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Black-box identification and simulation of
continuous-time nonlinear systems with

random processes

Sylvain Vinet and Emmanuel Vazquez

Supélec, 91192 Gif-sur-Yvette, France

Abstract This paper proposes a methodology for black-box identification and simulation of continuous-
time nonlinear dynamical systems based on random process modeling and kriging. It is assumed that
the (finite-dimensional) state vector is observed with noise at regularly or irregularly spaced instants.
The proposed identification method consists of two steps. The first step is the estimation of the time
derivatives of the state vector. The second step consists inthe approximation of the controlled vector
field. For the simulation of the system, a new integration scheme is proposed. This integration scheme
makes it possible to deal consistently with the error of approximation of the vector field.
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1. INTRODUCTION

This paper proposes a random process approach for black-
box identification and simulation of continuous-time nonlinear
dynamical systems defined by an ordinary differential equation.
Let us consider an ODE

ẋ = f(x,u) , (1)

with x ∈ R
d (the state of the system),u ∈ R

q (the control
input), andf : R

d × R
q 7→ R

d a C1 nonlinear map (the vector
field). Assume thatf is unknown and thatx is observed at a
finite number of instantst1 < · · · < tn. A first objective of this
paper is to estimatef from x(t1), . . . ,x(tn). A second task is
to simulate the future trajectory of the system, i.e. to predict the
state of the system at any instantt > tn, given{u(s) ; s ≤ t}
and the set of observations.

A classical approach for black-box identification of continuous
dynamical systems is to usedelay embedding. More precisely,
assume regularly sampled observations, and denote byxk the
vector (xk−τ , . . . ,xk), with xi := x(ti), and by uk the
vector(uk−τ , . . . ,uk), with ui := u(ti). Then, the nonlinear
system (1) may be approximated by a recurrence equation
written as

xk = g(xk−1,uk−1) , (2)
where the functiong can be of two different types.Parametric
modelingrefers to the case whereg is a parametric function,
with a relatively small number of parameters (see, e.g., Walter
and Pronzato, 1997).Nonparametric modelinggenerally means
thatg belongs to a space of infinite dimension, typically a space
of splines or more generally a reproducing kernel Hilbert space
(see, e.g., Sjöberg et al., 1995 ; Girard et al., 2003).

In many cases though, it would be useful to preserve the
continuous-time representation of the system, i.e. to estimatef
directly from the observations. A number of parametric ap-
proaches have already been proposed: state-dependent param-
eter estimation (Young et al., 2003), estimation based on dif-
ferential algebra techniques (Fliess et al., 2006), the method of

Hartley modulating functions (see, e.g., Rao and Unbehauen,
2006), etc. To the best of our knowledge,nonparametricap-
proaches have not been addressed yet. In this paper, we pro-
pose a nonparametric approach to approximatef based on a
framework ofrandom processesandKriging. The identification
procedure can be parted into two steps. Sincef maps the state
to its derivative, the first step of the procedure is to estimate the
derivative of the state from the set of observations. In the second
step, an approximation off is built based on the observations
and the estimated derivatives. As mentioned above, a random
process (rp) framework is used: a first rp, indexed byt, is used
to model the state of the system as a function of time and a
second rp, indexed byx andu, models the unknown function
f . Using random processes makes it possible to deal comfort-
ably and consistently with the errors of estimation involved at
each step. Moreover, this framework yields a natural method
of simulation of the system after the estimation off has been
carried out.

This paper is organized as follows. Section 2 recalls funda-
mental notions on the theory of linear prediction of random
processes. Section 3 presents our two-step identification pro-
cedure. Section 4 deals with the simulation of the estimated
system. Finally, Section 5 provides an example based on the
Lotka-Volterra non-linear system.

2. LINEAR PREDICTION OF A RANDOM PROCESS

In this section, we shall recall some main results aboutkriging
and intrinsic kriging (Matheron, 1973). These methods origi-
nate from geostatistics (see, e.g., Chilès and Delfiner, 1999) and
they are used in this paper to build approximations of non-linear
functions. Kriging and intrinsic kriging are primarily statistical
methods but they can also be understood from the point of view
of reproducing kernel Hilbert space methods (see, e.g., Wahba,
1990). Let us consider a functionz : T → R, whereT is a set
of parameters (T ⊆ R

d, for instance). We wish to approximate
z based on a finite set of observationsz(ti), i ∈ {1, . . . , n}.



A classical idea is to modelz(t) by a second-order rp. An
approximation ofz is then obtained by considering theaverage
of all sample paths of the rp that interpolate the observations.
The theory of kriging and intrinsic kriging is concerned with
the computation of this approximation based on the second-
order moments of the rp. Kriging and intrinsic kriging are also
known as thebest linear unbiased predictors(BLUP). More
specifically, kriging is used when the mean ofξ is assumed to
be known, and intrinsic kriging is used otherwise.

Let (Ω,A, P) be a probability space, and denote byξ : Ω ×
T → R a second-order rp, i.e. a set of random variables indexed
by elements ofT. Thus, for allt ∈ T, ξ(t) := ξ(·, t) is an
element ofL2(Ω,A, P). Let m(t) := E[ξ(t)] be the mean of
ξ(t) (the average ofξ(t) on all sample paths) and denote by
k(t, s) := Cov(ξ(t), ξ(s)), t, s ∈ T, its covariance function.
It is assumed thatz is a sample path ofξ and thus, each
observationz(ti) corresponds to a particular outcome of the
random variableξ(ti). Although we do not need to assume
specifically the Gaussianity ofξ throughout this paper, note that
sample paths of Gaussian random processes can already define
a very large class of functions when the covariance function
and the mean vary (see e.g. Theorem 4 of Ghosal and Roy
(2006)). Many properties of the sample paths follow from the
characteristics of the covariance, especially in the Gaussian
case. In particular, it is essential to choosek consistently with
the regularity, the differentiability, the spectral properties, etc.
of z. For the sake of brevity, we shall not talk about this
issue, which is discussed extensively in the statistical literature.
In practice, the covariance is chosen under the form of a
parameterized function, the parameters of which are adapted
to the observations using a goodness-of-fit criterion, suchas
maximum likelihood(Stein, 1999).

2.1 Kriging

Zero-mean random processes play an important role because
their covariance function then correspond to a scalar product.
Indeed, if∀t ∈ T , m(t) = 0, then∀t, s ∈ T, (ξ(t), ξ(s))L2 =
E[ξ(t)ξ(s)] = k(t, s). Let H denote the Hilbert space gen-
erated by a zero-mean processξ, i.e. the completion of the
vector space whose elements are finite linear combinations of
random variablesξ(t), t ∈ T, endowed with the scalar product
(ξ(t), ξ(s))L2 = k(t, s).

Let ξ0 be a random variable inH. Assume that we observe
a finite set of random variablesξi ∈ H, i = 1, . . . , n. The
kriging predictorof ξ0 from ξ1, . . . , ξn corresponds to theL2-
norm closest approximation ofξ0 by a random variablêξ0 in
HS = span{ξ1, . . . , ξn}. The orthogonal projection theorem
states that theL2-norm E[(ξ0 − ξ̂0)

2] (the mean square error
between the random variable and its predictor) is minimizediff
ξ̂0 is the orthogonal projection ofξ0 ontoHS . For the moment,
we shall omit details since we will be more specific in the
following section.

2.2 Intrinsic kriging

In this paper, we useintrinsic Kriging (IK) to obtain a linear
predictor when the mean ofξ(t) is unknown. We recall here the
main results (Matheron, 1973).

Any rp ξ can always be rewritten as the sum of a zero-mean
process and a deterministic function (the mean ofξ). In this

paper, we shall consider polynomial mean functions only, so
thatξ can be written as

ξ(t) =

m∑

i=1

αipi(t) + η(t) , (3)

whereη(t) is a zero-mean rp, and where thepis form a basis of
low-degreed-variate polynomials. LetP be them-dimensional
vector space spanned by the functions{pi}i=1,...,m andHη be
the Hilbert space generated byη. Whenm(t) is known, the
framework of the previous section can be used by considering
ξ(t)−m(t). The difficulty to extend linear prediction (kriging)
whenm(t) is unknown is that the spacesHη andP are of dif-
ferent nature, and therefore, it is difficult to find a naturalscalar
product in the space generated byξ, to apply the orthogonal
projection theorem again.

To circumvent this difficulty and to deal comfortably with ran-
dom processes that possess an unknown mean inP , Matheron
(1973) introduces a notion ofgeneralized random processes,
which extends that of random processes. LetΛ̃ be the vector
space of all finite-support measures,i.e. the space of linear com-
binations

∑n
i=1 λiδti

, whereδt stands for the Dirac measure,
such that for anyB ⊂ T, δt(B) equals one ift ∈ B and
zero otherwise. Let̃ΛP⊥ be the subset of the elements ofΛ̃
that vanish onP . Thus,λ ∈ Λ̃P⊥ implies

〈λ, z〉 :=

n∑

i=1

λiz(ti) = 0 , ∀ z ∈ P .

Remark ΛP⊥ can be viewed as a set of finite-difference
(increment) operators. For example, the condition forλ =∑n

i=1 λiδti
to be orthogonal to constant functions can be ex-

pressed as
∑n

i=1 λi = 0. Thus,λ =
∑n

i=1 λi(δti
− δt1), soλ

is a linear combination of increment measuresδti
− δt1 .

If ξ(t), t ∈ T, is a second-order rp with meanm(t) in P and
covariancek(t, s), the linear map

ξ : Λ̃ → H = span{ξ(t) ; t ∈ T}

λ =

n∑

i=1

λiδti
7→ ξ(λ) =

n∑

i=1

λiξ(ti) ,

extendsξ(t) on Λ̃. (λ, µ)Λ̃ := (ξ(λ), ξ(µ))H defines an inner
product onΛ̃. Let Λ be the completion of̃Λ under this inner
product and extendξ(λ) on Λ by continuity. Ageneralized rp
is then obtained. Note that for allλ ∈ Λ, E[ξ(λ)] = 〈λ, m(·)〉,
and for allλ =

∑
i λiδti

∈ Λ̃ andµ =
∑

j µjδsj
∈ Λ̃,

k(λ, µ) := Cov[ξ(λ), ξ(µ)] =
∑

i,j

λiµjk(ti, sj) . (4)

k(λ, µ) can be extended onΛ by continuity of the covariance
operator. Denote also byΛP⊥ the completion of̃ΛP⊥ under the
inner product(·, ·)Λ. Sinceλ ∈ ΛP⊥ filters out any function
of P and the mean ofξ(t) is in P , ∀λ ∈ ΛP⊥ , ξ(λ) is a
zero-mean random variable. Remark also that∀λ, µ ∈ ΛP⊥ ,
k(λ, µ) = (λ, µ)Λ.

We can now recall the main result of IK. Letξ be a rp with
meanm(t) ∈ P and covariancek(t, s). Let ξ0, ξ1, . . . , ξn

be random variables inH = span{ξ(t) ; t ∈ T}. For all
i ∈ {0, 1, . . . , n}, there exists an elementλi ∈ Λ such that
ξi = ξ(λi). Assumen observations be sample values of the
random variablesξobs

i = ξi + εi, i = 1, . . . , n, where the



εis are zero-mean random variables independent ofξ(t), with
covariance matrixKε.

The intrinsic kriging predictorof ξ0 based on the observations,
is the linear projection

ξ̂0 =
n∑

i=1

a0,iξ
obs
i = ξ(λ̂0) +

n∑

i=1

a0,iεi

(
λ̂0 =

n∑

i=1

a0,iλi

)

(5)
of ξ0 onto HS = span{ξobs

i , i = 1, . . . , n}, such that the
variance of the prediction errorξ0 − ξ̂0 is minimized under the
constraint

λ0 − λ̂0 = λ0 −
n∑

i=1

a0,iλi ∈ ΛP⊥ . (6)

The coefficientsa0,i, i = 1, . . . , n, are solutions of a system
of linear equations (Matheron, 1973), which can be written in
matrix form as(

K + Kε PT

P 0

) (
a0

µ0

)
=

(
k0

p0

)
, (7)

whereK is the n × n matrix with entriesk(λi, λj), i, j =
1, . . . , n, P is a m × n matrix with entries〈λj , pi〉 for j =
1, . . . , n andi = 1, . . . , m, µ0 is a vector of Lagrange coeffi-
cients,k0 is a vector of sizen with entriesk(λi, λ0) andp0 is
a vector of sizem with entries〈λ0, pi〉, i = 1, . . . , m.

The variance of the prediction error, which accounts for the
uncertainty of the prediction, is given by

σ̂0
2

: = Var[ξ0 − ξ̂0]

= k(λ0, λ0) − 2aT

0 k0 + aT

0 (K + Kε)a0

= k(λ0, λ0) − aT

0 k0 − pT

0 µ0 .

(8)

This variance, also called thekriging variance, makes it pos-
sible to assert confidence intervals for the predictor. In the
following paragraphs, we shall use the notations

{
K(ξ0 | ξobs

1 , . . . , ξobs
n ) := a0

T ,

V(ξ0 | ξobs
1 , . . . , ξobs

n ) := Var[ξ0 − ξ̂0] .
(9)

2.3 Prediction of derivatives

In this section, we recall how to use IK to estimate the deriva-
tives of a rp from point-wise observations (Vazquez and Walter,
2005b). To simplify, supposeT = R. Recall that a zero-mean
second-order rpξ(t) with covariance functionk(t, s) is mean-
square differentiable att if

ξh(t) =
1

h
(ξ(t + h) − ξ(t)) (10)

converges in mean square whenh → 0. The limit exists if and
only if ∂2k(u, s)/∂u∂s exists at(t, t). If ξ(t) is mean-square
differentiable for allt, the limit process is called thederivative
processand is denoted bẏξ. Higher-order derivatives are ob-
tained by iteration and are denoted byξ(r). It is straightforward
to check that

Cov[ξ(q)(t), ξ(r)(s)] =
∂q+r

∂tq∂sr
k(t, s) . (11)

We now deal with the differentiability of generalized random
processes. Letτh : Λ → Λ be the translation operator such that
for λ =

∑
i λiδti

∈ Λ̃, τhλ =
∑

i λiδti+h. Then, define

λh :=
1

h
(τhλ − λ) .

A generalized rp{ξ(λ) ; λ ∈ Λ} is said to bemean-square
differentiableat λ ∈ Λ if ξ(λh) converges in mean square
as h → 0. When the limit exists, it is denoted bẏξ(λ). If
∂2k(u, s)/∂u∂s exists at(t, t) for all t ∈ R, thenξ(λ) is mean-
square differentiable for allλ (see Vazquez and Walter, 2005b).
Remark that ifξ̇(λ) exists, there also existṡλ ∈ Λ such that
ξ̇(λ) = ξ(λ̇).

Derivatives of orderr are denoted byξ(r)(λ). Denote also by
λ(r) the elements ofΛ such thatξ(r)(λ) = ξ(λ(r)). Given

λ =
∑

i λiδ
(qi)
ti

andµ =
∑

j µjδ
(rj)
sj in Λ, it is easy to check

that

Cov[ξ(λ), ξ(µ)] =
∑

i,j

(−1)rjλiµj

∂qi+rj

∂tqi

i ∂s
rj

j

k(ti, sj) .

Example In this paragraph, we intent to give a practical exam-
ple. Consider the estimation of the derivative of a functionz :
[0, 1] → R from noisy observations of this function at a number
of irregularly spaced pointsti ∈ [0, 1], i = 1, . . . , n. Assume
z is a sample path of a rpξ with constant mean (therefore,
P = span{1}) and stationary covariancek(t, s) = ks(t − s).
The noisy observations ofz are supposed to be sample values of
the random variablesξobs

i = ξ(ti)+εi, i = 1, . . . , n, where the
εis are i.i.d. zero-mean Gaussian random variables that model
the noise of observation. To estimate the derivative ofz, we
compute the IK predictor oḟξ(t) for all t ∈ [0, 1]. Thus, for

all t, we search for a linear combination̂̇ξ(t) =
∑n

i=1 at,iξ
obs
i

such thatVar[ξ̇(t) − ̂̇
ξ(t)] is minimized under the constraint

δ̇t −
n∑

i=1

at,iδti
∈ ΛP⊥ ⇔

n∑

i=1

at,i = 0 . (12)

The solution can be obtained using (7), which reads



K + σ2
εIn

1
...
1

1 · · · 1 0




(
at

µt

)
=

(
k′

t

0

)
, (13)

whereIn denotes the identity matrix andk′
t corresponds to

the vector with elementsk′
s(t − ti). More examples (with

illustrations) can be found in Vazquez and Walter (2005b).

3. TWO-STEP IDENTIFICATION PROCEDURE

In this section, we present a procedure for black-box identifi-
cation of a continuous-time nonlinear dynamical system from a
finite number of (possibly noisy) observations of the state vec-
tor. In principle, the proposed procedure could also be applied if
the state vector were only partially observed, provided that the
non-observed components can be recovered from the observed
components through linear operations (such as differentiation
or integration, for instance). Indeed, the framework of kriging
makes it possible to predict the result of any linear operator
acting on a rp. For the sake of brevity, we shall not deal with
partially observed state vectors in this paper. Besides, toavoid
obfuscation of notations, the presentation will be furthersimpli-
fied by supposing the state vector has dimension one (d = 1).
The generalization to higher dimensions is straightforward (as
will be seen in the example of Section 5). As mentioned in the
introduction, the procedure consists of two steps. The objective



of the first step is to estimate the derivative ofx. In the second
step, an approximation̂f of f is computed.

3.1 Estimation of the derivative of the state

Let {xobs
i , i = 1 . . . n} be a set of noisy observations of

the state at the instantsti, which may not be evenly spaced.
Our objective is to approximatėx(t), t ∈ R, from the noisy
observations. Consider a mean-square differentiable rpX ∈
R, indexed byR, with constant but unknown meanm, and
(at least) twice-differentiable covariance functionkX . Assume
moreover thatx is a sample path ofX , and that the noise is
modeled by i.i.d. random variablesVi, i = 1, . . . , n, with zero-
mean and known varianceσ2

V . Thus, for alli, xobs
i is a sample

value of the random variable
Xobs

i := X(ti) + Vi. (14)

Using the results of Section 2.3, the derivative ofx at ti,
i = 1 . . . n, can be estimated by computing the IK predictor
̂̇X(ti) of Ẋ(ti) based onXobs

j , j = 1, . . . , n. Then, for all
i = 1, . . . , n, ẋ(ti) may be estimated by

̂̇x(ti) = KX

(
Ẋ(ti)|X

obs
)
xobs , (15)

with
Xobs = (Xobs

1 , . . . , Xobs
n )T and

xobs = (xobs
1 , . . . , xobs

n )T .

The notationKX indicates that the covariancekX is used to
compute the kriging coefficients. The estimation error has a
variance given byVX(Ẋ(ti)|Xobs).

3.2 System approximation

The next step of the identification procedure is to approximate
the functionf : R → R using the estimated derivatives (15).
(Remember that we assumedd = 1. If d > 1, each compo-
nentfi, i = 1, . . . , d, of the vector-valued functionf should
be approximated separately, cf Section 5.) Suppose thatf is
a sample path of a rp denoted byF , indexed byx and u,
with meanm(x,u) and covariancekF

{
(x,u), (x′,u′)

}
, where

(x,u), (x′,u′) ∈ R×R
q. As mentioned in Section 2.2,m(x,u)

can be an unknown constant or a low-degree polynomial inx
andu, which makes it possible to incorporate prior knowledge
on f (for instance, one can specify thatF has a linear trend
alongx oru (Vazquez and Walter, 2005a)). For the approxima-
tion of f , two cases are to be considered depending on whether
or not the observation noise is assumed low or strong.

When the noise is low, we assume that the observation error (the
difference betweenxobs

i andx(ti)) can be neglected. Then, for
all i, the estimated derivative (15) can be viewed as a sample
value of F at (xobs

i ,u(ti)) ≈ (x(ti),u(ti)). The estimation
error of the derivative of the state is taken into account by
introducing an independent Gaussian random variableWi with
zero-mean and variance equal toVX(Ẋ(ti)|Xobs). Thus, for
all i, define the random variableF obs

i := F (xobs
i ,u(ti)) + Wi.

For all x andu, the IK predictorF̂ (x,u) of F (x,u) based on
the random variablesF obs

i , i = 1, . . . , n, can be used to obtain
an approximation off(x,u), written as

f̂(x,u) = KF

(
F (x,u) | Fobs

) ̂̇x (16)
with

Fobs = (F obs
1 , . . . , F obs

n )T and
̂̇x = (̂̇x(t1), . . . , ̂̇x(tn))T .

The notationKF indicates that the covariancekF is used to
compute the kriging coefficients.

In the strong noise case, the positioning error of the observation
of F has to be taken in account. The observation model can
now be written asF obs

i := F (x(ti) + Vi,u(ti)) + Wi, with Vi

the observation noise. Of course, the covariance betweenF obs
i

andF (x′,u′) is notkF

{
(x(ti),u(ti)), (x

′,u′)
}

. However, the
correct covariance can be derived quite easily and a linear
predictor similar to (16) can be obtained again. In the literature
of kriging, the modification of the covariance function due
to some positioning uncertainty is a classical issue (see, e.g.,
Chilès and Delfiner, 1999, p. 74–80). Although of practical
importance, the case of strong noise we will not be developed
in this paper due to the lack of space.

After the second step of the identification procedure, an ap-
proximationf̂ of f is obtained. One can then use a standard
ODE solver to simulate the approximate systemẋ = f̂(x,u).
However, we believe that the error of approximation off should
be taken into account during the simulation. In the next section,
we propose an integration method that uses the rp point of view
presented above.

4. SIMULATION

In this section, we propose a numerical integration method of
the ODE (1) based on linear prediction of the state vector.
As in Section 3, we shall assume thatd = 1 to simplify the
presentation. Again, the extension tod > 1 is straightforward,
since each dimension can be considered separately. In essence,
the proposed integration scheme is a multi-step integration
method, such as for instance the fixed-step Adams method (see,
e.g., Butcher, 2003). A multi-step predictor of the state may be
written as

xn+1 =

p∑

i=0

αixn−i +

q∑

j=0

βjf(xn−j ,u((n − j)h)) , n ≥ 0 ,

(17)
whereh is the integration step size andxn denotes the predic-
tion of x(nh) given the initial conditionsx0 := x(0), x−1 :=
x(−h), x−2 := x(−2h), . . . In classical integration methods,
the coefficientsαi andβj are obtained by minimizing the pre-
diction error under a polynomial approximation ofx. In the
proposed simulation method, the coefficients are obtained as
the result of the best linear prediction of the rpX .

First, assume thatf is known exactly. To predictxn+1

from xn, . . . , xn−q, q ≥ 0, consider the IK linear predictor
X̂((n + 1)h) of X((n + 1)h) based onX(nh) andẊ((n −
q)h), . . . , Ẋ(nh). Then, a one-step ahead prediction of the state
can be written as

xn+1 = KX

(
X((n + 1)h) |

X(nh), Ẋ((n − q)h), . . . , Ẋ(nh)
)
x♯

n , (18)

with x♯
n := (xn, ẋn−q, . . . , ẋn)T and, for alli,

ẋi := f(xi,u(ih)) . (19)

Remark 1 The predictor (18) is a particular case of (17)
with p = 1 (see Figure 1). Whenp = 1, the stability of the
integration scheme (17) is ensured ifα0 ≤ 1 (Butcher, 2003).
Due to the unbiasedness condition (6), we have in fact here
α0 = 1. This explains our choice to consider a linear prediction
withoutX((n − 1)h), X((n − 2)h), etc.



Remark 2 Assume that the covariance is stationary so that
k(t, t′) = kiso(h), with h = |t − t′|. Then the proposed
integration method is consistent. Moreover ifkiso(h) is s-times
differentiable at the origin, thenE

[(
X̂((n + 1)h) − X((n +

1)h)
)2]

= O(hs). We do not provide the proof of this result in
this paper due to the lack of space.

Remark 3 A variable step-size procedure could also be
proposed by adapting the procedure above.

Whenf is approximated, it is possible to account for the error
of approximation off in the proposed integration scheme.
In this case, consider the IK linear predictor̂X((n + 1)h)

of X((n + 1)h) based onX(nh) and Ẋ((n − i)h) + W̃i,
i = 0, . . . , q, where theW̃is are independent zero-mean random
variables with variance equal to

VF (F (xn−i,u((n − i)h)) | F obs
j , j = 1, . . . , n).

Here, theW̃is carry the uncertainty oṅx((n − i)h) due to the
error of approximation off . Then,f has to be replaced bŷf
in (19).

(n + 1)hnh(n − 1)h(n − 2)h

xn

ẋn
ẋn−1· · ·

xn+1

f

Figure 1. Illustration of the proposed integration scheme

5. EXPERIMENT

In this section, we present some experimental results to illus-
trate the proposed black-box identification and simulationpro-
cedures. We consider a driven Lotka-Volterra nonlinear ODE{

ẋ1(t) = f1(x1, x2, u1) = αx2 − βx1x2 + u1 ,
ẋ2(t) = f2(x1, x2, u2) = −γx1 − δx1x2 + u2 ,

(20)

with α = γ = 1, β = 0.2, δ = 0.5 and

u1(t) = cos2(t/ exp(1)) cos2(t) ,
u2(t) = cos2(t/ exp(1)) sin2(t) .

The observation set consists ofn = 40 samples of the state
vector at evenly spaced instants0, h, . . . , (n − 1)h, with h =
0.5, simulated using a standard ODE solver and corrupted
with a GaussianN (0, 10−4) white noise. The components
of the state vector are modeled by two independent rpsX1

and X2 with constant but unknown mean and a Wendland
covariance function (see, e.g., Wendland, 2005). The class
of Wendland functions provides stationary covariances with
compact support. Here, the sameC6 Wendland function

kX(t, s) = σ2
(
1−h/ρ

)8

+

(
32(h/ρ)3 +25(h/ρ)2 +8h/ρ+1

)
,

h = |t − s|, was chosen for the covariance functions of
X1 and X2. The parametersσ2 and ρ were estimated by
maximum likelihood (Stein, 1999). Figure 2 shows the state
vector components and their approximate first derivatives,as
estimated in the first step of identification procedure by IK
(Section 3.1).

Figure 3. Representation off1(x1, x2, 0) = x1 − 0.2x1x2.
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Figure 4. Contour plot in the plane (x1, x2) of the absolute
difference betweenf1(x1, x2, 0) and its approximation
f̂1(x1, x2, 0) obtained by our identification procedure. The
circles indicate the position of the observations in the
plane (x1, x2).

The next part of the identification procedure consists in the
approximation off . Here, the two components off are modeled
by two independent rpF1 andF2, with an unknown mean of
the formα0 + α1x1 + α2x2 + α1,1x1x2 + α2,0x

2
1 + α0,2x

2
2

and a generalized covariance written askF (x,x) = a1h −
a3h

3 + a5h
5, with h = ‖x − x′‖. The parametersai ≥ 0 are

estimated by maximum likelihood. Figures 3 and 4 illustrate
the approximation of the first component off as obtained in the
second step of our identification procedure.

Oncef has been approximated, we want to predict its future
trajectory. In Figure 2, we show the result of the simulationas
obtained by the procedure described in Section 4 against the
true trajectory. The prediction error remains small and does not
grow with time.
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Figure 2. Simulation of the system (20). Solid line:x1(t), x2(t), ẋ1(t) and ẋ2(t) computed by the ODE solver. Circles: the
observations and the estimated derivatives in the identification procedure. Crosses: components of the state vector and their
derivative obtained with the proposed simulation method. The vertical line att = 20 marks the starting time of the simulation.
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