5)

where

d(0;,0;) = E{p(x}6;)},

and the expectation E;{.} 1s with respect to the
distribution p(x|0;).

The Kullback directed divergence is an asym-
metric measure, which means that an alternative
directed divergence can be obtained by reversing the
roles of the two models in (5). A new measure of
dissimilarity can be obtained by the sum of the two
directed divergences. This new measure is known as
the Kullback’s symmetric divergence, or J-diver-
gence [3]. Since the J-divergence combines informa-
tion about the model’s dissimilarity through two
distinct measures, 1t functions as a gauge of model
disparity, which 1s arguably more sensitive than
either of its individual component. The Kullback
symmetric divergence is defined as

2J(00,0,) = 21(09, 0;) + 21(0k, 6p)
= d(0y, Or) + d(O, 6p)
— d(0k, 0) — d(6o, 0,). (6)

Dropping d(8y, 8p) since i1t does not depend on k, the
quantity

K(60,0r) = d(0, 0r) + d(0k, 6p) — d(Ox, 0y), (7)

1S a suitable substitute measure for 2J(0y, 0). If we
denote 8, the MLE of @, based on a vector of
observed data x,, K(0y, 8;) would provide a suitable
measure of the discrepancy between the two models.
Yet evaluating K(6y,0;) 1s not possible since it
requires the knowledge of the true model. It has
been shown [12] that for over-parameterized or
exactly specified models (the unknown model
belongs to the class of candidate), and under the

hypothesis of linear regression models with 1.i.d

Gaussian noise, an exactly unbiased estimator of
K(6y, 8;) denoted by KIC. is given by:

KICAK) = — 2 logp(xslf) + 2+ 2%
n—=k /A
——m,b( : )+n10g(—2-), (8)

where Y(.) 1s the digamma function [13]. Under this
assumption the goodness of fit term determined by

the —log likelithood 1s equal to
—2 logp(x,,lék) = # log(a,zc) + nlog(2n) + n.

Using the result in (4) and dropping the constant
terms from (8), the criterion reduces to

2 a2

H
(k + Dn n—Kk
+2;:'77:“5“"*”( > ) ©®)

The KIC, has been implemented to solve divers
model order selection problems including polyno-
mials, AR, ARMA models [14] and source number
estimation i1n array processing [15]. It 1s worth to
mention that the assumptions made above, mainly
the one that assumes a (Gaussian noise, are made
only in the derivation of the criterion. When these
assumptions are not fulfilled, (8) and (9) are just
approximately unbiased estimators instead of ex-
actly unbiased. It 1s then possible to study the
performance of KIC, without regard to the
assumptions underlying the derivation.” However,
this 1ssue needs further analytical development and
extensive empirical stmulations which are beyond
the scope of this paper.

Using the above criterion, we propose the KIC,-
denoising algorithm as follows: '

KIC.~-denoilising

l. Obtain the noisy wcoefficientsy, = Wy,.

2. Order the absolute value of they, in a
decreasing order, i.e., |yh=W|=
>yl '

3. Find the integer kkic. € [1,n] that mini-
mizes (9). Choose the threshold A, =
\ylefCr+l ‘

4. Apply the soft-thresholding to obtain
Y, = Fs(y,, 4op:) and get the denoised sig-
nal by inverse transformf, = Wy .

A similar MDL-denoising algorithm [8] can be
obtained by taking

2 a2
MDLG) = (1 — K)log (uy,,nn — I )

~ 2 t .
+k10g(”c;;” ) — log(n I_C k) (10)

‘We have studied the performance of KIC, in the linear
regression case when the assumption that the true model is
correctly specified or overfitted is not verified in [16].




mmstead of (8). A hard thresholding can also be
applied by changing the thresholding function 1n
Step 4.

The choice of the orthogonal projection, W
depends on the type of the signal in question. For
a wide class of 1nteresting signals which 1nclude
nonstationary signals or signals with discontinuities,
projection based wavelet decomposition i1s the most
suitable one. In this work we have used this type of
decomposition. The advantage of using wavelets to
approximate an arbitrary function resides in their
ability to spatially adapt to salient features of the
function leading to a parsimonious representation.
A comprehensive discussion about the theory and
applications of wavelets can be found in the book
written by Mallat [17].

4. Simulation

In this section, we compare the performance of
the proposed KIC.-denoising method with MDL-
denoising, cross validation (CV) {18], SureShrink
(hard thresholding) and VisuShrink (soft threshold-
ing). All simulations are carried out using the
Wavelab package developed at Stanford Univer-
sity.* We would like to mention that SureShrink and
VisuShrink are adaptive thresholding methods, 1.e.,
an appropriate threshold 1s computed and applied
for each resolution. On the other hand, CV, MDL
and KIC, are global thresholding strategies, 1.e., a
single threshold i1s applied to all the resolutions.
Throughout all the simulations, we consider a
Daubechies type mother wavelet with N = 6 and a
lower resolution cutoft L = 3.

We consider three types of signals in this paper.
The first signal 1s a chirp signal, which 1s an example
of signals with a complex frequency profile. In
addition, this type of signals i1s often encountered in
radar and sonar signal processing. The second
signal i1s a seismic signal, as an example of a
complex time profile signal. The last signal 1s a
piecewise polynomial signal with a discontinuity
which 1s an example of a smooth signal with a
transition, often encountered in edge detection. All
simulations are implemented for two different noise
levels, low and high respectively. Signals are made
noisy by adding 1.1.d Gaussian random variables
with zero mean and variance ¢§. For each combina-

“This package is freely available on-line at http://www-
stat.stanford.edu/~wavelab/

tion of signal type and noise level, 1000 different
realizations of the noisy signal were generated. For
each realization a denoised signal f, 1s obtained by
using the different competing methods and the
mean square error (MSE) 1s computed as
f —f£,]|°/n. The sampling distribution of
log(MSE) is displayed using boxplots and used as
performance assessment to compare the different
denoising methods.

4.1. Example 1: chirp signal

The chirp signal 1s defined as

f1(t) = sin(40m(1.5¢° — 1.361 + 0.68)), ¢ € [0, 1].

Two noise levels are considered, ¢ = 0.5 and
a5 = 0.05. The signal f,(f) and its wavelet coeffi-
cients along with their noisy versions are shown In
Fig. 1. Fig. 2 gives boxplots of log(MSE) for each of
the five denoising methods. Clearly KIC, performed
the best for both noise levels, closely followed by
MDL. On the other hand, Visu was far behind all
the remaining methods. This 1s mainly due to its
tendency to oversmooth the noisy signal by setting
high threshold. We may. notice also the robust

behavior of KICc in term of lower variability of
log(MSE).

4.2. Example 2: seismic signal

One of the key problems in seismology is to derive
information about the structure and physical
properties of the earth medium from the analysis
of seismic records. This task i1s complicated by the
fact that the seismic signals emitted by the source
are weakened by geometric spreading and attenua-
tion. Moreover, they are also distorted by ambient
seismic noise. Therefore, one of the main issues In
applied seismology is to ensure high SNR or, when
conditions are bad, to improve i1t by suitable ways of
data acquisition and processing (denoising). In this
example we target a 1-D seismic signal that consists
of 1024 time samples. The noise variance o7 is
chosen proportional to the maximum amplitude of
the ideal signal, i.e., ¢j = amax(]y|), with o=
{107%,107°}. ‘Fig. 3 shows the seismic signal and
its wavelet transform along with their noisy
versions. Fig. 4 presents boxplots of the log(MSE)
for each of the denoising methods. Here again, the

conclusions obtained for the chirp signal can be
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generalized for the case of seismic signal. The
optimality of denoising methods based on model
selection over the other methods is clear. A close

look at the wavelet coefficients of the

1deal

signal (the chirp and more clearly the seismic signal)
shows a large disparity of the coefficients over
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Fig. 5. Piecewise polynomial signal and its wavelet coefficients, n = 1024 and o = 1072,

all the subbands. This implies that some of the
high frequency signal components present in the
finest or most detailed subbands is going to be
confused with noise. As a consequence, Visu
tends to overestimate the noise variance, leading
to a high threshold and therefore resulting in
oversmoothing of the data. On the other hand,

Sure, which 1s already known to undersmooth

the signal, will excessively undersmooth it, misled
by the noise-like components of the signal. How-

ever, KIC, and MDL find a balance in a fully
automatic way.

4.3. Example 3. piecewise polynomial

The piecewise polynomial with a discontinuity is
a well-known academic example presented in [19]. It

1s defined over the interval [0,1] as

412(3 — 41 t € [0.00,0.50],
3 3
ZH4r' — 10t +7)—= ¢ €]0.50,.75],
fro={ g 10D =5 (€030,
16
S - 1)° t €]0.75,1.00].

The data consist of 1024 uniform samples over [0,1].
The function f,(f) and its wavelet coefficients
together with their noisy versions are shown in
Fig. 5. By examining the wavelet coefficients of the
ideal signal, we observe that the signal has
etfectively very few nonzero coefficients, with many
of them caused by the presence of the discontinuity.
Now, any thresholding method that sets most of
these coefficients equal to zero, will effectively
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recover the signal at the cost of smoothing the
discontinuity. This can be shown by observing the
boxplots 1n Fig. 6. Clearly Visu, which was blamed
to set a high threshold and have a tendency to
oversmooth the data performed the best. Yet KIC.
came 1n the second place followed by MDL. Again
denoising methods based on model selection yield
good results in comparison with CV and Sure.

5. Conclusion

In this paper we have introduced a new informa-
tion theoretical criterion for signal denoising using
wavelets. The criterion is based on the minimization
of an exactly unbiased estimator of a cost function
that gives a measure of similarity between the true
unknown model, corresponding with the ideal
signal and the candidate model, corresponding with
the denoised signal. The cost function considered
here 1s a variant (within a constant) of the
Kullback’s symmetric divergence, which arguably
provides a better assessment of model’s similarity
than the directed Kullback’s divergence. The
proposed method called KIC,.-denoising performers
very well as compared with classical methods for
different type of signals and under different noise
levels in terms of minimum MSE of reconstruction.
It 1s also robust by achieving the smallest MSE
variance. The good performance of KIC, for
different types of signals make it a an interesting
denoising tool in the case where we do not have
reliable a priori information about the smoothness
of the clean signal. Possible extensions of the
proposed method could be directed towards 2D
signals (1mage) denoising, by means of a proper

modelling of the problem as a multivariate linear
regression.

We did not investigate the performance of the
proposed criterion for non Gaussian noise. In the
interesting type of non Gaussian noise, i.e., noise
with heavy tails, we anticipate that KIC,.-denoising
will exhibit a robust behavior as it has a strong
penalty function as compared with the MDL.
Unlike Sure and Visu, the computation of KIC,
and MDL do not involve 'a roughly selected noise
level, which 1s even loose when the noise is tailed.
For correlated noise, we anticipate also a robust
behavior as compared with the cross-validation
principle since this last is based on data splitting
which assumes 1.i.d distributions. The question,
however, whether the proposed method, or more
generally model selection based methods are ade-
quate for all the denoising problems, is completely
beyond the scope of this paper.
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