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Abstract— Most heterogeneous modeling environments
allow only one model of computation at each hierarchical
level of a model. The consequences are that (1) the
transformations that occur at the boundary of two models
of computation depend on the modeling tool and (2) the
hierarchical structure of the model is perturbed by layers
introduced to allow changes of model of computation.

We introduce “heterogeneous interface components” to
allow flat heterogeneous modeling. Such components have
inputs and outputs that obey different models of compu-
tation. We present an execution model that allows the use
of these components with any model of computation.

I. I NTRODUCTION

The modeling and design of complex systems
calls naturally for the use of several models of
computation. For instance, an airborne imaging sys-
tem contains mechanical and optical components,
cryogenics for IR captors, signal processing algo-
rithms and feedback mechanisms. Some of these
components may be implemented either in hardware
or in software. Each of these components requires
specific know-how and tools linked to specific mod-
els of computation. Even simple systems have at
least two parts: a control part — which decides
what to do and when — and a data processing
part. Moreover, it is often necessary to introduce
a third model corresponding to the environment of
the system.

We consider component based modeling, a tech-
nique where the model of a system is built by
assembling components that interact according to
models of computations [6], [3]. A model of com-
putation is the set of laws or axioms that rule the
interaction of the components. Concurrent sequen-
tial processes, state machines, synchronous data-
flow, discrete events and Kahn process networks are
examples of models of computation. According to

the vocabulary used in the Ptolemy II project [1],
a domain is an implementation of a model of
computation: it is a set of rules for computing the
behavior of the components of a model. In the
following, we often use “domain” to mean “model
of computation”.

Heterogeneous modeling is simply modeling us-
ing several models of computation or domains.
Since most systems are heterogeneous in nature,
heterogeneous modeling provides more natural and
more complete models [4]. For instance, being able
to use both state machines and synchronous data-
flow components allows to describe explicitly the
control in the model of a digital signal processing
system. If we were limited to the synchronous data
flow domain, control and data processing would
have to be coded together and the model would be
less expressive and more difficult to maintain [5].

Many modeling and design environments support
heterogeneous modeling, but they generally focus
on a small set of models of computation: continuous
and discrete signals for electrical engineering or
state machines and differential equations for hybrid
systems. Since they use few domains, such environ-
ments can define the union of the domains that they
support, and so allow components to obey several
models of computation. In such environments, a
digital to analog signal converter can be modeled
as a single component with inputs that obey a
continuous signal model of computation and outputs
that obey a discrete signal model of computation.
However, environments that support a large or ex-
tensible number of domains cannot build this union,
so they require that each component obeys only one
model of computation. Since components that are
connected obey the same model of computation,
domain changes can only occur at the boundary of



a component: the model of computation used inside
the component may not be the same as the one used
outside. This leads to hierarchical heterogeneous
modeling [2].

II. H IERARCHICAL HETEROGENEOUS

MODELING

Hierarchy is an efficient way of managing com-
plexity by hiding internal details that are not perti-
nent at a given level of modeling. When you look
inside a component, you may either see a low level
description of the behavior of the component —
when the component is atomic or primitive, or you
may see a model of this component in the same
modeling environment — when the component is
composite. In both cases, since the internal structure
of the component is hidden to the external model of
computation, it may use a different domain. It is still
necessary to define how the internal and the external
domains interact and how data is transformed when
crossing a domain boundary, but hierarchy makes
heterogeneous modeling easier.

The main drawbacks of this approach are:
• the hierarchy of the model is coupled to the

changes of model of computation and may not
reflect the effective structure of the system;

• components that have inputs or outputs that
obey different models of computation cannot
be used;

• what happens when data crosses the boundary
between two domains depends on the modeling
environment.

The first issue may obscure the natural structure
of a model with artificial layers introduced to allow
changes of model of computation.

The second issue forbids the use of components
that have terminals which obey different models
of computation. For instance, an analog to digital
converter could be modeled in a continuous time
domain, the digital outputs being considered as con-
tinuous signals with sharp changes. If such a model
is close to the reality, it is not at the right abstraction
level when you want to consider the outputs as
discrete sequences of values. On the contrary, the
analog to digital converter could be modeled using a
discrete domain where the continuous inputs would
be considered as sequences of discrete samples,
turning the device into a re-sampler or a no-op.

The third issue hides the transformations that
occur at the boundary of two domains inside the
“edge of the components”. These transformations
depend on the modeling tool and are therefore not
explicitly stated in the model of a system. Two
approaches may be used to solve this problem:

• allow the designer to edit the edge of the
components to specify how data is transformed
when it goes through it;

• move these transformations from the edge to
the core of the components.

However, moving the transformations to the core
of the component makes the internal specification
of the component depend on the domain in which
it is used, what impairs modularity and reusability.

These three issues disappear when we allow sev-
eral models of computations to coexist at the same
level of the hierarchy of a model, what we call “Flat
heterogeneous modeling”.

III. F LAT HETEROGENEOUSMODELING

The real issue is not hierarchy in itself but the
impact of the coupling between domain changes and
hierarchy on the design and maintainability of ap-
plications. Therefore, “flat heterogeneous modeling”
does not mean “heterogeneous modeling without
hierarchy”, it means that the hierarchy is used to
reflect the structure of the model without being
perturbed by artifacts introduced by changes of
model of computation.

With flat heterogeneous modeling, a given level in
the hierarchy of the model may contain components
that use different models of computation. There are
two possibilities for that:

1) components obey only one model of compu-
tation, but we can make connections between
terminals across domains;

2) only terminals that belong to the same domain
can be connected, but a component may obey
several models of computation.

We don’t use the first possibility because the
change in semantics between domains occurs along
the connections between terminals, and connections
are generally not considered as active entities in
modeling environments. The second possibility pre-
serves the semantics of data along connection be-
tween terminals and has the advantage of supporting



components that have terminals that obey different
models of computation. The change of semantics
between domains occurs inside those components
as part of their behavior and is therefore an explicit
part of the model of the system. We call such
components “heterogeneous interface components”
(HIC). As shown by the analog to digital converter
example, HICs appear naturally in models, however
they raise the issue of making them obey several
models of computation in a consistent way.

We consider HICs in the context of generic het-
erogeneous modeling. When the available models
of computation are known and in limited number,
it is more efficient to use their union to support
HICs. The problem that we address is the use of
heterogeneous interface components with any num-
ber of models of computation that are not known in
advance. A typical model of a given system may not
use more than two or three domains, and that is why
special purpose flat heterogeneous modeling tools
are useful and efficient. However, when modeling
a complete system within its environment at a
high level, the number of models of computation
involved increases. Even if each system does not
use more than three or four models, the number of
possible combinations of a small number of models
of computation chosen among all possible models
of computation is too large to use the “union of
models” approach.

IV. H ETEROGENEOUSINTERFACECOMPONENTS

A HIC has terminals that obey different models
of computation (MoC), therefore its behavior can
be decomposed into as many sub-behaviors as there
are MoCs, and these sub-behaviors are coupled: the
behavior of the HIC according to one MoC can
influence its behavior according to another model
of computation.

Each sub-behavior of an heterogeneous inter-
face component is a bridge between a model of
computation and the global behavior of the HIC.
When a HIC interprets an input, it translates the
meaning of this input in the associated MoC into an
internal meaning for the HIC. When a HIC produces
output, it translates the information gathered from
its inputs into the semantics of this output according
to the associated MoC. Therefore, specifying the
behavior of an heterogeneous interface component

amounts to building an internal representation of the
semantics of the inputs according to their respective
models of computation, and translating this internal
representation into outputs.

Heterogeneous interface components allow ex-
plicit specification of how data from one domain
is interpreted, and of how this interpretation is used
to produce data for another domain. They are not
limited to interfacing two domains only: a HIC may
use as many domains as needed.

A. Example

We consider the simple example of a signal
rectifier to illustrate the difference between flat and
hierarchical heterogeneous models. The system, as
shown on the left side of figure1, receives an input
signal as a sequence of data samples. A multiplier
multiplies each sample either by 1 or by -1 and
toggles between the two behaviors according to
events produced by a sign-change detector.
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EXAMPLE SYSTEM

The detector has an input that receives a flow of
data samples and an output that produces a discrete
event each time the input changes its sign. The
multiplier has an input and an output that convey
flows of data samples and an input that receives
discrete events. This example is therefore a flat
heterogeneous model of the system and contains two
heterogeneous interface components.

The right part of figure1 shows a hierarchical
model of the same system. The top level uses flows
of data samples, and the behavior of the detector
is modeled using discrete events. When the flow



of samples enters the detector, it is converted to
a sequence of valued events. When an event is
produced at the output, its value is used to build
a data sample in the outer domain. This is only an
example of what may happen at the boundary of
a component, and the important point is that these
transformations depend on the modeling tool and
are not specified in the model of the system.

Since the data flow model of computation in
which the detector is used requires that a sample of
data be produced on the output each time a sample is
consumed on the input, the discrete event behavior
of the detector must respect this condition. So even
if the input signal does not change its sign and no
event has to be produced, the detector must produce
something on its output to obey the semantics of the
outer domain. Here, we have put a sampler which
uses the value of the last emitted event to produce
an output each time an input sample is consumed.
We have to put this sampler in the internal model of
the detector because of the semantics of the external
model of computation, so the implementation of the
detector depends on the context in which it is used,
what impairs modularity and reuse.

B. Supporting flat heterogeneous models

Regarding practical aspects, we must describe
how the heterogeneous behavior of a HIC is spec-
ified, and how it is interpreted to compute the
behavior of the model of a system. Since we don’t
plan to develop a full featured modeling platform,
our main goal is to be able to use heterogeneous
interface components with existing models of com-
putations. However, these models of computation
don’t support HICs, or if they do, not in such a
generic way.

Our approach is to transform the original flat
heterogeneous model by adding one level to its
hierarchy and to build homogeneous subsystems at
the next level. The top layer is managed by a new
“Heterogeneous” model of computation that sched-
ules the homogeneous subsystems and delegates the
computation of their behaviors to their respective
domains. This execution model uses hierarchy at
simulation time to insulate models of computations,
but this has no impact on the structure of the model
of the system and allows components to be designed

without considering the context in which they will
be used.

For each domain used by a HIC, we build a
component that represents the HIC in this domain.
We call this component the “projection” of the HIC
onto the domain. From the point of view of the
domain, this component is a regular component,
with terminals that obey the semantics of domain,
the other terminals being masked during the process
of the projection. However, the projection of a HIC
in a domain can communicate with other projections
of the same HIC in other domains. The projection of
the heterogeneous interface components onto their
domains, the communication between the projec-
tions of a HIC, and the scheduling of the homo-
geneous subsystems are managed by the “Hetero-
geneous” domain which implements an execution
model for HICs.

V. EXECUTION MODEL

The first step in the execution of a flat heteroge-
neous model is to project the HICs onto each of
the domains that they use, the behavior of each
projection being computed by the corresponding
domain. The projected components must behave
exactly as the other regular components that belong
to the target domain, so the terminals of the HIC
that obey other models of computation are hidden
during the projection.

A. Clustering of the homogeneous components

Once every HIC has been projected onto each of
the domains it uses, the resulting components are
clustered into homogeneous subsystems that contain
only regular components belonging to one domain.
The behavior of each subsystem can therefore be
computed by applying the rules of a regular do-
main. Our Heterogeneous domain must schedule
the subsystems in order to compute the behavior
of the whole system from the behavior of the
homogeneous subsystems.

This is illustrated for a very simple system on
figure2. The system contains a componentA which
has one output that obeys the model of computation
D1, another componentB which has one input
that obeys the model of computationD2, and these
components are interconnected through an hetero-
geneous interface componentH. Since H uses
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TRANSFORMATIONS OF A FLAT HETEROGENEOUS MODEL

two models of computations, it has two projections
notedHD1 andHD2. HD1 has only an input because
the projection ontoD1 hides the output ofH since
it obeys another model of computation. Similarly,
HD2 has only an output because the projection onto
D2 hides the input ofH which obeysD1.

The components are grouped into homogeneous
subsystems that can be scheduled by the heteroge-
neous domain. In our example, we have one subsys-
tem for each domain used, and the connections from
Ω1 to H and fromH to Ω2 code the dependency of
the behavior ofHD2 on the behavior ofHD1 . Inside
Ω1 andΩ2 the scheduling of the components is done
according to the local domain, but the scheduling
of Ω1 andΩ2 is done by the heterogeneous domain
according to the topology of the system.

B. Virtual communication channels

Usually, communication between components oc-
curs along communication channels that appear as
connections between components. In the clustered
system that results from the transformation of a flat
heterogeneous system, the communication channels
between the projections of a HIC onto different do-
mains cannot have a matching connection because

the communication occurs inside the HIC. However,
this communication channel must be taken into
account for scheduling the homogeneous subsys-
tems. We call such a communication channel a
“virtual heterogeneous channel”, and the commu-
nication over such a channel obeys the rules of the
heterogeneous domain.
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Fig. 3

HOMOGENEOUS COMMUNICATION CHANNEL

Another kind of virtual communication channel is
necessary to handle the case where two components
that obey the same model of computation and are
connected, cannot be put into the same subsystem.
The example on figure3 shows a system with two
HICs (the projections of the HICs are represented
by their intersection with the dashed frame of the
subsystems). AlthoughA1 and A3 obey the same
model of computation, they cannot be put into the
same subsystem because that would lead to a system
with no possible schedule. If we putA3 in Ω1,
Ω1 depends onΩ2 because it containsA3 which
depends onA2 throughH2, andΩ2 depends onΩ1

because it containsA2 which depends onA1 through
H1. However, whenA1 andA3 are in different sub-
systems, we cannot connect them as they are in the
flat system. We call such a communication channel a
“virtual homogeneous channel”. These channels are
implemented using a source relay component which
transmits data to a matching target component.

A1 H1 A2 H2 A3

Tx Rx

Ω1 Ω2 Ω3

Fig. 4

RELAY COMPONENTS

On the example of figure4 the data which is



available on the input ofTx is also available on the
output ofRx, and the scheduler of the heterogenous
domain will ensure thatΩ1 is computed beforeΩ3

so thatTx can transmit the value toRx before the
output ofRx is used.

C. Building subsystems

The algorithm used to build the homogeneous
subsystems examines each component in an order
which is compatible with the topological sort of
the system. For each componentA, it looks for a
subsystem that uses the same model of computation
as the component. If such a systemΩ exists and
there is no path between any component ofΩ
and A that goes through a HIC,A is put into Ω,
else a new subsystem is created to hostA, and
relay components are created if there is a virtual
homogeneous channel between a component inΩ
andA.
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AN OPTIMAL PARTITION OF A SYSTEM

These conditions ensure that there won’t be any
cross-dependencies between subsystems, so that it
will be possible to find a schedule. However, they
may lead to the creation of more subsystems than
necessary. Figure5 shows an optimal partition of a
system that cannot be reached by our algorithm: we
do not allow to putA andC in the same subsystem
although they both obeyd1 because there is a path
from A to C that goes through a HIC.

D. Fake ports

A connected system may be divided into subsys-
tems that are not connected. For instance, the system
shown on figure6 is divided into three subsystems,
and the second subsystem is not connected because
the connections fromA to H1 andH2 are lost when
they are projected onΩ2. This should not be a
problem, but some models of computation do not

allow unconnected systems, so we must make the
subsystem connected without changing its behavior.
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V IRTUAL PORTS

For this, we add fake terminals to the projections
of the HICs when necessary, and we connect them
to make the subsystem connected. Such connections
between fake ports have no effect on the behavior
of the system. They are only “syntactic sugar” for
domains that do not support unconnected systems.
The connection between fake ports appears as a
dashed line on the figure.

E. Scheduling

The scheduling of the subsystems must respect
the dependencies induced by the virtual channels.
However, virtual homogeneous channels are cre-
ated only when there exists a path between two
components that goes through a HIC. Therefore,
the dependency induced by a virtual homogeneous
channel is also induced by a chain of virtual hetero-
geneous channels, and it is sufficient to take only
virtual heterogeneous channels into consideration
when scheduling the subsystems.

Since our heterogeneous execution model is
generic and works with any model of computation,
we do not consider the semantics of the models
of computation of the subsystems when scheduling.
The only assumption we make is that a connection
from an output to an input makes the consumer
depend on the producer. The scheduling algorithm



is therefore simple since any ordering of the subsys-
tems that is compatible with the pre-order induced
by the topology of the connections between com-
ponents is a suitable schedule.

A consequence of this algorithm is that there
cannot be loops in the graph of the system. This
is the price to pay for the support of any model of
computation. The scheduling of a system that con-
tains loops depends on the semantics of the model of
computation. A way to break dependency loops is to
insert a delay in the loop. However the semantics of
a delay is itself very dependent on the semantics of
the model of computation. Therefore, if we consider
the subsystems and their models of computation
as black boxes, we cannot allow dependency loops
between subsystems. However, if a loop is local
to a subsystem and if the corresponding model of
computation supports loops, the loop is accepted
and its semantics will be given by the domain of
the subsystem.

VI. I MPLEMENTATION IN PTOLEMY II

Our flat heterogeneous execution model is imple-
mented in the Ptolemy II framework which support
numerous models of computation. The graphical
user interface does not support flat heterogeneous
models yet, but it is possible to create such systems
through the Java API of Ptolemy II. One of the is-
sues raised by heterogeneous interface components
is the coding of their intended behavior. We discuss
below how we solve this problem in the current
implementation of our execution model.

A. Specifying the behavior of a HIC

Each time a projection of a HIC onto a domain
is activated by the local domain, the HIC must
either process inputs, produce outputs or update its
internal state. The scheduling algorithm of the het-
erogeneous domain ensures that all the projections
of a HIC that take inputs are activated before any
projection that must produce outputs is activated.
However, when we design a HIC, we do not know
in which order its inputs will be available because
we do not know how it will be projected on the
domains it uses. It is neither possible to specify the
behavior of the HIC globally for each of its do-
mains, because it may happen that several terminals

that use the same model of computation be projected
into different subsystems.

Therefore, the only solution to specify the be-
havior of a HIC is to specify how its state is
updated for each possible set of known inputs, and
to specify how to compute its outputs from the
known inputs and the current state. This makes
programming HICs less simple than programming
regular components because the code must check
which inputs are known before processing them.

VII. C ONCLUSION

Flat heterogeneous modeling allows more natural
modeling of heterogeneous interface components
and gives more control on the semantics of the
interactions between models of computation to the
designer. We have presented an execution model
that allows the use of flat heterogeneous models
with implementations of models of computation that
were not designed for this. The separation between
the changes of domain and the hierarchical structure
of the model, as well as the specification — in
the model of the system — of what happens at
the boundary between domains contributes to the
modularity and maintainability of the models.
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