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ABSTRACT

In design of experiments for nonlinear regression model identifica-

tion, the design criterion depends on the unknown parameters to be

identified. Classical strategies consist in designing sequentially the

experiments by alternating the estimation and design stages. These

strategies consider previous observations (collected data) only while

estimating the unknown parameters during the estimation stages.

This paper proposes to consider the previous observations not only

during the estimation stages, but also by the criterion used during

the design stages. Furthermore, the proposed criterion considers the

robustness requirement: an unknown model error (misspecification)

is supposed to exist and is modeled by a kernel-based representa-

tion (Gaussian process). Finally, the proposed sequential criterion is

compared with a model-robust criterion which does not consider the

previously collected data during the design stages, with the classical

D-optimal and L-optimal criteria.

Index Terms— Sequential design of experiments, Gaussian pro-

cess, Nonlinear regression, Robust design, Parameters identification.

1. INTRODUCTION

This paper addresses the problem of designing experiments for pa-

rameters identification for nonlinear regression models. The Design

of Experiments (DOE) analysis is expected to entail a regression

whose response function is nonlinear in the parameters.

Let t(x) be a target function which we desire to approximate

by a nonlinear regression model η(θ, x) where θ is the parameters

vector. Suppose that θ∗ is the parameters vector that will best ap-

proximate the target function t(x):

θ
∗ = arg min

θ

∫

X

(t(x) − η(θ, x))2 dx (1)

where X is the experimental domain. θ∗ is unknown and has to be

estimated.

Suppose that a set of n collected data {(xi, yi) ∈ X × R, i =
1, ..., n} has already been collected. The xi’s form the initial design

denoted by ξn = [x1, ..., xn]⊤. The yi’s are noisy observations of

the target (yi = t(xi) + ei), where the observation errors ei are

normal and i.i.d. At this stage, the unknown parameters vector θ∗

may be estimated from the n collected observations using a nonli-

near least square estimator as follows:

θ̂n = arg min
θ

n
∑

i=1

(yi − η(θ, xi))
2

(2)

Suppose that we desire to refine the parameters estimation by adding

a new design point xn+1 and its corresponding observation value

yn+1 to the collected data. Then, the problem of sequential design of

experiments is to choose the next design point xn+1 that will refine

the parameters estimation.

Classical sequential strategy was first proposed by Box and Hun-

ter [1]. Afterwards, many works were progressed following the same

classical strategy. Using the results in [2], Titterington and his col-

laborators [3] were able to show that the usual asymptotic analysis

based on least squares estimation is still valid for sequential design in

nonlinear models. As pointed out by several authors ([4], [5], [6]),

the most attractive feature of sequential DOE is its ability to opti-

mally utilize the dynamics of the learning process associated with

experimentation and parameters identification.

The classical sequential strategy discussed in the literature con-

siders the previously collected data while computing θ̂n during the

estimation stages. This paper suggests to also consider the collected

data while deriving the design criterion during the design stages.

Moreover, classical experimental design criteria consider that

the target function t(x) is perfectly represented by the regression

model η(θ∗, x). This will introduce a bias in the parameters estima-

tion. An important work that solves such drawbacks was done by

Yue and Hickernell [7]. In our paper, the model error (misspecifi-

cation) is considered and modeled by a kernel-based representation

(Gaussian process).

The paper is organized as follows. Section 2 presents two classi-

cal design of experiments criteria (D-optimality, L-optimality). The-

se two criteria are then used in other sections for comparison pur-

poses with the new proposed criterion. Although the meaning of

the proposed criterion is quite natural, its derivation is a challenging

task. Therefore, section 3 presents the proposed criterion and its as-

sociated mathematical developments. In section 4, the new approach

is applied on a nonlinear regression example. The obtained designs

are compared with other designs obtained from the same criterion

without taking into consideration the previously collected data dur-

ing the design stages, the D-optimal and L-optimal criteria.

2. CLASSICAL DESIGN OF EXPERIMENTS CRITERIA

Presenting the L-optimal criterion will be helpful for the proposed

criterion derivation because it is based on this criterion. The D-

optimal criterion is presented for comparison purpose in section 4.

2.1. D-optimality

Having a set of n collected data, the D-optimality in nonlinear prob-

lems consists in choosing the next design point x∗
n+1 which mini-

mizes the determinant of the inverse of the Fisher matrix:

x∗

n+1 = arg min
xn+1∈X

det
(

∇M
⊤

n+1∇Mn+1

)−1

(3)

where ∇Mn+1 is a (n + 1) × d matrix where each row is equal to

(∇η(θ̂n , xi))
⊤ which is the gradient of η(θ̂n , x).



2.2. L-optimality

Let xn+1 be a candidate value for the new design point and yn+1

the observation made at this design point. Then, θ̂n+1 the nonlinear

least square estimation of θ, is computed using n + 1 points:

θ̂n+1 = arg min
θ

n+1

n+1
∑

i=1

(yi − η(θn+1, xi))
2

(4)

The L-optimality criterion attempts to choose the new design

point xn+1 that minimizes the average prediction error over the en-

tire experimental domain. The prediction error is defined as the In-

tegral Quadratic Error (IQE):

IQE(x1, ..., xn+1, e1, ..., en+1) =

∫

X

|t − t̂|2dx (5)

where t̂(x) = η
(

θ̂n+1, x
)

is the target function estimation.

The IQE depends on the known design points ξn, the new design

point xn+1 and the observation errors which are unknown. Thus, an

expectation over the observation errors is taken in order to ensure a

good performance averagely over their realizations.

Taking the total expectation of the IQE in (5), the Integral Quad-

ratic Risk (IQR) can be written as follows:

IQR(xn+1) = E
(en+1)

[
∫

X

|t − t̂|2dx

]

(6)

where en+1 is the observations error vector. The L-optimality con-

sists in choosing the design point x∗
n+1 that minimizes (6):

x∗

n+1 = arg min
xn+1∈X

[IQR(xn+1)] (7)

Solving the optimization problem in (7) requires an analytic expres-

sion of t̂ and therefore an analytic expression of θ̂n+1 in (4).

Suppose that for a sufficient number of observations θ̂n , θ∗ and

θ̂n+1 are approximately the same. Then, a first order Taylor series

expansion may be used to linearize the model around the the esti-

mated parameters:

η(θ∗, x) = η(θ̂n , x) + ∇η(θ̂n , x)⊤(θ∗ − θ̂n) (8)

Therefore, the error in (4) may be approximated by:

yi− η(θn+1, xi)≈η(θ̂n , xi)+∇η(θ̂n , xi)
⊤(θ∗− θ̂n)

+ ei − η(θ̂n , xi)

−∇η(θ̂n , xi)
⊤(θn+1 − θ̂n)

(9)

Replacing the error by its approximation, (4) is written as follows:

θ̂n+1 = arg min
θ

n+1

n+1
∑

i=1

(

∇η(θ̂n , xi)
⊤(θ∗ − θn+1) + ei

)2

(10)

For simplification and computation purposes, the above equation is

written in vectorial form as follows:

θ̂n+1 = arg min
θ

n+1

‖∇Mn+1(θ∗ − θn+1) + en+1‖
2

(11)

Therefore, the solution of (11) is given by:

θ̂n+1 =
(

∇M
⊤

n+1∇Mn+1

)−1

∇M
⊤

n+1en+1 + θ
∗

(12)

The L-optimality IQR is then rewritten in an explicit form:

IQR(xn+1)= E
(en+1)

∫

X

[

|ψn+1(x)η(θ̂n , x)en+1|
2
]

dx (13)

where ψn+1(x) = (∇η(θ̂n , x))⊤
(

∇M ⊤

n+1∇Mn+1

)−1
∇M ⊤

n+1.

This expression can be written in a simplified form:

IQR = σ2
e tr

(

Iηη

(

∇M
⊤

n+1∇Mn+1

)−1
)

(14)

where Iηη =
∫

X
η(θ̂n , x)η(θ̂n , x)⊤dx which can be computed an-

alytically. One can see that the last IQR expression is suitable for

implementation and optimization.

3. THE PROPOSED CRITERION DERIVATION

Now, what if the target function is not perfectly represented by the

regression model? A model error (misspecification) exists. There-

fore, the target function t is:

t(x) = η(θ∗ , x) + r(x) (15)

where the misspecification r(x) is an unknown function. We choose

to model it by a Gaussian process [6]. A Gaussian process is a ran-

dom field defined by its mean and covariance function:

E
r
{r(x)} = 0, ∀ x ∈ X

E
r
{r(x)r(x′)} = c(x, x′), ∀ (x, x′) ∈ X

2

The relevance of modeling the misspecification as a Gaussian pro-

cess rises because for some classes of covariance functions, Gaus-

sian processes span a rather large space (infinite-dimensional). There-

fore, this type of representation matches the robustness requirement:

the design point xn+1 will guarantee a good level of performance

(on average) over the set of potential misspecifications.

Now, the estimated parameters θ̂n+1 depends on the model er-

ror r(x), thus equation (12) becomes:

θ̂n+1 = ψn+1zn+1 + θ
∗

(16)

where zn+1 is the observations-model errors vector generated by a

Gaussian process z(x): mean 0 and covariance c(x, x′) + σ2
eδ(x −

x′).

The chosen statistical representation for r(x) allows to take ex-

pectation of the IQE in (5) over the model and observation errors.

The IQR of the Model-Robust criterion is written as follows:

IQR(xn+1) = E
(en+1,r)

[
∫

X

|t − t̂|2dx

]

(17)

Having a set of n previously collected observations will pro-

vide important information about the random variables en and r(x).

Hence, introducing this information in the design criterion will im-

prove the criterion performance and refine the parameters estimation.

This idea was first discussed in [8] showing its workability in linear

situations. This paper will adopt this idea for nonlinear situations.

Therefore, the criterion to be used in the design stages is as follows

[8]:

IQR(xn+1) = E
(en+1,r)/CD

[
∫

X

|t − t̂|2dx

]

(18)

where /CD means that all the probability density functions are cal-

culated conditionally to the already collected data.



By expanding the previous equation, the IQR can be written as

follows:

IQR(xn+1)=

∫

X

{

E
(e,r)/CD

[r2(x)]

}

dx

+

∫

X

{

E
(e,r)/CD

[ψ⊤

n+1(x)zn+1z
⊤

n+1ψn+1(x)]

}

dx

−2

∫

X

{

E
(e,r)/CD

[r(x)ψn+1
⊤(x)zn+1]

}

dx

(19)

The expectation calculation in equation (19) becomes a bit more

complicated because of considering previous information. Having

a set of collected data will provide information about the random

variables zn , which is introduced in form of constraints. Let yn be

the n×1 vector of known observations yi. Then, yn = η(θ∗, ξn)+
zn . According to (8), this equation can be written as follows:

yn = η(θ∗, ξn) + ∇η(θ̂n , x)⊤(θ∗ − θ̂n) + zn (20)

Generally, n > d. Therefore, the model matrix ∇Mn may be

divided into two sub-matrices: ∇MB a d × d reversible matrix and

∇MB̄ a (n − d) × d matrix. Also, yn and zn are divided into

yn = [yB ; yB̄ ] and zn = [zB ; zB̄ ] respectively. Therefore, (20)

can be written as follows:

yB̄ = η(θ∗, ξn)+∇MB̄ψByB −∇MB̄ψBη(θ̂n, ξn)

− ∇MB̄ψBzB + zB̄

(21)

Let Nk = [∇MB̄ψB , Ik] (Ik is the identity matrix) be the

constraints matrix, then equation (21) can be written in matrix form

as follows:

Nk[yB ; yB̄ ]=Nk[zB − η(θ̂n,xB ); zB̄ − η(θ̂n,xB̄ )]

= ck

(22)

The constraints matrix dimension is k × n, which means that there

are k constraints over zn. The constraints vector ck is computed

from the residue zn. The Probability Density Function (PDF) of the

constraints is:

P (ck) ∝ exp

[

−
1

2
c
⊤

k

∑−1

C
ck

]

(23)

where
∑

C is the covariance matrix of ck given by:

∑

C
= Nk

∑

Z
N

⊤

k (24)

where
∑

Z
is the covariance matrix of zn . Because of the linear-

ity and the jointly Gaussian character of the constraints, all the ran-

dom variables remain Gaussian and therefore the IQR in (19) may

be computed. In the following, a detailed explanation of the com-

putation procedure of (19) is given. The expectation in (19) is taken

over the observations error and model error. Therefore, it is required

to compute E
(en+1,r)/CD

(X2) and E
(en+1,r)/CD

(XY ) where X and

Y can be the model error r(x) or the model-observations error z(x).

Therefore, one has to compute the conditional mean and variance

of X or Y and the jointly conditional variance of X and Y . Using

Bayes rules:

P (X/ck
) =

P (X, ck)

P (ck)

∝ exp

[

−
1

2

(X − mX/ck
(x))2

σ2
X/ck

(x)

] (25)

The probability of (X, ck) is given by:

P (X, ck) ∝ exp

[

−
1

2
[X c

⊤

k ] S−1 [X ; ck]

]

(26)

where S is the covariance matrix of [X ; ck] constructed from equa-

tion (24)). The identification of (25) with (26) gives the mean and

variance of X/ck
:

mX/ck
(x) =

−
∑k+1

i=2 (S−1)1,i × ci−1

(S−1)1,1

σ2
X/ck

(x) =
1

(S−1)1,1

(27)

As can be seen from the second and third terms of the IQR (19), one

has to compute the jointly conditional variances of r(x), z(xi) and

z(xi), z(xj). The way of computing this jointly conditional variance

is different from the one discussed above:

σ2
XY/ck

(x) = (S−1
XY )1,2 (28)

where SXY is the 2 × 2 matrix in the upper left corner of S:

SXY = (S−1
1 )1→2,1→2 (29)

and S1 is the covariance matrix of [X ; Y ; ck].
Finally, the integrals in equation (19) are calculated using nu-

merical integration. The computational burden is thus tractable.

4. ILLUSTRATIVE EXAMPLE

Consider the following nonlinear model:

η(θ, x) =
1

1 + exp (−θ1 − θ2x)
+

1

1 + exp (−θ1 + θ2x)
(30)

The target function t(x) = η(θ, x) + p(x), where p(x) is a poly-

nomial of degree m that represents the deviation form the nonlinear

model (misspecification). Let θ1 = 1, θ2 = 6 and m = 6.

The Gaussian kernel is used because it is the most used kernel

for the Gaussian process covariance [9]:

c(x, x′) = s2 exp

[

−

(

x − x′

λ

)2
]

, ∀(x, x′) ∈ X
2

(31)

where, s2 (Gaussian process variance) and λ (correlation distance)

are the Gaussian process parameters. The kernel is used with the

Gaussian process parameters values s2 = 1 and λ = 0.6. The ap-

proach used to choose these values is based on a maximin efficiency

criterion [10].

The centered interval [−1; 1] is taken to be the experimental do-

main X. The design ξn = [−1, 0, 1] is taken to be the initial design.

The proposed approach is applied by varying the number of

added points in the design from 1 to 20. The IQE PDF are com-

puted by Monte-Carlo method with 100 sequences of noise where

the observations error variance σ2
e = 0.05.

Figure 1 shows the performance (in terms of IQR) of the com-

plete proposed approach (eq.(18)), the proposed approach without

considering the collected data as prior information (eq.(17)), L-optimal

design (eq.(6)) and D-optimal design (eq.(3)).

The results show the advantage of considering the model errors

(faster convergence to the minimum IQR of the proposed approaches

over the other two approaches) and the advantage of computing all

the probabilities conditionally to the collected data.
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Another illustration is the comparison of the IQE histograms for

a fixed number of added design points. Figure 2 gives the IQE his-

tograms of the three designs where 10 design points are added. The

corresponding IQE means are shown in Table 1.

Figure 3 is an example of the target function with the approxi-

mated model (30) where its parameters are estimated using the de-

sign points (6 added design points) obtained with the L-optimal and

the proposed design criteria. It can be seen that the proposed crite-

rion gives a better performance over the classical L-optimality.

D-optimal L-optimal Proposed Proposed

without /CD with /CD

〈IQE〉 0.0211 0.0174 0.0149 0.0102

Table 1. IQE Means

5. CONCLUSION

This paper has proposed a sequential model-robust DOE criterion

for nonlinear regression problems. The proposed criterion takes into

consideration the previously collected data when designing exper-

iments during the design stages. Moreover, the proposed criterion

considers the problem of model robustness by taking into account
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Fig. 3. Model fitting using the proposed criterion and L-optimal

a model error which is modeled by a Gaussian process. Finally, an

illustrative example has shown that the proposed criterion will give

better performance over criteria that do not consider previous col-

lected data during the design stages.
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