
Execution Model for Non-Hierarchical Heterogeneous Modeling

Mokhoo Mbobi
Mokhoo.Mbobi@supelec.fr

Fréd́eric Boulanger
Frederic.Boulanger@supelec.fr

Suṕelec - Computer Sciences Department
Plateau de Moulon, 3 rue Joliot-Curie
91192 Gif-sur-Yvette cedex, France

Mohamed Feredj
Mohamed.Feredj@supelec.fr

Abstract

To combine different technology domains, modeling lan-
guages and platforms generally use a hierarchical ap-
proach. This approach avoids the combinatorial explosion
of the number of interfaces between models of computation
(MoC), but it forbids the use of components which have
inputs or outputs that obey different MoCs. This affects
the modularity and the reuse of the components. More-
over, the communication between two MoCs is implicitly
defined in the modelling tool, and the designer does not
have control over the semantics of what happens at the
border between MoCs. In [7], we introduced a new ap-
proach that allows non-hierarchical heterogeneity based on
heterogenous-interface components (HIC). In this paper, we
present the architecture and the execution model we have
designed to support HICs in Ptolemy II.

1. Introduction

The design of embedded systems is a complex task that
makes use of numerous subsystems which belong to differ-
ent technical domains. Those domains have different ways
of modeling systems, so embedded systems are heteroge-
nous in nature. As an example, consider the simple example
on Figure 1 where a detector analyses a radio signal to pro-
duce an event when a mobile communication device should
change from a base station to another. This detector is at
the border between the analogous signal domain of its input
and the discrete event domain of its output.
Heterogenous modeling is supported by many languages
and modeling tools such as SpecC [11], SystemC [12],
ROSETTA[10], POLIS [8], el Greco [4],PTOLEMY II [3] [5],
etc. . . . However, these platforms either impose that a given
level in the hierarchy uses a single MoC, or allow only a
built-in set of MoCs. For instance one for analogous and
the other for discrete signals.

These limitations avoid the combinatorial explosion of

the number of interfaces between MoCs, but they do not
allow the use of components that have inputs or outputs
that obey different models. However, such components ap-
pear naturally in systems, as shown in our first example.
Moreover, coupling heterogeneity and hierarchy impairs the
modularity of the system model. Our goal is not to ban hi-

 Output
Events

Input
Signal

Figure 1. A simple flat heterogeneous system

erarchy from system modeling but to dissociate hierarchy
and computation models. So, we think that the hierarchy in
a heterogeneous model should not depend on the modeling
tools, but, it should rather represent the structure of a system
following its functional decomposability.

The approach that we presented in [7] is based on het-
erogenous interface components which have inputs and out-
puts that obey different models and therefore allow the con-
nection of sub-systems that behave according to different
MoCs or domains. This approach allows the use of flat het-
erogenous models which have two main advantages: better
modularity and facility of maintainability, which are impor-
tant for distributed simulations for instance; and the pos-
sibility to define explicitly what happens at the boundary
of several MoCs. The simulation of such flat heterogenous
systems requires an execution model that is able to delegate
the computation of the behavior of different components to
their respective MoC, and to handle Heterogenous-Interface
Components (HICs).

This paper presents such an execution model that we de-
signed so that it does not need to know anything about the
semantics of the underlying MoCs. We have implemented
this execution model in Ptolemy II, and it supports all ex-
isting Ptolemy domains. It should also support any future
domain because it is independent from their semantics.

2. Non-Hierarchical Architecture

Non-hierarchical heterogeneity allows the use of ac-
tors [1] [2] [6] that obey different MoCs at the same level in
the hierarchy. This implies that a model can contain actors
that communicate according to different semantics. In [7]
it has been proposed an non-hierarchal heterogeneity ap-
proach which is based on two main components: the Het-
erogeneous Interface Component which manages the data
flows and an heterogeneous execution model which handles
the control. It has been that supporting HICs is the key to
non-hierarchical heterogeneous modeling.

A non-hierarchical heterogeneous model may contain
several domains at the same level of the hierarchy, each do-
main being in charge of the actors which use its MoC. Since
a MoC defines the interactions and the communication be-
tween actors [9], a HIC will be handled by several domains
which must be coordinated to take into account the fact that
the reaction of a HIC according to a MoC may have conse-
quences on its behavior according to other MoCs.

3. Heterogeneous Interface Components

An heterogeneous interface component is in charge of
the management of the data flows between different MoCs.
By designing the behavior of HICs, we are able to define the
semantics of the communication between actors that obey
different MoCs.

Since HICs are at the boundary of several MoCs, they
must obey the semantics of several domains. However, to
be usable with existing MoCs, they must behave exactly as
actors of a MoC from the point of view of the corresponding
domain. Everything that does not belong to a MoC must be
masked when a HIC is considered as an actor of this MoC.
This is what we call “projecting a HIC on a MoC”. A HIC

HIC

HicIn = HicTxIn HicOut = HicRxOut

A2HicTx HicRx

A2In

A1

A1Out HicTxIn HicRxOut

Ω2Ω1

Ω1.CtrlΩ1.Clbk Ω2.Clbk Ω2.Ctrl

HIC.Clbk HIC.Ctrl

A1.Clbk
A1.Ctrl

HicTx.Clbk

HicTx.Ctrl

A2.Ctrl
A2.Clbk

HicRx.Ctrl

HicRx.Clbk
Execution

Model
(M1)

Non-Hierarchical
Heterogeneous
Execution Model

(M)

c1 c2

Execution
Model
(M2)

Figure 2. A HIC projected on two domains

is controlled by several execution models that correspond to
different MoCs, and by the heterogeneous execution model.
The HIC is projected on the various domains and there, each
projection obeys the local semantics. The homogeneous be-
havior and the communication tasks are managed by the

projections of the HIC while the heterogeneous behavior is
managed by the HIC itself.
The HIC can be activated either in a homogeneous (as a
projection) or in a heterogeneous context. In the homoge-
neous context, the HIC has input and outputs that all obey
the same MoC and it behaves like an actor of the MoC. In
the heterogeneous context, the HIC coordinates its behav-
iors in the different domains, according to its global hetero-
geneous behavior.

4. Non-Hierarchical Execution Model

The simulation of such flat heterogenous systems re-
quires an execution model that is able to delegate the com-
putation of the behavior of different components to their re-
spective MoC, and to handle Heterogenous Interface Com-
ponents. We designed the following execution model that

M1 M2 Mm Mn

HETEROGENEOUS EXECUTION MODEL (M)

HIC

Rx1

Rx2

Rx3

Rxn

Tx1

Tx2

Tx3

Txm

M(Tx)

Actor
Tx

Coo
pe

ra
tio

n

M
 -

M
(T

x)
Cooperation

M
-M(Rx)

M(Rx)

Actor
Rx

Activations and

Calls back

SubSystem
Ω1

SubSystem
Ω2

Figure 3. HIC - Execution Model Cooperation

operates in three phases : Partitioning of the system into
subsystems, Scheduling of the subsystems and Execution.
In the initialization phase, the execution model divides the
system at the border of the domains, and thus creates ho-
mogenous subsystems.

The HICs, which are at the border of several domains,
are projected onto each subsystem to which some of their
ports belong, and the other actors are transferred to their as-
sociated subsystems. The execution model copies the con-
nections from the original system to the subsystems and
generates virtual dependencies between the different pro-
jections of a HIC on the subsystems. Then, it schedules
the activation of the subsystems and delegates their inter-
nal scheduling to their regular MoC. Finally it executes the
system in accordance to the scheduling.

4.1. Structure of the System

The original system contains regular actors, Heteroge-
nous Interface Components and communication channels

that link the ports of actors and HICs.
When there is a path between two HICs, the output of

the producer HIC, the input of the consumer HIC and all
the actors along the path belong to the same MoC (because
regular actors belong to only one MoC) and will therefore
be put into the same subsystem. The two HICs at both ex-
tremities of the path will be projected on this subsystem
which will appear as self-contained from the point of view
of its domain because the inputs of the producer HIC and
the outputs of the consumer HIC will be masked by the pro-
jection. The original communication channels between het-
erogenous actors disappear with the projection of the HICs
since they cannot be handled by the native homogenous exe-
cution models. We call such communication channels “het-
erogenous abstract channels”, and they will be handled by
the heterogenous execution model. We call “segment” of

Tx Rx

Ω1 Ω2

HicTx HicRx

HIC

Heterogeneous
Abstract Channel

Figure 4. Heterogeneous abstract channel

the system a path between two HICs or between an initial
or an end vertex of the graph and a HIC. Segments will be
mapped to subsystems by the partitioning algorithm.
It may happen that a communication channel is lost when
the system is divided along its segments, as shown on Fig-
ure 5. TheAi are regular actors and theHj are HICs.A1

A1 H1 H2A2 A3

Ω1 Ω2 Ω3

Figure 5. Lost communication channel

belongs to segmentΩ1 with the left port ofH1, A2 belongs
to segmentΩ2 with the right port ofH1 and the left port
of H2, andA3 belongs to segmentΩ3 with the right port of
H2. However, in this partitioning of the system, the channel
betweenA1 andA3 is lost because it belongs to none of the
subsystems. We represent such lost communication chan-
nels with “homogenous abstract channels”. These channels
are homogeneous since their ends use the same MoC, but
they cannot be represented by regular communication chan-
nels in a subsystem because the actors they connect do not

belong to the same subsystem. The effective communica-
tion along those channels is done through “relay” actors that
store data produced by the source actor and provide it to the
target actor when its subsystem is activated as on Figure 6
The homogeneous abstract channels are used by the het-

RelayTx

A1

RelayRx

A3

Ω1 Ω3

H1 H2

Ω2

Homogeneous
Abstract Channel

H1/Ω2
A2

H2/Ω2

H2/Ω3H1/Ω1

Figure 6. Homogeneous abstract channel

erogeneous scheduler so that the subsystem that contains a
source relay is activated before the subsystem that contains
the matching target relay.

4.2. Partitioning the system

The partitioning algorithm minimizes the use of abstract
homogeneous channels by first performing a topological
sort on the actors of the system. Then, for each actor, in
an order which is compatible with the topological sort, it
looks for a subsystem that uses the MoC of the actor. If
such a subsystem exists, it puts the actor there if the depen-
dencies allow it, else a new subsystem is created to host the
actor. The condition on the dependencies must be respected
so that the subsystems that result from the partitioning can
be scheduled.

To put an actorAi in a subsystemSj , the following con-
ditions must hold:

• Ai must use the same MoC thanSj

• There is no path fromAi to any actor ofSj that goes
through a HIC.

These conditions ensure that there won’t be cross depen-
dencies between subsystems. For instance, on Figure 7 (a),
if we put A andC in the sameΩ1 subsystem (they both
belong to domaind1, andB andD in a Ω2 subsystem, we
cannot schedule the two subsystems because the projection
of H in Ω1 must be activated afterB which is inΩ2, and
the projection ofH in Ω2 must be activated afterA which
is in Ω1, so there is no possible schedule ofΩ1 andΩ2.
In this case, the algorithm will build four subsystems, each
one containing an actor and a projection of the HIC. It is
possible to do a little better since the cross-dependencies

Ad1

Ω1

Ω2

Bd2

Cd1

Dd2

HIC

Ad1

Ω1

Ω2

Bd2

Cd1

Dd2

HIC

Ω3
(a) (b)

Figure 7. Constraints of scheduling

can be broken using only three subsystems as on Fig-
ure 7 (b).

The above conditions may hold for more than one sub-
system for a given actor, in which case we choose to put the
actor in the subsystem that already contains a projection of
the HIC which belongs to the same segment as the actor if
any, or we will put it in the most recently created compatible
subsystem.

Y

N

End

a next actor ?

Start

m MoC of a

α HIC a

Put a in ΩPut a in a new Ω '

N

Y

Y

N

E Ω that uses m ?
Eα ∋Ω with

Figure 8. Flow chart of partitioning

4.3. Port disconnection and reconnection

When an actor is put in a subsystem, it is removed from
the original model and put in a subsystem of the new model,
but the connections to its ports are left untouched. For the
new model to behave like the initial one, all connections are
cancelled and actors are then connected inside each subsys-
tem according to the communication channels of the initial
model before the system is run.

4.4. Ad hoc dependencies, virtual ports

A connected system may be divided into subsystems that
are not connected. Several systems can ve divided into sev-
eral subsystems, and some not be connected because the

connection between the two HICs is lost when they are pro-
jected on this subsystem. This should not be a problem, but
some domains do not support unconnected systems, so we
have to make the subsystem connected without changing its
behavior.

To enforce the necessary ad hoc dependency between the
projections of the HICs, we connect them through ports that
are ignored by the HICs but that make the domain see a
connected subsystem. We call the functionally unused ports
“virtual ports”.

4.5. Scheduling of the domains

Our flat heterogeneous execution model relies on the
schedulers of the domains of the subsystems to schedule
the actors inside the subsystems, so that its does not depend
on the semantics of their model of computation. However,
it must schedule the activation of the subsystems that were
created during the partitioning of the system.

The precedence between subsystems is induced by the
abstract homogenous (between actor relays) and the abstract
heterogenous (between HIC projections) channels.

A subsystemΩ1 precedes another subsystemΩ2, and we
noteΩ1 / Ω2 if either:

• Ω1 contains an output relay andΩ2 contains the match-
ing input relay;

• Ω1 contains a projection of a HIC which has inputs and
Ω2 contains a projection which has outputs.

HIC

Ω1 Ω2

HIC/Ω2HIC/Ω1

∆

Ω1 Ω2

Figure 9. Dependency from HIC causality

Figure 9 shows how the causality relation between the
inputs and the outputs of a HIC induces the precedence
between subsystems: to be able to produce the right data,
the projection of the HIC inΩ2 must know the result of the
reaction of the HIC to its input. The HIC receives data on
its input in theΩ1 subsystem, so this subsystem must be
activated beforeΩ2.

The scheduling of the subsystems should be done ac-
cording to the precedence induced by the HICs and the
precedence induced by the relays used to preserve homoge-
nous communication channels across subsystems. How-
ever, because of the reasons that lead to the creation of re-
lays, the precedence induced by relays on subsystems is al-
ways also induced by HICs. Therefore, it is sufficient to

take only the precedence induced by HICs into account for
scheduling the subsystems.

After partitioning the system, we build a skeleton of the
partitioned system that contains only the projections of the
HICs and their dependencies. A topological sort of this
skeleton is then used to determine the precedence relation
on subsystems, and any order which is compatible with this
relation of precedence yields a possible scheduling of the
subsystems.

5. Example

Lets consider the flat heterogeneous system of Figure 10
which contains ten actors and uses two domainsD1 andD2.

A

B C

E

F

G

H

H1

H2

D1

D2

D2

D1

D2

D2

D2

D2

D1

D

D2

D2

Figure 10. Flat Heterogeneous system

A cannot be put in the same subsystem as any other actor
since actors that are on the same side ofH1 do not belong to
the same domain, and actors in the same domain are reached
by crossing a HIC, soA will be alone with the projection of
H1 in its subsystem.

B, C andE are in domainD2 and will be put in the
same subsystem. However,D andH cannot be grouped
with them because there is a path fromC to D throughH1,
and there is a path fromC to H throughH1 andH2.

F can be put withD andE because they belong to the
same domain and do not communicate through a HIC.G is
the only actor that usesD1 to the right ofH1, so it will be
in its own subsystem.

SinceE andH are connected but are not placed in the
same subsystem, there will be two relay actorsTx andRx

that handle communications along this abstract homoge-
nous channel. The skeleton for this partitioning is shown
in the Figure 12 And yields the following precedence rela-
tions:

Ω1 / Ω3

Ω1 / Ω4

Ω2 / Ω3

Ω2 / Ω4

Ω3 / Ω4

Ω3 / Ω5

Ω2

Ω3

Ω1 Ω4

Ω5

B C

A G

H

D

F

Tx

H1-2

H1-3 H2-3

H1-1 H1-4

H2−5

E

H2-4

Figure 11. Partitioning of the example system

Ω2
Ω3

Ω1

Ω5

Ω4

H2-4

H1-1 H1-4

H1-3

H2-5

H2-3

H1-2

Figure 12. Skeleton of the example system

which allows the following schedules:

Ω1 Ω2 Ω3 Ω4 Ω5

Ω1 Ω2 Ω3 Ω5 Ω4

Ω2 Ω1 Ω3 Ω4 Ω5

Ω2 Ω1 Ω3 Ω5 Ω4

6. Simulation

The non-hierarchical heterogenous execution model is
implemented in Ptolemy II. As an example, we used it to
model a very simple system which use three MoC, SDF, DE
and DT in the same level, and in which a sign-change de-
tector drives an amplifier to rectify a sinusoid input signal.
The sign-change detector and the amplifiers are HICs: the
sign-change detector produces a Discrete event each time
the sign of the value of its SDF input changes; and the am-
plifier changes the sign of its gain each time it receives an
event on its DE input.

We cannot give a screen shot of the graphical aspect of
the system in Ptolemy II since the graphical interface does
not support flat heterogeneous systems yet. The system was
built by assembling actors using the Java API of Ptolemy II.
Figure 14 shows the result of the simulation of this hetero-
geneous system in Ptolemy II. The upper plot is the original

SDF

Amplifier

Rectified
Signal Plot

Generator Sign-change
Detector

Original
Signal Plot

SDF

DT

SDF DE

DE

DT

DT

DE

Events
Signal Plot

Figure 13. Simulated System

sinusod signal, the middle one is the amplified signal and
the lower one is the events that begin the rectification.

Figure 14. Result of the simulation

7. Conclusion

We proposed a new approach that allows to model het-
erogeneous systems without introducing artificial hierarchy
levels. This approach is based on Heterogeneous Interface
Components that have inputs and outputs that use different
MoCs. So they can be used as bridges between homogenous
“islands” in the modeling of heterogeneous systems.

We designed an execution model that supports HICs and
can be implemented on various modeling platforms because
it does not require the modification of the existing execu-
tion models. It has been implemented in the Ptolemy II
plateform which supports many MoCs. This heterogeneous
execution model divides the system into homogenous sub-
systems and maps HICs to homogenous components that
can be handled by the native execution models of the sub-

systems. The scheduling of the subsystems is done without
taking into account the semantics of their MoC.

References

[1] G. Agha et al, ”Abstraction and modularity mecha-
nisms for concurrent computing”, IEEE Parallel and
Distributed Technology: Systems and Applications,
1(2):3-14, May 1993.

[2] G. Agha, I. A. Mason, S. F.Smith, and C. L. Tal-
cott, ”A foundation for actor computation”, Journal
of Functional Programming, 7(1):1-72, 1997.

[3] S.S. Bhattacharyya et al,”heterogeneous concur-
rent Modeling and design in java, Volume I to III”,
Memorandum UCB/ERL M01/12 eecs, University
of California at Berkeley, March, 2001

[4] J. Buck and R. Vaidyanathan.”Heterogenous mod-
eling and simulation of embedded systems in el
Greco”, Proc. of the 8th international workshop on
Hardware/software codesign, San Diego, California,
USA, pp. 142-146, 2000, ISBN:1-58113-268-9.

[5] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorf-
fer, Y. Xiong, Y. Zhao, H. Zheng,”Overview of the
Ptolemy project”, July 2, 2003, Technical Memoran-
dum UCB/ERL M03/25.

[6] J. Liu et all, ”Actor-Oriented Control System
Design”, IEEE Transaction on Control System
Technology, special issue on Computer Automated
Multi-Paradigm Modeling. March 2003

[7] M. Mbobi, F. Boulanger and M. Feredj,”Non-
hierarchical heterogeneity”, International Confer-
ence on Computer, Communication and Control
Technologies, July-August, 2003, Orlando, Floride.
International Institute of Information and Systemics,
Volume III, ISBN 980-6560-05-01, pp. 430-435.

[8] Polis Homepage, Availlable on line at http://www-
cad.eecs.berkeley.edu/ polis/

[9] H.J Reekie and E.A. Lee,”Lightweight Component
Models for Embedded Systems”, Technical Memo-
randum UCB ERL M02/30, University of California
at Berkeley, October 2002.

[10] Rosetta, 2004, Availlable on line at
http://www.sldl.org/

[11] Specc, Availlable at
http://www.specc.gr.jp/eng/index.htm

[12] SystemC Transaction Level Modeling Working
Group Charter.

