N

N

The parXXL Environment: Scalable Fine Grained
Development for Large Coarse Grained Platforms
Jens Gustedt, Stéphane Vialle, Amelia de Vivo

» To cite this version:

Jens Gustedt, Stéphane Vialle, Amelia de Vivo. The parXXL Environment: Scalable Fine Grained
Development for Large Coarse Grained Platforms. PARA-06: Worshop on state-of-the-art in scientific
and parallel computing, Jun 2006, Umea, Sweden. pp.1094-1104, 10.1007/978-3-540-75755-9__ 127 .
hal-00280094

HAL Id: hal-00280094
https://centralesupelec.hal.science/hal-00280094
Submitted on 25 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://centralesupelec.hal.science/hal-00280094
https://hal.archives-ouvertes.fr

The parXXL Environment: Scalable Fine Grained
Development for Large Coarse Grained Platforms

Jens Gustedf Stephane Viallé, and Amelia De Vive*

LINRIA Lorraine & LORIA, France. Jens. Qustedt @oria.fr
2SUPELEC, France. St ephane. Vi al | e@upel ec. fr
3Universita degli Studi della Basilicata, Italy.

Abstract. We present a new integrated environment for cellular computing and
other fine grained applications. It is based upon previous developm@mtsrn-

ing cellular computing environments (tRarCeL family) and coarse grained al-
gorithms (theSSCRAP toolbox). It is aimed to be portable and efficient, and at
the same time to offer a comfortable abstraction for the developer of faiesgl
programs. A first campaign of benchmarks shows promising resuittusters.

1 Motivations and objectives

Nowadays, many research areas consider multi-scale diondabased orab initio
computations: they aim to simulate complex macroscopitesys at microscopic level,
using fundamental physical laws. Obviously, huge amouht@RU are mandatory to
run these simulations. Modern supercomputers and Gridls lavge and scalable num-
ber of powerful processors, are interesting architectirasipport these simulations.

However designers and developers of algorithms and codarpe scale applica-
tions are often confronted with a paradoxical situatiorirttmodeling and thinking
is fine-grained speakinge.g. of atoms, cells, items, protein bases and alike, whereas
modern computing architectures arearse-grainedoroviding few processors (up to
several thousands 10%) to potentially huge amount of data (thousands of billiohs o
bytes~ 10'2) and linking a substantial amount of resources (memory itiquéar) to
each processor. Only few tools (for both, modeling and imgletation) are provided
to close this gap in expectation, competence and education.

This article introduces thgarXXL development environment, specially designed to
close this gap betwedime-grainedmodeling anccoarse-graineccomputing architec-
tures. It stems from two previous research projects that axestigated optimization
of computing resources (CPU, memory, communications,teymization ...) and cel-
lular oriented programming (to implemefine-grainedmodels). Some collaborations
with researchers in optic components and hot plasma (fror®P8 and LPMIA lab-
oratories) guidearXXL design to an ease-to-use tool, and allow to identify caitdte
challenges. For example, some hot plasma simulation cddas @artners have been
specially designed for global shared memory parallel cdergu Intensive computa-
tion steps are split by optimized data rearrangement dpesainside the global shared

* In memoriam to our colleague Amelia De Vivo who passed away during ARRAP2006
conference on June 21 2006, in Umé, Sweden.

2 Jens Gustedt, §phane Vialle, and Amelia De Vivo

memory. But on large distributed architectures this kincpérations would be pro-
hibitive. Some codes need to be re-designed and based dredwoputations, in order
to support efficient runs on large distributed memory aedttitres and straightforward
fine-grainedimplementations witlparxXL. We are convinced that this algorithmic and
programming methodology is required to achieve large raaile simulations.

2 Related work

On the modeling side, Valiant’s seminal paper on the BSP[Heaas triggered a lot
of work on different sides (modeling, algorithms, impleragions and experiments)
that showed very interesting results on narrowing the gayeésn, on one hand, fine
grained data structures and algorithms and, on the otharse@rained architectures.
But when coming to real life, code developers are usuallydieine with theclassical
interfaces, even when they implement with a BSP-like madetind.

Development environment with explicit coarse grained ipelism, like MPI and
OpenMP, usually lead to efficient executions but are not tedbfo fine grained pro-
gramming, and require experimented parallel developershé opposite, high level
computation tools like Mathematica or Mathlab are comfalgdools to implement a
simulation model from mathematical equations. But thegf tevel tools have poor
performances and use C++ code generators and classicabutisti C++ libraries to
create more efficient codes (an interface betwpaixXL and a Mathematica EDP
solver based on cellular automata is under developmentheStistributed OS man-
aging a virtual shared memory like Kerrighed [2] allow toiBasnplement parallel
algorithms, but they are limited to small clusters and rexjadarse-grained algorithms
and optimized memory management to achieve performances.

Many generic cellular languages and distributed objecatibs have been designed
for parallel and distributed architectures, like Cape [BJCarpet [4]. But they focus
on cellular automatawith cell connection limited to a predefined neighboring aritth
synchronous cell communications (similar to thafferedparXXL mode). Moreover,
these researches seems to have slowed down since 2000y,Koale Java based dis-
tributed environments exist, based on message passingarada method invocations
like ProActive [5] or on virtual shared memory like JavaSgmf6]. Our personal ex-
periments have exhibited good speedup and good scalahitityJava Virtual Machine
performances are improving. But Java has not been yet adlbgtthe scientific com-
munity to implement intensive computations, and remaiowest than C++.

So, implementing dynamic data structures (sucbedisilar network3 efficiently on
a large scale often remains an insurmountable hurdle folifeapplications.parXXL
as proposed in this paper was created to lower that hurdleaiit implements a general
purpose development environment for fine grained compuurtain large parallel and
distributed systems.

3 Software architecture

TheparXXL development environment is split into several, well-idiged layers which
historically come from two different project sourc&&SCRAP andParCel6. Its soft-

TheparXXL development environment 3

ware architecture is introduced on Fig. 1, and demonstthtesplit of these two main
parts into the different layers. The (form&$CRAP part introduces all the necessary
parts to allow for an efficient programming in coarse graiaadironments; interfaces
for the C++ programming language, the POSIX system caltds tior benchmarking,

a memory abstraction layer and the runtime communicatichcantrol. The (former)
ParCelL6 part introduces a&ellular development environment and a set of predefined
and optimized cell networks. These programming mode&SafRAP andParCel6 are
detailed in the next sections.

par:: cel | net| Cellular networking

par::cell Cellular programming environment ParCel 6
par::step Organizing BSP-like supersteps

par::cntrl Runtime communication and contral
par::mem Memory abstraction and mapping

par:: bench Benchmarking tools SSCRAP
par::sys System interfaces (POSIX)

par::cpp C++ wrappers and utilities

Fig. 1. parXXL software architecture

4 SSCRAP programming model

SSCRAP is a programming environment that is based on an extensitredSP pro-
gramming model [1], called PRO [7]. It proved to be quite edfit for a variety of
algorithms and platforms, see [8]. Its main features whatemn this paper are:

Supersteps with relaxed synchronization: Originally, BSP was designed with strong
synchronization between the supersteps. PRO (anB$®ORAP) allows a process
to resume computation as soon as it receives all necess@ryoddahe next super-
step. Thepar: : cntrl layer (see Fig. 1) implements these featurgsairxXL.

A well identified range of applicability: SSCRAP is clearly designed and optimized
for coarse grainedarchitectures. These are architectures for which eactepsoc
has access to a private memory that allows it to keep trackefcommunication
to every other processor. If the platform haprocessors, as a minimal condition
this private memory must thus hojdmachine words, a fact to which we refer
as the architecture havingubstantially more memory than there are processors
All modern high performance computing architectures (ritames and clusters)
easily fulfill this criterion.

Comfortable encapsulation of data: The work horse ofSSCRAP is a data type
(chunk in the par : : memlayer) that encapsulates data situated on different sup-
ports such as memory and files which then can be mapped effjcieto the ad-
dress space of the processes. The8RYRAP can efficiently handle huge dai.§
larger than the address space) without imposing complertetgnce operations
to the programmer.

4 Jens Gustedt, §phane Vialle, and Amelia De Vivo

Portability: SSCRAP is uniquely based on normalized system interfapas (: sys),
most important are POSIX file systems, POSIX threads and EiP¢dmmunica-
tion in distributed environments. Therefore it should ruithaut modification on
all systems that implement the corresponding POSIX systdism @and/or provide a
decent MPI implementation.

Performance: This portability isnotobtained by trading for efficiency. In the contrary,
we provide two run-times, one for shared memory architest@threads) and one
for distributed computing (MPI). These are designed to lgetiest out of their re-
spective context: avoiding unnecessary copies on sharawngeand latency prob-
lems when distributed. All this is achieved by only linkingaanst the respective
library, no recompilation is necessary.

5 ParCeL6 programming model

Thepar:: cel | level of parXXL architecture (see Fig. 1) implements #e@CelL6 ex-
tended cellularprogramming model [9]. It is based arells that are distributed on
different processors, and on a sequentialsterprogram:ParCel6 developers design
and implement some cell behavior functions, and a sequgmtigram to install and

to control a parallel cellular net. This mixed programmingdal is easy to use and
facilitates the design afellular serversa classical client can connect to the sequential
program, that runs cellular computatioms demandMain features oParCeL6 cellular
model are:

A dynamic cellular network: Starting from an empty network of cells, the sequential
program creates cells on all available processors. Eatlihaglan individual set
of parameters, and the first action of these cells is usualéphnect each other to
create a cellular network (a cell output can be connected tonimited number of
cell inputs). This network is dynamic and may evolve at anypaf the execution
(cells and connections can be created or removed).

Six cell components: A cell is composed of (1) a uniqueell registration some (2)
parametersand (3)private variables(4) somecell behavior functiong5) a unique
multi valuedoutput channeland (6) several multi valuedput channelsThe first
is imposed byrarCelL6 mechanisms, the others are defined by the developer.

A cyclic/BSP execution of the cell net:A ParCelL6 cycle consists of three steps: com-
putation, net evolution and communication. Each cell isvated once during the
computation step, where it sequentially reads its inpypslates its output, and
issues some cell net/olution requestsThese requests define, kill, connect or dis-
connect some cells, and are executed during the net evolstip.

Three modes of cellular communications: During the communication stepuffered
outputsare copied to their connected cell inputs. Their propagasdast and is
adapted to synchronous fine grained computation (cell ;ngatnot change dur-
ing the computation steps). The propagation diract outputto a connected cell
input is triggered each timerafreshcommand is executed for it. This mechanism
has a large overhead but is required by some asynchronougréimed computa-
tions [9]. Hybrid outputsare an attempt to get both fast and asynchronous cellular
computations: they propagate their value one time per ctetipn step and per

TheparXXL development environment 5

processor (cells on different processors can read differadoes during one com-
putation step).

Moreover, someollectormechanisms allow the cells to save data during their compu-
tation steps and theaster progranto gather, sort and store these data at the end of
a computation step. Symmetrically, somiebal cell net communication mechanisms
allow the sequential program to send input data to the dékks ¢amera images).

Finally, a classidarCelL6 application code includes three main parts: $kguen-
tial master routinecontrolling the cell net installation and running cellutamputation
steps, the cell creation and connection operations toledtdbe cell net (can be easily
implemented using the cell net library, see next sectiamg,the cell computation func-
tions that implement a fine grained computing model (like el equations, neural
network computations. . .). So, a fine grained algorithm easttaightforwardly imple-
mented orParCelL6, especially when an adapted cell net template exists inthary,
without dealing with parallel processing difficulties.

6 parXXL main functionalities

Optimized cell network library Thepar:: cel | net library (see Fig. 1) is a collec-
tion of cell network installersapplication code can easily deploy a cell network just
using aninstaller object. Eachinstaller has to be set with the application cell behavior
functions, the cell parameter and cell variable types, hedell network size. Then, it
installs the cells and their parameters, and connects tleeameording to a predefined
communication scheme. Deployments are optimized: (1) theber of cells is bal-
anced among the processors, (2) with preference neigltoeiits are installed on the
same processor, and (3) cell net installation is split imtalsteps to limit the memory
required by the deployment operations.

Thepar : : cel | net library currently includes networikstallersthat place the cells
on a2- or 3-dimensional grid, and that will connect a given cell to tlneighbors that
are ‘close’ with respect to a certain ‘norm’: e.g an instatietype

par::cellnet::mesh< 3, L2, 2, applicationType >
will position the cells on &-dimensional grid, and connect all cells that are at digtanc
2 in the Euclidean I») norm. The remaining information of the particular appiica
network (such as the individual cell functions etc) is sfiedivia the type parameter
appl i cati onType that is defined by the application. Currently available r®mme
Lo, Ly andLQ.

We are currently working on an extension of this setting toagal dimensions.
More generally, other types of regular networks (honeycaedular crystals) and other
types of norms (e.g ellipses) may be implemented easilyatind.

Process specificationGenerally goarXXL program executes sevegarXXL-processes
in an MIMD fashion. The kind of execution (POSIX threads or INdFocesses) and the
number of processes is not fixed in the code but only decidéidkabr launch time,
respectively.

6 Jens Gustedt, §phane Vialle, and Amelia De Vivo

int define_cell (descriptor_t const& Descr, register_t& Reg);
int kill _cell(register_t const& Reg);

tenpl at e< cl ass TPARAM >
i nt define_cell _paran TPARAM const & par am
register_t const& Reg);

Listing 1. par: : cel | : : cont ext _t, main cell management functions

According toParCelL6 programming model (see Section 5), the : : cel | layer
restricts the MIMD execution model so thapar: : cel | program is composed of a
sequentiaimastemprogram and a set eforkerprocesses hosting and running cells. The
masterprocess installs and controls the cell net deployed onthikersusing some
high level cell management functions described above.

This master-workerarchitecture is adapted to many scientific computing applic
tions, butindustrial applications uselient-serverarchitectures. To support both sci-
entific and industrial applications, thearXXL masterprocess may also implement a
serverinterface (installing a cell net, accepting client coniat and running cell net
computation®n demanyland run on a specifiservermachine. The user can point out
this machine at runtime among the pool used to distributgangxL program, using
the - s option (Server name). For example, on a cluster using the pHPKXL run-
time: "npi run -np 100 MyAppli -s PE20 ...” runs the application "MyAppli”
on 100workersand installs thenaster-serveprocess on the "PE20” machine.

To avoid themaster-servebeing overloaded by cell computations, the optimized
cell net librarypar : : cel | net allows to install or not to install cells on thmaster-
serverprocess, using thee option Exclude) at runtime. By default, theasterprocess
is the theparXXL-procesd) and hosts cells.

Cellular network management The mainparXXL functions to easily manage a cellu-
lar network from the sequential program of the master pi®ees shown in Listings 1
and 2. They are all members of ther : : cel | : : cont ext _t class.

Functiondefi ne_cel | allows to define a new cell, specifying its number of out-
put values, its connection modbuffered or hybrid, see Section 5yparXXL defines
its registration and its host processor. However it is gadedio specify the host pro-
cessor to optimize the cell net mapping; this is done bypthe : cel | net library
to create optimized cell networks. Usually the cells arengefiby the sequential pro-
gram of the master process, but they can be defined on anyssmde parallel. This
strategy will be exploited in the next version of ther: : cel | net library to create
larger networks faster. When some cells have been defined @woroseveral proces-
sors, functionconduct Cel | Upgr ade executed on the master processor runs some
processor communications and creates cells on differategsors. Similarly, func-
tionsdefi ne_cel | _paramandconduct Par am nst al | allow to define and asso-
ciate some datastructures to cells (the cell parametetsYasend and install these
parameters in the corresponding cell bodies on their hosigsisors.

TheparXXL development environment 7

i nt conduct Cel | Upgr ade(voi d);
i nt conduct Param nstal | (void);

nt conduct Conput ati on(ActivKind_t kind, size_t Pernutlndex);
nt conduct Li nkUpgr ade(voi d);

nt conduct Qut Propagat e(voi d);

nt conduct Col | ect(size_t Collectorld);

i nt conduct Hal t (voi d);

Listing 2. par: : cel | : : cont ext _t, main cellular network management functions

The next group of functions is usually called iramputation loogexploiting the
cellular network. Functiononduct Conput at i on activates all cells on each processor
for one compute cycle: each cell runs its current behavioction once. On a particular
parXXL-processor th@rder of the cell activation may be specified: the order of their
storage (default), its reverse, or in the specific order oeampitation table. In most
cases, this order has no impact on the program result anddtas e considered
in the design of the program. But some rare asginchronougellular programs are
sensitive to the cell activation order (when using liyerid communication mode). So,
parXXL allows to quickly change this order to check the sensitivityhe program to
this parameter using the parameters of functionduct Conput at i on.

Functionconduct Li nkUpgr ade allows to establish the cell links that were de-
fined during the previous cell computation step. It gensrateme processor commu-
nications and datastructure update, that are mandatorgno sell output into con-
nected cell input buffers on remote processors. Then fomctinduct Qut Pr opagat e
can route eachufferedcell output to its connected input cell buffers, and bybrid
cell outputs can be routed automatically during the cell potation steps. Functions
conduct Cel | Upgr ade andconduct Li nkUpgr ade have only to be called when a the
cellular network is established or changes during a cyoléhé common case that a
cellular network is created and linked during the first cgcdad fixed thereafter, they
may be avoided once the network structure remains stable.

Functionconduct Col | ect is called to gather data that cells stored icalec-
tor during the previous computation steps on the master protéss,collectorsare
distributed datastructures allowingd¢ollectsome results on the master process.

The last functiongonduct Hal t , allows to halt all the processes excepted the mas-
ter process running the sequential program piiXXL function can be called after this
function has been executed.

Memory allocation As already mentioned above, efficient handling of large data
is crucial for a good performance of data intensive comjmriat The template class
par:: mem : chunk provides comfortable tools that achieve that goal. Its naherac-
teristic is that it clearly separates takocationof memory from the effectivaccesdo
the data.

8 Jens Gustedt, §phane Vialle, and Amelia De Vivo

Allocation can be done on the heap (encapsulatiid oc), at a fixed addres®(g
for hardware buffers) or by mapping a file or POSIX memory sexginmto the address
space (encapsulatingpen, shm open and nmap). By default the decision between
these different choices is left for the time of execution aad thus easily be adapted
according the needs of a specific architecture.

Access to the data is obtained by an operation catiagping Mapping associates
an address for the data in the address space @kitxeXL process and returns a pointer
where the programmer may access it. When the memory is notausedore, it will
in general be unmapped. The template class: : mem : apoi nt er provides a com-
fortable user interface that, as the name indicates, magailgshbe used as if it was an
ordinaryC pointer.

Mapping and unmapping can happen several times withoutateelgking lost. In
general it is much healthier for the application to free teses during the time they
are not needed. In particular the system may choseltratethe data at different
addresses for different mapping periods, and will be thebsbable to react to increase
or decrease of the size of individugunk s.

Mapping can also just request parts of the total memoryddalindowin parxXL).

In such a way a program mag.g handle a large file quite efficiently: it may just
map (and unmap) medium sizetunks one after another and handle them separately.
Thereby a program may handle files that do not fit entirely Rdvl or do not even fit

in the address space of the architecture (4GiB for 32bitieactures).

An important property of hunks is that they magrow while they are not mapped.
par:: mem : st ack uses this property for a simple stack data structure. Thigés-
sively used by thear: : cel | layer to collect (and withhold) data during a computa-
tion phase on each processor before this data then can bewtoated in its entirety
in a communication phase. TherepgrXXL is able to avoid the fragmentation of cell
communications into large numbers of small and unefficieessages (distributed ar-
chitecture) or memory writes (shared memory).

7 Application and performance examples

Application introduction To start to validate the scalability @arXXL we have de-
signed and experimented a 3D Jacobi relaxation onkeeof cells, with up to hundred
millions of cells. This application has been implementde la classicaparXXL pro-
gram. The sequentiahasterprocess installs a cellular network on a poolairkers
and conducts a computational loop executed by eamfiker. There is no client-server
mechanism implemented in this application, but it couldlgd® turned into a parallel
Jacobi relaxation server witsarXXL functionalities (see Section 6).

During the cell net installation steps, the cells are citatgh one output value,
and are connected to their neighbor cells: up to six neighfusra cell inside the cube.
To easily deploy large cubes of cells, we have usedptire : cel | net library, that
installs optimized cellular networks (see Section 6). ThHeaparXXL program enters
a long loop of cell computations and cell output propagattorthe connected cells).
The cells inside the cube update their output value with tlezeage of their neighbor
output values, while cells on the cube border maintain tbetput value unchanged.

seconds

TheparXXL development environment 9

T T T T T T T
8.4e+06 cells —_—t 16 procs ~———F——
10k lle+07 cells ~ ————-—- 24 procs -
E 1.3e+07 cells ----- Koo 32procs - [P
F 1.7e+07 cells =8 48 procs =)
L 6.7e+07 cells 64 procs
3 96 procs
L 128 procs --e--
" 107 | - 192 procs - L]
%o -g o 310 procs - A -
1k TxL _ 8 [%Kk
F— el] L ela]
o \\\\\\k\\\\;f;-.“ £l] (Zia)
[9 S] |
-] o
— ‘~§£ 77777777 - 1 o q
‘*\\\\\\\%> e S L e,
— % *%09000- -0
8| R n
0.1 LWL 1 1 1 Y il N S,
16 32 64 128 107 108 10°
procs cells

(a) total time per cell-cycle (b) amortized time per cell and cycle

Fig. 2. Benchmarks on Grid-eXplorer: up &0 million cells using up t®310 processors

All the cell outputs of this application are routed to the wected cell inputs after
each computation stepbufferedcommunication mode). At the end of the relaxation,
some slices of the cell cube results aotlectedon themasterprocess to be stored or
displayed (seeollectorintroduction in Section 5).

Experimental performances Fig. 2(a) shows for different problem sizes how execu-
tion time of a relaxation cycle decreases as a function oftimaber of processors. The
benchmark platform is th&rid-eXploref cluster composed of bi-processor machines
(a large PC cluster), runningarXXL and its MPI-based runtime. These experiments
exhibit regular decreases.

parXXL scales: On large enough problems, for the same problem size the tene d
creases linearly when increasing the number of processors.

However, the execution time of a complete relaxation cy@peshds on the problem
size (the number of cells): it has complex@®(N'), whereN is the number of cells in

the particulaparXXL execution. To easily compare the execution times for irsinga

problem sizes, in Fig. 2(b) we show the average time to rurllanee: the execution
time per cycle and per cell.

parXXL is robust: This time remains constant for a fixed number of processode-i
pendently of the problem size or still decreases when rgnmiare cells on more
processors (see the curves f@g, 192 and310 processors).

By that, parXXL succeeded to scale up400 millions of cells and310 processors on a
PC cluster.

8 Conclusion and perspectives

Main parts of theparXXL architecture are implemented and operational, and first ex-
periments show that thearxXXL architecture scales up to some hundred processors for

! https://www.grid5000.fr/mediawiki/index.php/Orsay:Home

10 Jens Gustedt, §hane Vialle, and Amelia De Vivo

a large, fine grained application. Further developmentauiisist in the following: (1)
improve theglobal communication mechanisrtssend data from the sequential pro-
gram to the cells, such as camera images, (2) design andnraptean efficienhybrid
cell communication mod€3) full generalization of thear: : cel | net regular net-
works and a parallel deployment of these nets.

Future experiment will be run on a larger number of processbthe Grid-eXplorer
machine, and on a Grid of clusters using Grid5000 (the Freation-wide experimen-
tal Grid). Our short-term goal by the end of this year (2066)a deploy more than
a billion of cells for simulations of laser-crystal intetiamn, a collaboration with re-
searchers from the LMOPS laboratory.

To ease the implementation of this type of application frdmygics, aparXXL in-
terface with a Mathematica PDE solver is under developntegether with LMOPS).
Our goal is to automatize the translation of a Mathematiaedor PDE solving into
a distributed large scale cellular computation. It willosll to speedup many research
steps, avoiding long and tedious code translations.

Acknowledgments

Part of this research has been made possible via a visitarg fpr Amelia De Vivo by
the French programme ACI ARGE, and another part is suppdbsteelegion Lorraine.
The experimental facet of this research is part of the GXglerer research initiative
and relies on this experimental platform.

References

1. Valiant, L.: A bridging model for parallel computation. Communicatiohthe ACM 33(8)
(1990) 103-111

2. Morin, C., Gallard, P., Lottiaux, R., V&e, G.: Towards an efficient single system image
cluster operating system. Future Generation Computer Systems (2004)

3. Norman, M., Henderson, J., Main, |., Wallace, D.: The use of#A®E environment in the
simulation of rock fracturing. Concurrency: Practice and Experi@(d®91) 687-698

4. Talia, D.: Solving problems on parallel computers by cellular prognarg. Proc. of the
3rd Int. Workshop on Bio-Inspired Solutions to Parallel ProcessinglBnaes BioSP3-IPDPS,
LNCS, Springer-Verlag (2000) 595-603 Cancun, Mexico.

5. Baduel, L., et al.: Programming, Composing, Deploying for the @ifidipter 9). In: Grid
Computing: Software Environments and Tools. Springer (2006)

6. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces PrincipkaseriAs, and Practive. Pearson
Education (1999)

7. Gebremedhin, A., Garin Lassous, |., Gustedt, J., Telle, J.: PRO: a model for parafielree-
optimal computation. In: 16th Annual International Symposium on HigtidPmance Com-
puting Systems and Applications. (2002) 106-113

8. Essddi, M., Gustedt, J.: An experimental validation of the PRO model forlfgrand dis-
tributed computation. In: 14th Euromicro Conference on Parallel, Dis&tband Network
based Processing. (2006) 449-456

9. Ménard, O., Vialle, S., Frezza-Buet, H.: Making cortically-inspiredsseimotor control re-
alistic for robotics: Design of an extended parallel cellular programmiadets. In: Interna-
tional Conference on Advances in Intelligent Systems - Theory andidgpions. (2004)

