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Abstract— A methodology for the simulation of bandpass 
continuous time sigma-delta (Σ∆Σ∆Σ∆Σ∆) modulators is presented in this 
paper. This method permits the simulation of Σ∆Σ∆Σ∆Σ∆ modulators 
employing continuous-time filters using a fixed-step algorithm. 

The method is based on the discretization of a continuous-time 

model and the use of a discrete simulator, which is more efficient 

than an analog simulator. This transformation is exact in term 

of Noise Transfer Function and asymptotically exact in term of 

Signal Transfer Function (the Signal Transfer Function of the 

model rapidly tends to the continuous time model transfer 

function when the number of steps increases).  

I. INTRODUCTION 

Sigma-delta (Σ∆) converters are composed of a Σ∆ 
modulator which provides a high speed one-bit or multi-bit 
data string followed by a digital filter that produces a high 
resolution data [1][2]. Continuous-Time (CT) modulators 
[3][4] possess one key advantage over their discrete-time 
competitors : no sampling is performed within the filter itself, 
thus allowing sampling frequencies higher than the ones of 
DT modulators. On the other hand, CT circuits are more 
difficult to design and to simulate than DT circuits. 

When simulations are performed with an analog simulator, 
they take a huge computational time. Equivalent Discrete-
Time (DT) model of CT modulator loop have been described 

[5], but they need a continuous filter in the input signal path to 
ensure the exact equivalency [6], and furthermore the input 
bandwidth is limited to half the sampling frequency. 

In this paper, a simulation method of CT modulators based 
on Oversampled Discrete Time (ODT) models [7] is 
presented. With this method, each sampling-period is divided 
into a fixed number of steps. It will be shown that this 
transformation is exact in term of Noise Transfer Function 
(NTF) and asymptotically exact in term of Signal Transfer 
Function (STF). The STF of the model rapidly tends to the 
STF of the CT model when the number of steps increases. 
Furthermore, simulations of the modulator response to signals 
with a bandwidth higher than the sampling frequency is 
possible.  

This paper is structured as follows: The following section 
describes the synthesis and analysis methods of continuous 

filter Σ∆ modulators. An application to a fourth-order 
bandpass modulator is illustrated in Section III. Finally, 
concluding remarks are given in Section IV. 

II. SIMULATION METHOD OF CT Σ∆ MODULATORS  

A.  Equivalency between CT and DT Filters  
The relationship between a continuous-time filter transfer 

function ( )(sg ) and the discrete-time equivalent filter ( )(zf ) 

can be expressed using the formula [5], 

)(
)(

)1()( 11 zT
s

esg
Lzzf

ds

T +























Ζ−=

−
−− . (1), 

where d is the loop delay between the ADC input and the 
DAC output. This formula ensures the equivalency of the 
Noise Transfer Function between the continuous and the 
discrete time topology shown in Figure 1. When the delay is 
non zero, a feedback term (T(z)) must be added between DAC 
output and ADC input as in [6] in order to be able to solve (1). 

    (a) 

            (b) 

Figure 1 : Single-bit CT (a) and DT (b) modulator 

Assuming that the input signal is a band-limited signal 
(limited to the half of the sampling frequency), and that the 
quantizer can be modeled by an additive white noise, the 



signal transfer function of the discrete-time topology can be 

expressed as : 
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where Fs is the sampling frequency, and ϕ the frequency. 

The signal transfer function of the continuous-time 

topology is ([4]) 
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 f being related to g by equation (1). 

Unfortunately, the STF obtained with the discrete-time 
model is far from the CT one; furthermore, the DT model is 
unable to deal with an input signal with a frequency higher 
that half the sampling frequency. 

In order to enhance the signal-transfer function and 
remove the frequency limitation, we propose to use an 
oversampled model of the discrete-time modulator (ODT). 

B. Oversampled model of a sigma delta modulator  

Let’s consider now the oversampled model of a Σ∆ 
modulator. The sampling frequency of the ADC is still Fs, but 
the equivalent digital filter (F) runs now at kFs. The feedback 
signal is held during k samples. In order to simplify the 
notations, the Z variable denotes functions running at 
frequency kFs, while the z variable denotes a function running 
at frequency Fs. 

F(Z)-

Sampling frequency = kF
s

Sampling frequency = F
s

First order hold

Y[n]

x[n] s[n]

 
Figure 2 : Oversampled modulator 

 
We consider the transfer function between the ADC output 

and its input at the sampling times. We calculate the response 
to a discrete impulse (Y*[n]) in the three cases: discrete-time 
modulator, continuous-time modulator, and oversampled 
discrete-time modulator (T is the sampling period), in the case 

d=0 (Ζ denotes the Z transform).  

In the case of the DT modulator: )(Ζ )(][* 1 zfnY −=
        

(4) 

In the case of the CT modulator: 
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In the case of the ODT modulator:  
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Table I gives equivalency between DT, CT and ODT 
modulators for first order, second and third order filters, by 
identifying the impulse responses Y*[n]. These formulas were 
obtained using Maple software. One should notice that any 
transfer function g(s) can be expressed as the sum of terms in 
the first column when a ≠ 0. The case of a = 0 was already 
addressed in [7]. 
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TABLE I.  EQUIVALENCIES BETWEEN CT, DT, AND ODT 

It can be also noticed that the DT case becomes a 
particular case of the ODT modulator for k=1, and the CT case 
can be seen as the limit when k tends to infinity of the ODT 
model. 

III. APPLICATION TO THE SIMULATION OF HIGH ORDER 

MODULATORS WITH LOOP DELAY  

A. Oversampled model of a sigma delta modulator with 
loop delay 

This section deals with the simulation of CT modulators 
with loop delay. The delay of the CT topology is denoted d. A 
feedback (T(z)) between DAC and ADC is introduced to 
ensure the equivalency between CT and DT topologies [6], as 
shown in Figure 1. 

It is supposed that g(s) in Figure 1(a) has been obtained 
from Figure 1(b) using the formula (1). 

The ODT modulator model used for simulations is given 
in Figure 3. A delay r has been introduced to model the delay 
introduced by the DAC. It will be chosen as the nearest integer 
modeling the real delay : 

 skdFr = , where    denotes rounding towards nearest 

integer. This topology is equivalent in term of noise transfer 
function if the following equation is observed: 
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Figure 3 : ODT model with loop delay 
 

B. Example of a fourth order modulator 
We consider a classical fourth-order bandpass modulator 

(Figure 4) [7] with  
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Figure 4 : DT modulator 

The CT equivalent modulator is given by Figure 5 using 
the methodology of [5]. In out example, the loop delay d is 
equal to 1.5 sampling period. 
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Figure 5 : CT equivalent modulator 

The coefficients are 

4

2

463.0)(

085.0,707.0,038.0,314.0

0

2

2211

sF

zzT

baba

π
ω =

−=

≈−≈≈≈
−

         (9)
 

In order to simulate the CT modulator, we transform the 
CT modulator into an ODT topology as Figure 3 using eq. (7). 

For any even k value, kdFs is integer. The delay introduced 
by the ODT is the same as the CT one. It results that 
T’(z)=T(z). 

For k=4, we get for example 
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for k=8, we get  
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C. Simulation results  
The three modulators have been simulated for a null input 

signal using Simulink. We verify by simulations that they are 
equivalent in term of NTF. Figure 6 shows a time domain 
simulation. The three curves represent the ADC input signal 
for the DT, CT and ODT case. It can be seen that the three 
signals are equal at the sampling times nT. Furthermore the 
CT and ODT signals are equal for each nT/k time, verifying 
that the ODT model response tends to the CT model when k 
tends towards infinity. 

 
Figure 6 : time domain simulations of the ADC input 

signal for CT, DT and ODT modulator. 

D. Signal transfer function evaluation  
The signal transfer function of a fourth-order modulator 

was evaluated (still by making the assumption that the 
quantization noise behaves as an additive white noise) using 
the ODT model. In order to evaluate the efficiency of our 
methodology, this STF is compared with the one that would 
be obtained by making a bilinear transform of the filters of the 
CT modulator (Figure 7 topology).  

 

Figure 7 : ODT equivalent model obtained by a bilinear 

transform 
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Figure 8 : comparison of the NTF obtained by a bilinear 

transform 



It must be first noticed that this topology is not strictly 
equivalent in term of NTF. Figure 8 shows the NTF of the 
models obtained by a bilinear transform of the continuous 
filters compared with the real NTF of the modulator. There  is 
a shift in the central frequency of the modulator. In order to 
get a good NTF approximation, an oversampling ratio of at 
least 64 or 128 is required. 

The modulus of the STF of the model obtained by bilinear 

transform (ODTbt) is given in Figure 9 and the one of the 

ODT modulator is given in Figure 10.  With a classical 

bilinear transform, the STF remains far from the real STF 

even for large k. Using the ODT, the STF is near from the 

real STF even for low k values. In Figure 10 the STF has 

been extended to frequencies higher than Fs/2 using the 

convention that a signal at frequency φ+mFs is aliased into a 
term at frequency φ at the modulator input. The obtained STF 

is very accurate from 0 to half the sampling frequency. Some 

other tests confirmed that taking k equal to 4 times the ratio 

between the input-signal bandwidth and Fs/2 is accurate. The 

phases curves have not been plotted but they have the same 

kind of behavior. 
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Figure 9 :  |STF| for k=2, 4, 8 for the ODTbt modulator  

compared with the CT modulator 
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Figure 10 : |STF| for k=2, 4, 8 for the ODT modulator  

compared with the CT modulator 

Table 2 compares the performances of all proposed 
algorithms in terms of  NTF and STF accuracy, and simulation 
time. All timings are given for a simulation with simulink for 
100000 output samples. It can be clearly seen that the fastest 
method giving accurate results is the ODT 

 k NTF STF Simulation 

time 

Continuous  OK X 34 s 

DT 1 OK X 1 s 

bilinear 8 X X 6 s 

bilinear 128 OK OK 130 s 

ODT 8 OK OK 6 s 

 

Table 2 : Comparison of algorithms performances 

 

IV. CONCLUSIONS 

A methodology for time-domain simulations of bandpass 
continuous-time modulators was proposed. This methodology 
is based on a fixed step discretization of each output sample. 
Using this method, simulations are very fast as they use a 
fixed step algorithm and discretized equations. NTF and STF 
considerations on a fourth-order modulator have shown that 
the ODT method describes the behavior of a CT modulator in 
a more efficient way than classical transform method such as 
bilinear transform. 
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