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Abstract

The Karhunen-Loève Transform (KLT) is optimal for transform coding of Gaussian sources,

however it is no more optimal, in general, for non Gaussian sources. Furthermore, under the

high resolution quantization hypothesis, nearly everything is known about the performance of a

transform coding with entropy constrained scalar quantization and mean square distortion. It is

then straightforward to find a criterion that, when minimized, gives the optimal linear transform

under the above mentioned conditions. However, the optimal transform computation is generally

considered as a difficult task and the Gaussian assumption is then used in order to simplify the

calculus. In this paper, we present the above mentioned criterion as a contrast of Independent

Component Analysis modified by an additional term which is a penalty to nonorthogonality. Then

we adapt the icainf algorithm by Pham in order to compute the transform minimizing the criterion

either with no constraint or with the orthogonality constraint. Finally, experimental results show

that the transforms we introduced can 1) outperform the KLT on synthetic signals, 2) achieve

slightly better PSNR for high-rates and better visual quality (preservation of lines and contours)

for medium-to-low rates than the KLT and 2-D DCT on grayscale natural images.

1 Introduction

Transform coding has been extensively developed for coding natural signals like sounds, images (e.g.,

JPEG [1]) and video. The motivating principle of transform coding is that simple coding may be

more effective in the transform domain than in the original signal space. Generally “simple coding”

corresponds to the use of scalar quantization and scalar entropy coding, because they provide a good

trade-off between computational complexity and performance [2].

In a conventional transform coder [3, 4], an input vector X is first transformed into another vector

Y = TX of the same dimension. The components of that vector are then described to the decoder

using independent scalar quantizers on the coefficients. Finally, the decoder reconstructs the quantized

transform vector Ŷ and then uses a linear transformation U to get an estimate of the original input

vector X̂ = UŶ. In this paper, we consider mean-square distortion : E[‖X − X̂‖2], where E denotes
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mathematical expectation. When the input vector is Gaussian, the optimal transforms T and U

satisfy both the conditions T is an orthogonal matrix (i.e., T−1 = TT , where T denotes transposition)

that produces uncorrelated transform coefficients and U = T−1. Such a transform T is often called

Karhunen-Loève (KLT) in coding lessons.

The optimality of the KLT and its inverse is well known for high rates [3], or when optimal fixed-

rate quantizers are employed [5], or more generally when the quantizers are scale-invariant [2] for both

the fixed-rate and the variable-rate coding models. Moreover, for non Gaussian sources, it is well

known that the KLT can be suboptimal in transform coding [6]. Research in transform coding theory,

including subband coding, has been constant for several decades. There is a great interest in extending

theoretical results on transform optimality towards low bit-rates [7] [2], or in extending the KLT

optimality in more general situations by weakening the assumptions that ensure the optimality. In [8],

it is shown that under the classical assumptions of high-rate quantization, mean-square distortion and

variable-rate coding, the KLT remains optimal for a more general class of signals than Gaussian ones.

In [9], the quantization effect on backward adaptive transform coding of Gaussian sources is studied;

the perturbation due to quantization on coding gain is computed up to second order for KLT and

causal unitary transform.

Furthermore, under the high resolution quantization hypothesis, nearly everything is known about

the performance of a transform coding with entropy constrained scalar quantization and mean square

distortion. It is then straightforward to find a criterion that, when minimized, gives the optimal linear

transform under the above mentioned conditions. Nevertheless, the optimal transform computation

is generally considered as a difficult task [7] and the Gaussian assumption is then used in order to

simplify the calculus. In this paper we resolve the problem of computing the optimal transform under

high-rate entropy constraint scalar quantization hypothesis.

In 1963, Huang and Schultheiss [5] showed that, for scalar Lloyd-Max quantizers, if the vector

source X is Gaussian then the mean square distortion is minimized by choosing U = T−1 when T is a
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KLT of X. Actually, in their proof, they used in the one hand the fact that, applied to a real random

variable Y , a Lloyd-Max scalar quantizer with cells S1, . . . , Sk and outputs ŷ1, . . . , ŷk satisfies the

centroid condition ŷi = E[Y |Y ∈ Si] for (1 ≤ i ≤ k); and in the other hand the following property

satisfied by Gaussian sources when T is a KLT: the jth component of the quantization noise Y − Ŷ

and the ith component of Ŷ are uncorrelated for i 6= j. When the Gaussian assumption does not hold,

it is clear that the previous property is satisfied if the components of Y are statistically independent

(indeed Yj− Ŷj and Ŷi are deterministic functions of Yj and Yi respectively). Hence their proof remains

valid under this condition. Moreover, the result by Huang and Schulteiss still holds when the Lloyd-

Max scalar quantizers are replaced by uniform scalar quantizers, under the additional assumption of

high-rate quantization [3] (since they satisfy the centroid condition). In this paper, we suppose the

transform used by the decoder satisfies U = T−1. This assumption is partially justified by the fact

that the linear transforms T we consider in the following give transformed vectors Y with minimal

mutual information between components, and hence with components generally close to independence.

However, the total independence is rarely achieved and it will be interesting to complete our study by

the general case of arbitrary invertible matrices T and U.

In this paper, we first show that under the high-rate entropy constraint scalar quantization hypoth-

esis, for mean-square distortion and the condition U = T−1, the criterion that gives — when minimized

— the optimal linear transform T can be expressed as a classical contrast of Independent Component

Analysis (ICA) (actually the opposite of such a contrast), modified by an additional term which can

be explained as a pseudo distance to orthogonality. This new presentation of a classical result gives

an interesting point of view covering ICA and data compression. Indeed, it is well known that images

of natural scenes are well modeled with ICA [10], this underlies the potential usefulness of ICA to

compression [11, 12, 13]. Then, we present two variants of the icainf algorithm by Pham [14] that

permit to compute the optimal transform T with 1) no constraint and 2) the orthogonality constraint.

Finally, experimental results on both synthetic data and natural images are given in Section 4, they
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show that the transforms returned by the new algorithms can 1) outperform the KLT when used with

synthetic signals, and 2) achieve slightly better performance for high-rates and better visual quality

(preservation of lines and contours) than the KLT and 2D DCT when applied to the medium-to-low

bit rate compression of natural images. This last result is unexpected, since no optimality is ensured

at low bit-rates. The paper begins with a brief review of high bit-rate transform coding. The results

presented here have been partially published in [15] and [16].

2 High bit-rate transform coding

The general structure of a transform coding scheme is shown in Fig. 1. The class of signals to be

encoded is represented by a random vector X = [X1, . . . , XN ]T of size N . Although these signals may

be multidimensional like images, they are indexed by an integer to simplify notations: X(m). The

components of X(m) are successive samples from a source signal (x(n))n. A conventional transform

coder applies a linear invertible transform T : RN → RN to X in order to obtain a random vector

Y = [Y1, . . . , YN ]T better suited to coding than X. To construct a finite code, each coefficient Yi is

first approximated by a quantized value Ŷi. We concentrate only on scalar quantizers. The quantized

coefficients are then entropy coded. The coded representation is stored or communicated over an error-

corrected (lossless) channel. The receiver (decoder) provides an approximation X̂ = [X̂1, . . . , X̂N ]T of

the original signal X by applying a linear transform U to the quantized signal Ŷ. In this paper we

assume U = T−1.

A relevant problem for a system designer is to minimize the reconstruction error under bit rate

constraint. Here, the optimization criterion is the mean-square distortion D = 1
N E[‖X− X̂‖2] which

satisfies

D =
1
N

N∑
i=1

wiE
[
(Yi − Ŷi)2

]
+

1
N

N∑
i=2

i−1∑
j=1

wijE
[
(Yi − Ŷi)(Yj − Ŷj)

]
, (1)

where [A]i,j denotes the element localized on the i-th row and the j-th column of A, wi =
∑N

j=1[T
−1]2j,i
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(1 ≤ i ≤ N) and wij =
∑N

k=1 2[T−1]k,i[T−1]k,j (1 ≤ j < i ≤ N). The last term in (1) vanishes when

1) wij = 0 for i 6= j, i.e., the T transform is orthogonal — or more generally when the column vec-

tors of T−1 are pairwise orthogonal — or 2) when the quantization noises of different quantizers are

uncorrelated and centered. The last condition 2) is satisfied when i) the vector X is Gaussian and

the transform T is a KLT1 or when ii) the transform coefficients are statistically independent — the

Gaussian assumption is then useless — and the quantizers satisfy the centroid condition. Moreover, ex-

perimental tests show that condition 2) approximatively holds under high-rate quantization hypothesis

for any kind of signal.

In the following, we assume that the end-to-end distortion D can be well approximated by a

weighting sum of the distortion Di = E[(Yi − Ŷi)2] of each transform coefficient as

D ≈ 1
N

N∑
i=1

wiDi. (2)

Approximation (2) is an equality when T is orthogonal or when Y has independent components; it is

a good approximation for any distortion when the transform coefficients are close to independence and

last it is a good approximation for any T under the high-rate quantization hypothesis.

2.1 Entropy-constrained scalar quantization

A scalar quantizer Q approximates a random variable Y by a quantized variable Ŷ = Q(Y ). Q is

a mapping from a source alphabet R to a reproduction codebook C = {ŷi}i∈K ⊂ R, where K is an

arbitrary countable index set. We denote pi = P{Ŷ = ŷi}. The Shannon theorem [3] proves that

the entropy H(Ŷ ) = −
∑

i pi log2 pi is a lower bound of the average number of bits per symbol used

to encode the values of Ŷ . Arithmetic entropy coding [17, 18] achieves an average bit rate that can

be arbitrarily close to the entropy lower bound; therefore, we shall consider that this lower bound
1Indeed, the transform coefficients (Y1, . . . , YN ) are then independent and hence the quantization noises (Y1 −bY1, . . . , YN − bYN ) which are deterministic functions of the transform coefficients are uncorrelated, moreover they are

centered when the quantizers satisfy the centroid condition.
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is reached. An entropy constrained scalar quantizer is designed to minimize H(Ŷ ) for a fixed mean

square distortion D = E[(Y − Ŷ )
2
]. It is well known [3] that for a fixed distortion D, under the high-

resolution quantization hypothesis and if we assume that the random variable Y admits a probability

density fonction (pdf) p(y), then the minimum average bit rate R = H(Ŷ ) is achieved by a uniform

quantizer, and R ≈ h(Y ) − 1
2 log2(12D), where h(Y ) =

∫
log2[p(y)] p(y) dy is the differential entropy

of Y . Generally it is preferable to introduce the variance σ2 of Y and the differential entropy h(Ỹ ) of

the standardized random variable Ỹ = (Y − E[Y ])/σ: h(Ỹ ) = h(Y ) − log2 σ in order to separate the

contribution of the signal power with that of its pdf shape (of course, this is possible only if Y admits

finite second order statistics). The distortion rate satisfies then

D ≈ cσ22−2R, with c =
22h(Ỹ )

12
, (3)

where the constant c depends only on the pdf shape.

2.2 Optimal bit allocation

Coding (quantizing and entropy coding) each transform coefficient Yi separately splits the total number

of bits among the transform coefficients in some manner. This bit allocation problem can be stated this

way: one is given a set of quantizers described by their distortion-rate performances as Di ≈ ciσ
2
i 2

−2Ri ,

Ri ∈ Ri for (1 ≤ i ≤ N). Each set of available rates Ri is a subset of the nonnegative real numbers

and may be discrete or continuous. The problem is to minimize the end-to-end distortion D in eq. (2)

given a maximum average rate R = N−1
∑N

i=1Ri.

It results of the mean theorem (i.e., the arithmetic mean of the wiDis is not smaller than their

geometric mean, with equality if and only if all the terms are equal) that, under the constraint of a

given average rate R, the distortion D is minimum if and only if all the wiDis are equal, in which case

DT(R) ≈

(
N∏

i=1

wici

)1/N ( N∏
i=1

σ2
i

)1/N

2−2R, (4)

7



where σ2
i is the variance of Yi and ci is the constant associated with the standardized variable of Yi

according to the relation (3). When no transform T is applied to X, or equivalently when T is the

identity I, the minimum distortion associated with the same maximum average rate R is given by

DI(R) ≈
(∏N

i=1 c
?
i

)1/N (∏N
i=1 σ

?2
i

)1/N
2−2R, where σ?2

i is the variance of Xi, and c?i is the constant

associated with the standardized variable of Xi according to the relation (3).

2.3 Generalized coding gain and maximum reducible bits

In this paragraph we present a criterion called the generalized coding gain (resp. the generalized

maximum reducible bits) which is a generalization of the coding gain [3] (resp. the maximum reducible

bits) to non-Gaussian signals and non orthogonal linear transforms.

The distortion rate (4) can be used to define a figure of merit that we call the generalized coding

gain

G? =
DI(R)
DT(R)

≈

(∏N
i=1 c

?
i

)1/N (∏N
i=1 σ

?2
i

)1/N

(∏N
i=1wici

)1/N (∏N
i=1 σ

2
i

)1/N
. (5)

It is the factor by which the distortion is reduced because of the linear transform T, assuming high

rate quantization and optimal bit allocation. Taking the inverse of (4), we obtain the optimal rate

distortion: RT(D) ≈ 1
N

∑N
i=1 h(Yi) + 1

2N

∑N
i=1 log2wi − 1

2 log2[12D], from which we can define the

generalized maximum reducible bits R? = RI(D)−RT(D) = 1
2 log2G

?. It is the quantity by which the

average number of bits to code X is reduced because of the transform T.

If we assume that X is Gaussian, then Y is Gaussian and we have ci = c?i = πe
6 (1 ≤ i ≤ N),

hence the generalized coding gain becomes G? =
(∏N

i=1 σ
?2
i

)1/N
/(∏N

i=1wiσ
2
i

)1/N
. Furthermore, if

we suppose that T is orthogonal, then the wis are all equal to one and the generalized coding gain is

identical to the well-known coding gain G appearing in texts and scholarly books, which is maximized

for any Karhunen-Loève basis of X (see, for example, [3]).
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2.4 Criterion satisfied by an optimal transform

Using the following relations (see, e.g., [17] for notions of information theory) h(X) =
∑N

i=1 h(Xi) −

I(X1; . . . ;XN ), h(Y) =
∑N

i=1 h(Yi)−I(Y1; . . . ;YN ), h(Y) = h(X)+log2 |detT|, where I(X1; . . . ;XN )

and I(Y1; . . . ;YN ) denote respectively the mutual information between the components of X and of

Y, h(X) and h(Y) the differential entropy of vectors X and Y respectively, the generalized maximum

reducible bits can be expressed as follows:

R? =
1
N
I(X1; . . . ;XN )− 1

N
I(Y1; . . . ;YN )− 1

N
log2 |detT| − 1

2N
log2

N∏
i=1

wi. (6)

Moreover, according to the expression of the wis, and noting Diag(C) for the diagonal matrix having

the same main diagonal as C, the last two terms in (6) are equal to − 1
2N log2

(
det[Diag(T−T T−1)]

det[T−T T−1]

)
.

Hence we deduce the following expression of the generalized maximum reducible bits:

R? =
1
N
I(X1; . . . ;XN )− 1

N
I(Y1; . . . ;YN )− 1

2N
log2

(
det[Diag(T−TT−1)]

det[T−TT−1]

)
. (7)

Let us remark, according to Hadamard’s inequality (see e.g., [17]), that for any definite positive matrix

C of order N , the quantitity log2

(
det[Diag(C)]

detC

)
is greater or equal than zero, with equality if and only

if the matrix C is diagonal.

It is now clear that the problem of finding a linear transform T which maximizes the generalized

coding gain G? defined in (5) is the same problem as finding T which maximizes R?, or equivalently,

finding the linear transform T which minimizes the contrast

C(T) = I(Y1; . . . ;YN ) +
1
2

log2

(
det[Diag(T−TT−1)]

det[T−TT−1]

)
. (8)

The first term of (8) is a measure of the statistical dependence between the transform coefficients Yi.

It is always non-negative, and zero if and only if the variables are statistically independent. As for
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the second term, it is always non-negative, and zero if and only if the column vectors of T−1 are

pairwise orthogonal. Furthermore, if D is a diagonal matrix, one can verify that C(DT) = C(T), i.e.,

the contrast is scale invariant. Intuitively, this is not surprising since multiplying each component by

a factor λi and each quantization step by the same factor has no impact on both the final rate and the

end-to-end distortion. We can now state the following theorem.

Theorem 1 Under the high-rate quantization hypothesis, for entropy-constrained scalar quantizers,

mean-square distortion and the condition U = T−1, a linear transform T is optimal in coding if and

only if it minimizes the contrast C(T) of relation (8).

Remark now that the contrast C(T) is always non-negative, and that it is equal to zero if and only if

T−1 is a transform with orthogonal columns which produces independent coefficients.

3 Link between ICA and high-rate transform coding

3.1 Criteria

The criterion (8) may be decomposed into C(T) = CICA(T) + CO(T), where CICA(T) = I(Y1; . . . ;YN )

corresponds to the mutual information criterion in ICA, and

CO(T) =
1
2

log2

[
det[Diag(T−TT−1)]

det[T−TT−1]

]
. (9)

The second term CO(T) measures a pseudo-distance to orthogonality of the transform T. In general,

the optimal transform Topt in transform coding, i.e., the transform which minimizes the contrast (8),

will be different from that TICA which minimizes the first term of (8), i.e., the solution of the ICA

problem. It is important to notice here that the classical assumption made in blind source separation

problems, that is the observations are obtained from a linear mixing of independent sources, is not

really required in the problem of finding the transform that maximizes the generalized coding gain.

The expression of the contrast (8) depends on the definition of the distortion. In this work, we
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measure the distortion as mean squared error, therefore it is not surprising that orthogonal transforms

are favored over other linear transforms since they are energy-preserving.

3.2 Modified ICA algorithms for coding

In appendix, we propose two variants of the icainf algorithm by Pham [14] for the minimization of the

contrast (8). The first one, called Generalized Coding Gain Supremum (GCGsup) gives the transform

Topt that minimizes the contrast (8), the second, called Orthogonal Independent Composent Analysis

(OrthICA) find the orthogonal matrix Torth that minimizes the contrast CICA(T).

The minimization of the criterion (8) can be done through a gradient descent algorithm, but a much

faster method is the Newton algorithm (which amounts to using the natural gradient [19]). As in [14],

because of the multiplicative structure of our optimization problem, we use multiplicative increment

of the parameter T rather than additive increment. Starting with a current estimator T̂, it consists

of expanding C(T̂ + ET̂) with respect to the matrix E up to second order and then minimizing the

resulting quadratic form in E to obtain a new estimate. Note that the parameter E is a matrix of order

N . This method requires the computation of the Hessian2 of C(T̂ + ET̂) with respect to E , which

is quite involved. For this reason, we will approximate it by the Hessian of C(T̂ + ET̂), computed

under the assumption that the transform coefficients Yi are independent. The method is then referred

to as quasi-Newton. Although those simplifications result in a slower convergence speed towards the

solution, they cause the robustness of the algorithm to be improved by reducing the risk of divergence

when the initial estimator T̂0 is far from the final solution. Note that the final solution is the same as

that obtained without simplification since the algorithm consists of cancelling the first order terms in

the expansion of C(T + ET).
2The Hessian of a function of several variables is the matrix of its second partial derivatives.
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4 Experimental results

In this section, we are interested in assessing the performances of Topt and Torth in transform coding.

Results included in this paper show coding performances on two synthetic data sets and a natural

image data set. The synthetic data sets are used to show that Topt and Torth can outperform the

KLT when used for high-rate transform coding of non-Gaussian signals. As for the second data set,

it consists of well-known grayscale natural images which will be used to evaluate the performances of

Topt and Torth in medium-to-low bit rate image compression.

4.1 Examples of synthetic signals efficiently compressed with GCGsup and OrthICA.

4.1.1 The tested signals

The first synthetic data set consists of 216 samples of a bidimensional (N = 2) random vector X

obtained as follows. First, we produce 216 samples of a white vector S = [S1, S2]T whose the i-th

component is the standardized random variable associated to S′i = Sign(Zi).|Zi|α, where [Z1, Z2]T is

a standardized white Gaussian random vector. The exponent α is an arbitrary positive real number.

When α > 1 (resp. α < 1), Si is super- (resp. sub-) Gaussian. Then, the vector X is obtained via a

mirror symmetry, according to the operation X = BS, with B =
√

2
2

 1 1

1 −1

 an orthogonal matrix.

Samples of S and X are depicted respectively on the first row and the second row in Fig. (2) for four

different values of α. The second synthetic data set consists of 216 samples of a bidimensional random

vector X obtained as follows: X = BU, where B is given above and U = [U1, U2]T with U1 and U2

independent and identically distributed uniform random variables on [−1, 1]. Samples of U and X are

depicted respectively in Fig. 3(a) and Fig. 3(b).
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4.1.2 Evaluation methodology

Our objective metric to measure the performance of a transform is the generalized coding gain (5).

Given both N sources and a transform, the estimation of (5) requires good estimates of the pdfs of

each source as well as each transformed component, which may be very difficult to obtain. In this

section, we elaborate on a more “practical” way of evaluating (5) which consists in actually coding the

transformed components and measuring both the bit-rate—given here by the first order entropy of the

quantized data—and the actual end-to-end distortion.

For each tested signal, the vector X is first linearly transformed by a transform T to produce the

vector Y = [Y1, . . . , YN ]T whose components are coded separately. The i-th component Yi is first

high-rate quantized with a uniform scalar quantizer of quantization step qi. This gives Ŷi. The bit-rate

Ri is then estimated by computing the empirical first order entropy of Ŷi and the inverse transform is

applied to Ŷ = [Ŷ1, . . . , ŶN ]T in order to reconstruct an approximation X̂ = [X̂1, . . . , X̂N ]T of X. The

distortion is the end-to-end one, D = 1
N E[‖X− X̂‖2] and the total average rate is the empirical mean

of the N rates Ri (1 ≤ i ≤ N). The optimal allocation of rates between the transform coefficients

results in equal weighted distortions wiDi (see section 2). Moreover, using uniform scalar quantizers,

bit allocation amounts to choosing a quantization step qi for each of the N components, and for small

qi the distortion Di may be well approximated by q2i /12, [3]. Therefore, the bit allocation follows a

simple rule : let c be a constant, then make all the quantization steps q1, . . . , qN such that wiDi = c.

This gives qi =
√

12c/wi, for i = 1, . . . , N . When the constant c varies (under the assumption of

high resolution quantization for each component) we obtain the classical asymptotic curve (distortion

versus bit-rate, or equivalently bit-rate versus distortion). In our tests, we consider that the hypothesis

of high resolution quantization is valid when for each component Yi, the relative deviation between

the actual distortion E[(Yi − Ŷi)2] (where the expectation is estimated by empirical mean) and q2i /12

is not greater than 1%. For a given high bit-rate, the ratio between the end-to-end distortion read

on the asymptotic curve obtained using the identity transform and that read on the asymptotic curve
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obtained using T yields the generalized coding gain of T.

4.1.3 Results

The first set of synthetic data was designed so that the KLT does nothing on it. Indeed, the random

vector X being white, the generalized coding gain G? of the KLT is equal to 0 dB. However, the

components of X are not independent, as can be seen on the second row in Fig. 2, and any algorithm

among GCGsup, OrthICA and icainf gives the same result: the components Yi are independent (see

third row in Fig. 2), and the generalized coding gain G? is the same. The generalized coding gain

associated with using the transform returned by GCGsup is presented in Tab. 1 for four different values

of α. Except for α = 1, i.e., when the components of X are Gaussian, the generalized coding gain of

Topt is always greater than zero and becomes more and more important as |1 − α| increases, i.e., as

the components of X depart from Gaussianity.

The second set of synthetic data has recently drawn attention of researchers in transform coding.

In [6], the authors have investigated the strengths and limitations of the KLT when it is used for

transform coding the vector X = BU. While the KLT for X is not unique, practical implementations

of the KLT give a matrix close to the identity. As a consequence, the diamond distribution of X

remains practically unchanged after applying the KLT on X (see Fig. 3(c)). Yet X and U are not

equally good sources for scalar quantization as was already pointed out earlier [21]. This is confirmed

in our experiments since any algorithm among GCGsup, OrthICA and icainf transforms the diamond

distribution back into the square distribution of U as can be seen in Fig. 3(d). Furthermore, Tab.

2 shows that the generalized coding gain G? of the transform returned by GCGsup outperforms that

obtained with the KLT.

4.2 Application of GCGsup and OrthICA to the compression of natural images.

The next experimental tests aim at assessing the performances of GCGsup and OrthICA when applied to

the compression of well-known grayscale natural images (Lenna, Goldhill, Mandrill, Peppers, Zelda and
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Boat) each of size 512×512 pixels and coded using 8 bits per pixel (bpp) (see Fig. 4). The image coder

used in our tests has been designed for experimentation and is not intended to outperform current

state-of-the-art image coders such as JPEG2000 [22]. In natural image compression, we are usually

interested in performances at medium-to-low bit rates. In our experiments, we chose to investigate the

performances of GCGsup and OrthICA at bit rates less or equal than 2 bpp. Note that for bit-rates less

than about 1.6 bpp, the transforms returned by GCGsup and OrthICA can no longer be considered as

optimal since the high resolution hypothesis is no longer valid3.

4.2.1 Bases estimation

The modified ICA bases (i.e., the column vectors of T) were estimated according to two learning

schemes. The first scheme yields 12 different bases (2 per image): for each test image, the algorithms

GCGsup and OrthICA were applied to a training set consisting of 4 096 non overlapping image blocks

each of size 8× 8 pixels extracted from the test image. The first and second columns of Fig. 5 displays

the estimated modified ICA bases as well as the practically achieved KLT bases obtained from the test

images Boat and Peppers, respectively. Also displayed for comparison are the bases obtained using the

ICA algorithm icainf. As for the second scheme, it yields only 2 different bases. The modified ICA

bases were learned from one training set consisting of 12 288 non overlapping image blocks each of size

8× 8 pixels extracted from three test images (Lenna, Goldhill and Boat). The third column of Fig. 5

displays the estimated modified ICA bases as well as the KLT basis (denoted KLT?). The transform

whose column vectors were estimated using the algorithm OrthICA (resp. GCGsup) is denoted T?
orth

(resp. T?
opt). The ICA basis obtained with the icainf algorithm for this training set is also displayed

for comparison and denoted T?
ICA.

Examining Fig. 5 closely reveals that the features found with GCGsup and OrthICA are much more

localized in space than the checkerboardlike basis vectors obtained with the KLT. Notice also the more
3As in Section 4.1.2, we consider that the hypothesis of high resolution quantization is valid when for each component

Yi, the relative deviation between the actual distortion E[(Yi − bYi)
2] (where the expectation is estimated by empirical

mean) and q2
i /12 is not greater than 1%.
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pronounced edge-like nature of the modified ICA bases, regardless of the learning scheme employed.

Other similar experiments with ICA [23] have produced comparable results.

The computation of the pseudo-distance to orthogonality (see eq. (9)) reveals that, unlike the bases

obtained with the ICA algorithm icainf, those estimated with GCGsup are quasi-orthogonal as can

be seen in Tab. 3. As mentioned earlier, it is not surprising that orthogonal transforms are favored

over other linear transforms since we measure the distortion as mean squared error and orthogonal

transforms are energy-preserving.

4.2.2 Medium-to-high bit rates

Tab. 4 shows estimations of the generalized coding gain for each tested transform and each test image.

The average generalized coding gain computed over the set of test images is also given. The estimation

method used is the same as that described in section 4.1.2. Looking at the average values of the

generalized coding gain reveals that, whatever the learning scheme, the modified ICA transforms

perform best followed respectively by the 2-D DCT, the KLT and, far behind, the ICA transform. The

coding gain of any of the modified ICA transforms relative to the 2-D DCT is about 0.3 dB (resp. 0.1

dB) when the first (resp. second) learning scheme is used suggesting that a transform-based image

coder could benefit from using any of the modified ICA transforms. However, these results should be

taken with care since they are meaningful only under the high resolution hypothesis (i.e., in general,

at medium-to-high bit rates). Yet, in image compression, we are most interested in performances at

medium-to-low bit rates, where the high resolution hypothesis is no longer valid. Additional precaution

should be taken for the bases estimated according to the first learning scheme. In this case, the basis

vectors need to be transmitted (coded) with the image resulting in an extra coding cost which has not

been incorporated in the method used for estimating the generalized coding gain.

Another motivation for using the modified ICA bases in compression lies in the transform coefficients

distribution which tends to be heavy-tailed, more suited for quantization and entropy coding than the
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transform coefficients of the KLT and 2-D DCT, which tend to a normal distribution. Fig. 6 displays

for each transform and each image the average kurtosis computed over 63 transformed components

(the component which is equivalent to the DC component of the KLT was omitted). The kurtosis was

normalized so that it is equal to zero in the case of Gaussian samples. The average of this average

kurtosis was computed over the set of test images. The result for each transform is displayed over

the label “combined” in Fig. 6. Results show that the kurtosis obtained with the modified ICA bases

are greater than those obtained with the KLT and 2-D DCT, regardless of the transform and image

considered. Note that the ICA bases exhibit even higher kurtosis, yet yielding the worst generalized

coding gains among all tested transforms. The explanation for this is straightforward: ICA bases were

estimated using the ICA algorithm icainf which aims at minimizing the mutual information between

the components, i.e., only the first term in eq. (8). This is done without putting any orthogonality

constraint on the basis vectors resulting in a transform which is far from being orthogonal (see Tab. 3).

This result highlights the importance of trading-off between independence and orthogonality—when

the distortion is measured using mean squared error. This is well illustrated by eq. (8) (a discussion

about orthogonality and independence can also be found in [4]).

4.2.3 Medium-to-low bit rates

The image coder used in our experiment is a transform coder originally developed by Davis4. It is

very modular and allows for simple replacements of individual components (quantizer, entropy coder,

transform). It was modified so that it ressembles a JPEG-like coder. The image to be coded is first

“tiled” into blocks of eight by eight pixels each, then each tile is represented into a new basis using

one of the tested transforms. The bases obtained using the first learning scheme are transmitted

with the image since they are data-dependent bases. As for the bases estimated using the second

learning scheme, they are not transmitted with the image. Quantization steps are chosen to minimize

the end-to-end distortion (2) subject to bit rate constraint. The bit allocation procedure is based on
4http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html
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integer programming algorithms described in [24] which provide optimal or near-optimal allocations

for the quantizers included here. Entropy coding of the quantizer output is carried out by an adaptive

arithmetic coder.

4.2.4 Compression results

We now compare the compression performances of the previously mentioned transforms: KLT, Topt,

Torth, KLT?, T?
opt, T?

orth and 2-D DCT. The results are displayed in Tab. 5, in which we present the

peak signal to noise ratio (PSNR) as a function of bit-rate for each test image. Whatever the image,

the plots have these common characteristics:

1) The transform codes based on KLT?, T?
opt, T?

orth and the 2-D DCT perform better than those

based on the KLT, Topt and Torth, regardless of the bit-rate. The poor coding performances of the

KLT, Topt and Torth are mainly due to the coding penalty resulting from coding the basis vectors

(11 bits were allocated on average to each matrix coefficient resulting in a coding precision of 10−3).

In our tests, we observed that the coding penalty is about 1 dB at 2 bpp and 1 bpp, about 2 dB at

0.5 bpp and can reach up to 5 dB at 0.25 bpp. The rate-distortion curves obtained with the KLT,

Topt and Torth without coding the basis vectors (not plotted here for the sake of clarity) were close to

those obtained with respectively KLT?, T?
opt and T?

orth (no meaningful performance difference could

be observed).

2) At bit-rates greater than 1 bpp, all the rate-distortion curves are lines of slope about 5 ∼ 6 dB

per bit. We observed that the high-resolution hypothesis is verified for bit-rates greater than about

1.6 bpp (in this case, the slope of the curve is ∼ 6 dB per bits).

3) Whatever the bit-rate, no meaningful performance difference can be observed between the class-

adapted transform codes based on T?
opt and those based on T?

orth. For medium-to-high bit rates

(i.e., greater than about 1.6 bpp), this result can be more or less predicted by looking at the values

of the corresponding generalized coding gains (see Tab. 4). For bit-rates greater than 1 bpp, the
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performance difference between either T?
opt or T?

orth and KLT? is equal to about the difference between

their corresponding generalized coding gains suggesting that the performance of our entropy coder is

close to that of a perfect first-order entropy coder. In the low bit-rate region (< 1 bpp), the performance

difference tends to become smaller. As for the 2-D DCT, its performance is comparable with that of

any of the class-adapted modified ICA bases. Thus, our approach has made it possible to learn two

bases which are competitive with the well-known 2-D DCT basis according to the standard PSNR

measure.

Tab. 5 compares the performance in compression of the 2-D DCT, the class-adapted KLT and

both class-adapted modified ICA bases. The corresponding values of PSNR and achieved bit-rates

(the target bit-rate was set equal to 0.5 bpp) are shown. Although the KLT?-coded images have

worse PSNR than the others, no difference in term of visual quality can be seen. However, when

looking further into the details of the reconstructed images Boat in Fig. 7, some meaningful visual

quality difference can be seen. Fig. 7) show the images coded with T?
orth. Black arrows point towards

details which are not present or blurred on the corresponding images coded with the 2-D DCT. These

details represent lines (e.g., some ropes in the case of the image Boat) which are well preserved with

T?
orth. These results suggest that the class-adapted modified ICA bases are better suited to coding fine

details such as lines and edges compared to the 2-D DCT. This is not quite surprising given the more

pronounced edge-like nature of the modified ICA bases (see Fig. 5).

5 Conclusion

This paper addresses the problem of finding optimal 1-D linear transforms in transform coding without

the classical assumption of Gaussianity. This paper emphasizes a new point of view in variable rate

transform coding by showing, under the high resolution hypothesis, that the problem of finding the

optimal 1-D linear transform may be recast as a modified independent component analysis (ICA)

problem. Two new modified ICA algorithms, called GCGsup and OrthICA, are introduced for computing
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the optimal 1-D linear transform and the optimal 1-D orthogonal transform, respectively.

Experimental results included in this paper show coding performances of GCGsup and OrthICA on

two synthetic data sets and a natural image data set. Experiments carried out with the synthetic

data sets show that the new transforms can outperform the KLT when used for high-rate transform

coding of non-Gaussian signals. When applied to the compression of some well-known natural images,

GCGsup and OrthICA have proved 1) to be comparable to the classical 2-D DCT according to the PSNR

measure and 2) to yield better visual image quality (better preservation of lines and edges) than the

2-D DCT.
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A Appendix

A.1 Algorithm GCGsup

Given that I(Y1, . . . , YN ) =
∑

i h(Yi)−h(Y) and h(Y) = h(X)+log2 |detT|, and since the term h(X)

does not depend on T, minimizing the contrast (8) is the same as minimizing C̃(T) = CO(T)+ C̃ICA(T)

where C̃ICA(T) =
∑N

i=1 h(Yi) − log2 |detT|. Using the results of [20] it can be seen that the Taylor

expansion of C̃ICA(T + ET) up to second order may be approximated as follows

C̃ICA(T + ET) = C̃ICA(T) +
∑

1≤i6=j≤N

E[ψYi(Yi)Yj ]Eij +
1
2

∑
1≤i6=j≤N

{E[ψ2
Yi

(Yi)] E[Y 2
j ]E2

ij + EijEji}+ · · · ,

(10)

where the function ψYi is equal to the derivative of − log2 p(yi) — p(yi) denoting the Yi pdf — and is

known as the score function. This approximation concerns only the second order terms in the expan-

sion, but not the first order terms. It relies essentially on the assumption of independent transform
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coefficients, which may not be valid if the solution of the ICA problem is far from the solution that min-

imizes the contrast (8). But it is quite useful since it leads to a decoupling in the quadratic form of the

expansion. Let M = T−TT−1. One may verify that the Taylor expansion of CO(T+ ET) with respect

to E and around E = 0, up to second order, is given by CO(T + ET) = CO(T) −
∑

1≤i6=j≤N
Mji

Mii
Eji −

1
2

∑
1≤i6=j≤N

[
EijEji − 2Mji

Mjj
EiiEji

]
+
∑N

i=1

∑N
j=1, j 6=i

∑N
k=1, k 6=i

[(
Mjk

2Mii
− MijMik

M2
ii

)
EjiEki + Mkj

Mkk
EjiEik

]
+

· · · . The quadratic form associated with the above expansion is quite involved and is not positive.

One possible approximation consists in neglecting the non diagonal elements of M, which amounts to

assuming that the optimal linear transform is close to an orthogonal transform. Under this hypothesis,

one may verify that

CO(T + ET) ≈ CO(T)−
∑

1≤i6=j≤N

Mji

Mii
Eji +

1
2

∑
1≤i6=j≤N

[
Mjj

Mii
E2

ji + EjiEij

]
+ · · · . (11)

The quadratic form associated with the above expansion is now positive, but not positive definite.

However, this is sufficient for the matrix associated with the quadratic form of the Taylor expansion of

C̃(T) to be positive definite, which ensures the stability of the iterative algorithm. Finally, by adding

equation (10) and approximation (11) we obtain an approximation of C̃(T + ET) up to second order

of Eij and the iteration consists explicitly of solving the linear equations

 E[ψ2
Yi
(Yi)]E[Y 2

j ] + Mii
Mjj

2

2 E[ψ2
Yj

(Yj)]E[Y 2
i ] + Mjj

Mii


 Eij

Eji

 =


Mij

Mjj
− E[ψYi(Yi)Yj ]

Mji

Mii
− E[ψYj(Yj)Yi]

 .

The indeterminate diagonal terms Eii are arbitrarily fixed to zero. Then the estimator T̂ is left

multiplied by I + E in order to update it. In this expression, the probability density functions being

unknown, the score function ψYi(yi) is replaced by an estimation (see [14]) and the expectations are

estimated by empirical means.
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A.2 Algorithm OrthICA

In this section, we propose to find the orthogonal transform that minimizes the contrast (8). Since

the second term of (8) vanishes for any othogonal matrix T, this amounts to finding the orthogo-

nal transform which minimizes the first term of (8), or equivalently, which minimizes C̃ICA(T). If

the matrix T is orthogonal, so is T + ET, providing that I + E be orthogonal. This last condition

will be satisfied up to second order if E is anti-symmetric, since (I + E)T (I + E) = I + ETE differs

from the identity only by second order terms. Let E be anti-symmetric. The Taylor expansion of

C̃ICA(T + ET) becomes C̃ICA(T + ET) = C̃ICA(T) +
∑

1≤i<j≤N

{
E[ψYi(Yi)Yj ]− E[ψYj (Yj)Yi]

}
Eij +

1
2

∑
1≤i<j≤N E2

ij

[
E[ψ2

Si
(Yi)] E[Y 2

j ] + E[ψ2
Yj

(Yj)] E[Y 2
i ]− 2

]
+ · · · , and the minimization of the second

term in the above expansion yields

Eij =
E[ψYj (Yj)Yi]− E[ψYi(Yi)Yj ]

E[ψ2
Yi

(Yi)] E[Y 2
j ] + E[ψ2

Yj
(Yj)] E[Y 2

i ]− 2
. (12)

Actually, T+ET is not a true orthogonal transform. This may be overcome by replacing T+ET with

eET = (I + E + E2/2! + · · · )T, which is an orthogonal matrix differing from T + ET only by second

order terms.
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Figure 1: Compression system including a linear transform, a quantization and an entropy coding
stage.

(a) S; α = 1 (b) S; α = 1.5 (c) S; α = 2 (d) S; α = 2.5

(e) X (f) X (g) X (h) X

(i) Y, Topt (j) Y, Topt (k) Y, Topt (l) Y, Topt

Figure 2: Samples of S, X and Y (obtained after applying Topt on each sample of X) for four different
values of α.

(a) U (b) X (c) Y, KLT (d) Y, Topt

Figure 3: Samples of U, X and Y (obtained after applying the KLT and Topt on X).
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α 1 1, 5 2 2, 5
G? (dB) 0 1, 02 2, 80 4, 78

Table 1: Generalized coding gain of Topt for the first set of synthetic data.

Transform KLT Topt

G? (dB) 0, 02 1, 25

Table 2: Generalized coding gains of the KLT and Topt for the second set of synthetic data.

(a) Lenna (b) Goldhill (c) Mandrill

(d) Peppers (e) Zelda (f) Boat

Figure 4: Test images.

Lenna Goldhill Mandrill Peppers Zelda Boat
Topt 0.009 0.008 0.008 0.016 0.004 0.012
T?

opt 0.006 0.006 0.006 0.006 0.006 0.006
TICA 1.955 0.711 0.356 1.108 2.435 0.765
T?

ICA 0.305 0.305 0.305 0.305 0.305 0.305

Table 3: Distance to orthogonality (in bpp) of Topt, T?
opt, TICA and T?

ICA for each test image.
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(a) KLT for Boat (b) KLT for Peppers (c) KLT?

(d) Torth for Boat (e) Torth for Peppers (f) T?
orth

(g) Topt for Boat (h) Topt for Peppers (i) T?
opt

(j) TICA for Boat (k) TICA for Peppers (l) T?
ICA

Figure 5: KLT, Torth, Topt and TICA basis vectors obtained from boat and peppers (on first and
second column, respectively) and KLT?, T?

orth, T?
opt and T?

ICA basis vectors obtained from the image
class training set.
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Lenna Goldhill Mandrill Peppers Zelda Boat Average
KLT 18.13 15.22 6.99 17.23 19.91 15.35 15.47
Torth 18.58 15.62 7.42 17.89 20.12 15.96 15.93
Topt 18.60 15.68 7.49 17.84 20.12 15.94 15.94
KLT? 17.76 15.09 6.98 17.08 19.26 14.79 15.16
T?

orth 18.34 15.40 7.27 17.63 19.89 15.74 15.73
T?

opt 18.31 15.46 7.28 17.70 19.84 15.72 15.71
TICA 6.88 11.63 5.52 11.47 5.36 11.62 8.74
T?

ICA 16.50 13.75 5.51 16.03 17.83 13.95 13.92
2-D DCT 18.25 15.37 7.17 17.50 19.87 15.61 15.62

Table 4: Generalized coding gain (in dB) of the KLT, Torth, Topt, KLT?, T?
orth, T?

opt, TICA, T?
ICA

and 2-D DCT for each test image. Last column yields the average generalized coding gain of each
transform computed over the set of test images.

Figure 6: Average kurtosis computed over 63 transformed components (the component which is equiv-
alent to the DC component of the KLT was omitted).
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Image Target bit-rate (bpp) KLT Topt Torth KLT? 2-D DCT T?
opt T?

orth

2 42,37 42,72 42,76 42,92 43,21 43,30 43,40
Lenna 1 37,32 37,77 37,82 37,95 38,44 38,54 38,55

0,5 32,56 32,86 33,05 34,31 34,83 34,95 35,00
0,25 26,15 25,34 26,40 30,72 31,18 31,30 31,32

2 39,45 39,77 39,82 40,17 40,80 40,50 40,48
Goldhill 1 34,06 34,29 34,34 34,93 35,41 35,24 35,22

0,5 30,03 30,13 30,34 31,50 31,92 31,85 31,81
0,25 25,57 24,76 25,66 28,79 29,20 29,15 29,09

2 32,23 32,79 32,69 33,20 33,55 33,48 33,43
Mandrill 1 26,55 27,03 27,02 27,56 27,87 27,81 27,81

0,5 23,02 23,21 23,22 24,31 24,49 24,48 24,48
0,25 20,29 20,37 20,35 22,14 22,34 22,30 22,29

2 40,43 40,86 40,90 41,13 41,49 41,70 41,68
Peppers 1 35,71 36,11 36,15 36,36 36,71 36,84 36,79

0,5 31,85 32,23 32,27 33,44 33,91 34,09 33,99
0,25 25,53 24,24 24,18 30,18 30,74 30,88 30,87

2 45,21 45,41 45,39 45,13 45,85 45,86 45,96
Zelda 1 40,16 40,30 40,33 40,61 40,94 41,02 41,01

0,5 35,97 36,31 36,28 37,47 37,75 37,93 37,90
0,25 29,09 29,14 29,17 34,03 34,49 34,57 34,60

2 41,67 42,15 42,25 42,04 43,27 42,75 42,87
Boat 1 35,39 35,85 36,09 36,25 37,51 37,14 37,13

0,5 30,16 30,36 30,65 31,91 32,88 32,73 32,62
0,25 24,37 23,88 24,56 28,29 29,23 29,09 29,01

Table 5: PSNR (dB) versus target bit-rate for each test image and each transform.
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(a) DCT (b) DCT (c) DCT (d) DCT

(e) T?
orth (f) T?

orth (g) T?
orth (h) T?

orth

Figure 7: Zoom on parts of image Boat coded at about 0.5 bpp. Black arrows point towards details
which are not present or blurred on the corresponding image coded with the 2-D DCT.
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