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Oral presentation 

Introduction 
Correct modelling of damping is essential to capture the dynamic behaviour of a MEMS 
device. Our interest is squeeze-film damping which models the behaviour of a fluid in small 
gaps between a fixed surface and a structure moving perpendicular to this surface . The lateral 
dimensions of the surfaces are large compared to the gap and the system is considered 
isothermal. Squeeze film damping is then governed by the Reynolds equation [1]: 
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where ( )tyxG ,,  is the distance between the moving and the fixed surface, ( )tyxP ,,  is the 
pressure, μ the effective viscosity of the fluid [1]. For small excitation frequencies or 
amplitudes the squeezed film behaves as a linear damper. For larger amplitudes or 
frequencies, the gas has no time to flow away and the pressure builds up creating a stiffening 
effect coupled to a nonlinear damping. The boundary conditions for (1) are usually chosen as 
trivial: “zero pressure variation” or “zero pressure gradient”, although some authors have 
considered less ideal, frequency-dependent and aspect-ratio dependent boundary conditions 
[2-3]. A complete review on this equation and its different regimes can be found in [4].  
Coupling the Reynolds equation to the equation governing the mechanical behaviour of the 
microstructure leads to a nonlinear system of partial differential equations (PDEs), which has 
no analytical solution and must be simplified thanks to some assumptions. The most 
commonly made assumptions are the following: 
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∂
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G

x
G  (for example, [5]). 

- steady-state sinusoidal excitation, i.e. ( )tGG e ωsin=  [6-7]. 
- small displacements, i.e. gGG += 0  and 0Gg << , where 0G  is the nominal gap of the 

structure at rest or close to a static equilibrium [8-9]. 
- small pressure variations, i.e. pPP += 0  and 0Pp << , where 0P  is the ambient pressure. 

These hypotheses prove to be useful in a variety of applications, if only for gaining insight of 
nonlinear damping phenomena. However, in many cases, it is difficult to justify their use: for 
example, it is clear to see that none of the first three hypotheses holds when trying to estimate 
the switching time of a micro-switch. Most micro-switches do not undergo uniform 
displacements, nor can these displacements be considered small, and the behaviour of a 
micro-switch is fundamentally transient.  



To date, the most notable attempts to tackle the problem of reduced-order modelling (ROM) 
of squeeze-film damping with large, non-uniform displacements have been made by Younis et 
al. [10-12], Mehner et al. [6,13], Yang et al. [14-15], Hung and Senturia [16] and Rewienski 
and White [17-18]. In [10-12], the authors propose to solve the nonlinear Euler-Bernoulli 
beam equation to determine the static deformation of a microplate under a voltage bias. The 
von Karman plate equations and the compressible Reynolds equation are then linearized close 
to this operating point and a perturbation method is used to calculate the pressure deviation. In 
[6,13], the authors use a modal projection method to calculate modal frequency-dependent 
damping and stiffening coefficients close to a determined operating point. To extend this 
approach to large displacements, Mehner [6] gives an analytical expression of these 
coefficients as a function of mechanical modal coordinates established by fitting of simulation 
data for different initial deformations. These approaches are all based on several steady-state 
sinusoidal calculations [10-12] or simulations [6,13], which increase the time for setting up 
the reduced-order model. The most general approaches may well be those developed in [14-
18]: the authors rely on fully-coupled, nonlinear transient simulations of the complete system 
(usually a micro-switch) to establish a reduced-order model of the microstructure. These 
approaches are very general and they can even be successfully applied to the fully nonlinear 
Reynolds equation (1). However, they have a high computational cost (because of the 
nonlinear/multiphysics/transient simulation they require) and their accuracy depends, to some 
degree, on the choice of the training trajectory.  
We present a reduced-order model of the Reynolds equation which is valid for large, non-
uniform displacements and transient excitation but with the restriction of small pressure 
variations. This hypothesis is valid for a microswitch as shown by the results presented in 
[19]. 
 
Construction of the reduced-order model 
 
We work on the variable 0PPp −=  , supposing 0Pp << . (1) has then the following form: 
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The first reduction step is based on modal projection of (2) which is first transformed via a 
change of variable on p. The aim of this change of variable is to obtain a spatial operator for 
which the Laplacian eigenmodes are more relevant than for the operator in (2), conserving its 
self-adjoint property thus guarantying convergence of the solution. The reduced-order model 
may be written as: 
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where x and s are respectively the vectors of the mechanical modal coordinates of the moving 
structure, and of the modes corresponding to the Reynolds equation. For a structure under 
electrostatic actuation, one may write the full coupled model as:  
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where z is the state vector including all modal coordinates. The cost of evaluating the terms 
g(z(t)), f(z(t)), and B(z(t)) is reduced using a piecewise linear approach described in [17]. The 
fact that the coefficients in (3) only depend on the mechanical modal coordinates reduces the 
cost of construction of the piecewise linear model, which has the following structure: 
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where iJG  and iJF  are respectively the jacobians of the functions g(z) and f(z) at the 
linearization points iz  and (z)Felec corresponds to the electrostatic force. Two problems arise 
from the piecewise linearization: the choice of the linearization points and the weighting 
procedure. We choose the linearization points from a simulation of the first reduced model. A 
new linearization point is chosen when a point is far enough from the already chosen points. 
We normalize the state variables to calculate the distances so as to take into account all state 
variables with the most relevance. The weighting procedure is the one described in [17]. 
 
Validation of the reduced-order model 
 
We work on the example of a microswitch also treated in [16-18]. We use the piecewise linear 
reduced order model to determine the switching time of the device for a step voltage between 
9 and 10.5 V at atmospheric ambient pressure. The 21 linearization points are chosen along a 
9.5V input training trajectory. Fig.1 shows the response to a 10V input using a linear model, 
the modal projection model, and the piecewise linearized model. Fig.2 shows the 
experimental and simulated data presented in [16] and results of our piecewise linear reduced 
model of order 6 for the switching time. 
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Figure 1- Middle point displacement of a microswitch for a linear model, the projected model and the projected 
and piecewise linearized model (1 mechanical mode, 4 “squeeze” modes) for a 10V step voltage. The 21 
linearization points are chosen along a 9.5V input trajectory. 
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Figure 2 - Pull-in time (s) versus applied voltage (V) for 0P =1.013×105 Pa. Comparison of the experimental 
and simulated results presented in [16] to the simulated results obtained with our reduced-order model. The 
chosen squeeze modes correspond to 1k =0, 2 and 2k =1, 3 in (38). For the mechanical part, the first eigenmode 
is used. 
 
Further work 

We can notice that the nonlinear terms depend only on the mechanical modal coordinate and 
that the model is linear in the modes concerning the Reynolds equation. It can be written as: 
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The piecewise linearization described above doesn’t take advantage of this structure. Another 
piecewise linearized model can be based on the linearization of the terms G, FP and B. As 
they only depend on the on mechanical coordinate, there is no need for a training trajectory. It 
is sufficient to discretize in an appropriate way the one dimensional space corresponding to 
the mechanical coordinate. This is a great advantage as the resulting model does not depend 
on the relevance of a training trajectory, one the main drawbacks of the model presented 
above. On the other hand the resulting equation is nonlinear which increases the resolution 
cost. Full results of this model will be presented. 
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