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In design of experiments for nonlinear regression model identification, the design criterion depends on the unknown parameters to be identified. Classical strategies consist in designing sequentially the experiments by alternating the estimation and design stages. These strategies consider previous observations (collected data) only while estimating the unknown parameters during the estimation stages. This paper proposes to consider the previous observations not only during the estimation stages, but also by the criterion used during the design stages. Furthermore, the proposed criterion considers the robustness requirement: an unknown model error (misspecification) is supposed to exist and is modeled by a kernel-based representation (Gaussian process). Finally, the proposed sequential criterion is compared with a model-robust criterion which does not consider the previously collected data during the design stages, with the classical D-optimal and L-optimal criteria.

INTRODUCTION

This paper addresses the problem of designing experiments for parameters identification for nonlinear regression models. The Design of Experiments (DOE) analysis is expected to entail a regression whose response function is nonlinear in the parameters.

Let t(x) be a target function which we desire to approximate by a nonlinear regression model η(θ, x) where θ is the parameters vector. Suppose that θ * is the parameters vector that will best approximate the target function t(x):

θ * = arg min θ X (t(x) -η(θ, x)) 2 dx ( 1 
)
where X is the experimental domain. θ * is unknown and has to be estimated. Suppose that a set of n collected data {(xi, yi) ∈ X × R, i = 1, ..., n} has already been collected. The xi's form the initial design denoted by ξn = [x1, ..., xn] ⊤ . The yi's are noisy observations of the target (yi = t(xi) + ei), where the observation errors ei are normal and i.i.d. At this stage, the unknown parameters vector θ * may be estimated from the n collected observations using a nonlinear least square estimator as follows:

θn = arg min θ n i=1
(yi -η(θ, xi)) 2 (2)

Suppose that we desire to refine the parameters estimation by adding a new design point xn+1 and its corresponding observation value yn+1 to the collected data. Then, the problem of sequential design of experiments is to choose the next design point xn+1 that will refine the parameters estimation. Classical sequential strategy was first proposed by Box and Hunter [START_REF] Box | Sequentiald design of experiments for nonlinear models[END_REF]. Afterwards, many works were progressed following the same classical strategy. Using the results in [START_REF] Lai | Least squares estimates in stochastic regression models with aplication to identification and control of dynamic systems[END_REF], Titterington and his collaborators [START_REF] Titterington | Inference and sequential design[END_REF] were able to show that the usual asymptotic analysis based on least squares estimation is still valid for sequential design in nonlinear models. As pointed out by several authors ( [START_REF] Chernoff | Approaches in sequential design of experiments[END_REF], [START_REF] Silvey | Optimal design[END_REF], [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF]), the most attractive feature of sequential DOE is its ability to optimally utilize the dynamics of the learning process associated with experimentation and parameters identification.

The classical sequential strategy discussed in the literature considers the previously collected data while computing θn during the estimation stages. This paper suggests to also consider the collected data while deriving the design criterion during the design stages.

Moreover, classical experimental design criteria consider that the target function t(x) is perfectly represented by the regression model η(θ * , x). This will introduce a bias in the parameters estimation. An important work that solves such drawbacks was done by Yue and Hickernell [START_REF] Yue | Robust designs for fitting linear models with misspecification[END_REF]. In our paper, the model error (misspecification) is considered and modeled by a kernel-based representation (Gaussian process).

The paper is organized as follows. Section 2 presents two classical design of experiments criteria (D-optimality, L-optimality). These two criteria are then used in other sections for comparison purposes with the new proposed criterion. Although the meaning of the proposed criterion is quite natural, its derivation is a challenging task. Therefore, section 3 presents the proposed criterion and its associated mathematical developments. In section 4, the new approach is applied on a nonlinear regression example. The obtained designs are compared with other designs obtained from the same criterion without taking into consideration the previously collected data during the design stages, the D-optimal and L-optimal criteria.

CLASSICAL DESIGN OF EXPERIMENTS CRITERIA

Presenting the L-optimal criterion will be helpful for the proposed criterion derivation because it is based on this criterion. The Doptimal criterion is presented for comparison purpose in section 4.

D-optimality

Having a set of n collected data, the D-optimality in nonlinear problems consists in choosing the next design point x * n+1 which minimizes the determinant of the inverse of the Fisher matrix:

x * n+1 = arg min

x n+1 ∈X det ∇M ⊤ n+1 ∇Mn+1 -1 (3) 
where ∇M n+1 is a (n + 1) × d matrix where each row is equal to (∇η( θn , xi)) ⊤ which is the gradient of η( θn , x).

Let x n+1 be a candidate value for the new design point and y n+1 the observation made at this design point. Then, θn+1 the nonlinear least square estimation of θ, is computed using n + 1 points:

θn+1 = arg min θ n+1 n+1 i=1 (yi -η(θn+1, xi)) 2 (4) 
The L-optimality criterion attempts to choose the new design point x n+1 that minimizes the average prediction error over the entire experimental domain. The prediction error is defined as the Integral Quadratic Error (IQE):

IQE(x1, ..., xn+1, e1, ..., en+1) = X |t -t| 2 dx ( 5 
)
where t(x) = η θn+1, x is the target function estimation.

The IQE depends on the known design points ξn, the new design point xn+1 and the observation errors which are unknown. Thus, an expectation over the observation errors is taken in order to ensure a good performance averagely over their realizations.

Taking the total expectation of the IQE in ( 5), the Integral Quadratic Risk (IQR) can be written as follows:

IQR(xn+1) = E (e n+1 ) X |t -t| 2 dx ( 6 
)
where en+1 is the observations error vector. The L-optimality consists in choosing the design point x * n+1 that minimizes (6):

x * n+1 = arg min

x n+1 ∈X [IQR(xn+1)] (7) 
Solving the optimization problem in ( 7) requires an analytic expression of t and therefore an analytic expression of θn+1 in (4). Suppose that for a sufficient number of observations θn , θ * and θn+1 are approximately the same. Then, a first order Taylor series expansion may be used to linearize the model around the the estimated parameters:

η(θ * , x) = η( θn , x) + ∇η( θn , x) ⊤ (θ * -θn ) (8) 
Therefore, the error in (4) may be approximated by:

y i -η(θn+1, xi) ≈ η( θn , xi)+∇η( θn , xi) ⊤ (θ * -θn ) + e i -η( θn , xi) -∇η( θn , xi) ⊤ (θn+1 -θn ) (9) 
Replacing the error by its approximation, ( 4) is written as follows:

θn+1 = arg min θ n+1 n+1 i=1 ∇η( θn , x i ) ⊤ (θ * -θ n+1 ) + e i 2 (10) 
For simplification and computation purposes, the above equation is written in vectorial form as follows:

θn+1 = arg min θ n+1 ∇Mn+1(θ * -θn+1) + en+1 2 (11)
Therefore, the solution of (11) is given by:

θn+1 = ∇M ⊤ n+1 ∇Mn+1 -1 ∇M ⊤ n+1 en+1 + θ * (12) 
The L-optimality IQR is then rewritten in an explicit form:

IQR(xn+1) = E (e n+1 ) X |ψn+1(x)η( θn , x)en+1| 2 dx (13)
where

ψ n+1 (x) = (∇η( θn , x)) ⊤ ∇M ⊤ n+1 ∇Mn+1 -1
∇M ⊤ n+1 . This expression can be written in a simplified form:

IQR = σ 2 e tr Iηη ∇M ⊤ n+1 ∇Mn+1 -1 (14) 
where Iηη = X η( θn , x)η( θn , x) ⊤ dx which can be computed analytically. One can see that the last IQR expression is suitable for implementation and optimization.

THE PROPOSED CRITERION DERIVATION

Now, what if the target function is not perfectly represented by the regression model? A model error (misspecification) exists. Therefore, the target function t is:

t(x) = η(θ * , x) + r(x) (15) 
where the misspecification r(x) is an unknown function. We choose to model it by a Gaussian process [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF]. A Gaussian process is a random field defined by its mean and covariance function:

E r {r(x)} = 0, ∀ x ∈ X E r {r(x)r(x ′ )} = c(x, x ′ ), ∀ (x, x ′ ) ∈ X 2
The relevance of modeling the misspecification as a Gaussian process rises because for some classes of covariance functions, Gaussian processes span a rather large space (infinite-dimensional). Therefore, this type of representation matches the robustness requirement: the design point xn+1 will guarantee a good level of performance (on average) over the set of potential misspecifications. Now, the estimated parameters θn+1 depends on the model error r(x), thus equation (12) becomes:

θn+1 = ψ n+1 z n+1 + θ * (16)
where z n+1 is the observations-model errors vector generated by a Gaussian process z(x): mean 0 and covariance c(x, x ′ ) + σ 2 e δ(xx ′ ).

The chosen statistical representation for r(x) allows to take expectation of the IQE in (5) over the model and observation errors. The IQR of the Model-Robust criterion is written as follows:

IQR(xn+1) = E (e n+1 ,r) X |t -t| 2 dx (17)
Having a set of n previously collected observations will provide important information about the random variables en and r(x). Hence, introducing this information in the design criterion will improve the criterion performance and refine the parameters estimation. This idea was first discussed in [START_REF] Abiad | Model-Robust Sequential Design of Experiments for Identification Problems[END_REF] showing its workability in linear situations. This paper will adopt this idea for nonlinear situations. Therefore, the criterion to be used in the design stages is as follows [START_REF] Abiad | Model-Robust Sequential Design of Experiments for Identification Problems[END_REF]:

IQR(xn+1) = E (e n+1 ,r)/ CD X |t -t| 2 dx ( 18 
)
where /CD means that all the probability density functions are calculated conditionally to the already collected data.

By expanding the previous equation, the IQR can be written as follows:

IQR(xn+1)= X E (e,r)/ CD [r 2 (x)] dx + X E (e,r)/ CD [ψ ⊤ n+1 (x)zn+1z ⊤ n+1 ψn+1(x)] dx -2 X E (e,r)/ CD [r(x)ψn+1 ⊤ (x)zn+1] dx (19) 
The expectation calculation in equation ( 19) becomes a bit more complicated because of considering previous information. Having a set of collected data will provide information about the random variables zn , which is introduced in form of constraints. Let yn be the n×1 vector of known observations y i. Then, yn = η(θ * , ξn )+ z n . According to [START_REF] Abiad | Model-Robust Sequential Design of Experiments for Identification Problems[END_REF], this equation can be written as follows:

yn = η(θ * , ξn ) + ∇η( θn , x) ⊤ (θ * -θn ) + zn (20)
Generally, n > d. Therefore, the model matrix ∇M n may be divided into two sub-matrices: ∇MB a d × d reversible matrix and ∇M B a (n -d) × d matrix. Also, yn and zn are divided into y n = [y B ; y B ] and zn = [zB ; z B ] respectively. Therefore, (20) can be written as follows:

y B = η(θ * , ξn )+∇M B ψB yB -∇M B ψB η( θn, ξn ) -∇M B ψB zB + z B ( 21 
)
Let N k = [∇M B ψB , I k ] (I k is the identity matrix) be the constraints matrix, then equation ( 21) can be written in matrix form as follows:

N k [y B ; y B ] = N k [zB -η( θn, xB ); z B -η( θn, x B )] = c k (22) 
The constraints matrix dimension is k × n, which means that there are k constraints over zn. The constraints vector c k is computed from the residue zn. The Probability Density Function (PDF) of the constraints is:

P (c k ) ∝ exp - 1 2 c ⊤ k -1 C c k ( 23 
)
where C is the covariance matrix of c k given by:

C = N k Z N ⊤ k ( 24 
)
where Z is the covariance matrix of z n . Because of the linearity and the jointly Gaussian character of the constraints, all the random variables remain Gaussian and therefore the IQR in (19) may be computed. In the following, a detailed explanation of the computation procedure of ( 19) is given. The expectation in (19) is taken over the observations error and model error. Therefore, it is required to compute

E (e n+1 ,r)/ CD (X 2
) and E (e n+1 ,r)/ CD (XY ) where X and Y can be the model error r(x) or the model-observations error z(x).

Therefore, one has to compute the conditional mean and variance of X or Y and the jointly conditional variance of X and Y . Using Bayes rules:

P (X/c k ) = P (X, c k ) P (c k ) ∝ exp - 1 2 (X -m X/c k (x)) 2 σ 2 X/c k (x) (25) 
The probability of (X, c k ) is given by:

P (X, c k ) ∝ exp - 1 2 [X c ⊤ k ] S -1 [X ; c k ] (26) 
where S is the covariance matrix of [X ; c k ] constructed from equation (24)). The identification of (25) with (26) gives the mean and variance of X/ c k :

m X/ c k (x) = -k+1 i=2 (S -1 ) 1,i × c i-1 (S -1 )1,1 σ 2 X/c k (x) = 1 (S -1 )1,1 (27) 
As can be seen from the second and third terms of the IQR (19), one has to compute the jointly conditional variances of r(x), z(x i) and z(x i ), z(x j ). The way of computing this jointly conditional variance is different from the one discussed above:

σ 2 XY /c k (x) = (S -1 XY )1,2 (28) 
where SXY is the 2 × 2 matrix in the upper left corner of S:

S XY = (S -1 1 )1→2,1→2 (29) 
and S 1 is the covariance matrix of [X ; Y ; c k ].

Finally, the integrals in equation ( 19) are calculated using numerical integration. The computational burden is thus tractable.

ILLUSTRATIVE EXAMPLE

Consider the following nonlinear model:

η(θ, x) = 1 1 + exp (-θ1 -θ2x) + 1 1 + exp (-θ1 + θ2x) (30) 
The target function t(x) = η(θ, x) + p(x), where p(x) is a polynomial of degree m that represents the deviation form the nonlinear model (misspecification). Let θ 1 = 1, θ 2 = 6 and m = 6.

The Gaussian kernel is used because it is the most used kernel for the Gaussian process covariance [START_REF] Williams | Prediction with Gaussian processes: From linear regression to linear prediction and beyond[END_REF]:

c(x, x ′ ) = s 2 exp - x -x ′ λ 2 , ∀(x, x ′ ) ∈ X 2 (31) 
where, s 2 (Gaussian process variance) and λ (correlation distance) are the Gaussian process parameters. The kernel is used with the Gaussian process parameters values s 2 = 1 and λ = 0.6. The approach used to choose these values is based on a maximin efficiency criterion [START_REF] Roger | A criterion for model-robust design of experiments[END_REF].

The centered interval [-1; 1] is taken to be the experimental domain X. The design ξn = [-1, 0, 1] is taken to be the initial design.

The proposed approach is applied by varying the number of added points in the design from 1 to 20. The IQE PDF are computed by Monte-Carlo method with 100 sequences of noise where the observations error variance σ 2 e = 0.05. Figure 1 shows the performance (in terms of IQR) of the complete proposed approach (eq.( 18)), the proposed approach without considering the collected data as prior information (eq.( 17)), L-optimal design (eq.( 6)) and D-optimal design (eq.( 3)).

The results show the advantage of considering the model errors (faster convergence to the minimum IQR of the proposed approaches over the other two approaches) and the advantage of computing all the probabilities conditionally to the collected data. 

Fig. 2. IQE histograms

Another illustration is the comparison of the IQE histograms for a fixed number of added design points. Figure 2 gives the IQE histograms of the three designs where 10 design points are added. The corresponding IQE means are shown in Table 1. Figure 3 is an example of the target function with the approximated model (30) where its parameters are estimated using the design points (6 added design points) obtained with the L-optimal and the proposed design criteria. It can be seen that the proposed criterion gives a better performance over the classical L-optimality. Fitting with L-optimal design Fig. 3. Model fitting using the proposed criterion and L-optimal a model error which is modeled by a Gaussian process. Finally, an illustrative example has shown that the proposed criterion will give better performance over criteria that do not consider previous collected data during the design stages.

D-optimal L-optimal

  Fig. 1. Comparison among the four criteria

  Comparison among the four criteria

	40						Proposed design	
	20						IQE mean	
	0	0	0.01	0.02	0.03	0.04	0.05	0.06
	40					Without considering previous
	20					observations design IQE mean	
	0	0	0.01	0.02	0.03	0.04	0.05	0.06
	40						L-optimal design	
	20						IQE mean	
	0	0	0.01	0.02	0.03	0.04	0.05	0.06
	40							
							D-optimal design
	20						IQE mean	
	0	0	0.01	0.02	0.03	0.04	0.05	0.06

Table 1 .

 1 IQE Means5. CONCLUSIONThis paper has proposed a sequential model-robust DOE criterion for nonlinear regression problems. The proposed criterion takes into consideration the previously collected data when designing experiments during the design stages. Moreover, the proposed criterion considers the problem of model robustness by taking into account

				Proposed	Proposed
				without /CD with /CD
	IQE	0.0211	0.0174	0.0149	0.0102