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Abstract. We present a new integrated environment for cellular computing and
other fine grained applications. It is based upon previous developmentsconcern-
ing cellular computing environments (theParCeL family) and coarse grained al-
gorithms (theSSCRAP toolbox). It is aimed to be portable and efficient, and at
the same time to offer a comfortable abstraction for the developer of fine grained
programs. A first campaign of benchmarks shows promising results on clusters.

1 Motivations and objectives

Nowadays, many research areas consider multi-scale simulations based onab initio
computations: they aim to simulate complex macroscopic systems at microscopic level,
using fundamental physical laws. Obviously, huge amounts of CPU are mandatory to
run these simulations. Modern supercomputers and Grids, with large and scalable num-
ber of powerful processors, are interesting architecturesto support these simulations.

However designers and developers of algorithms and code forlarge scale applica-
tions are often confronted with a paradoxical situation: their modeling and thinking
is fine-grained, speakinge.g.of atoms, cells, items, protein bases and alike, whereas
modern computing architectures arecoarse-grainedproviding few processors (up to
several thousands≈ 103) to potentially huge amount of data (thousands of billions of
bytes≈ 1012) and linking a substantial amount of resources (memory in particular) to
each processor. Only few tools (for both, modeling and implementation) are provided
to close this gap in expectation, competence and education.

This article introduces theparXXL development environment, specially designed to
close this gap betweenfine-grainedmodeling andcoarse-grainedcomputing architec-
tures. It stems from two previous research projects that have investigated optimization
of computing resources (CPU, memory, communications, synchronization . . . ) and cel-
lular oriented programming (to implementfine-grainedmodels). Some collaborations
with researchers in optic components and hot plasma (from LMOPS and LPMIA lab-
oratories) guideparXXL design to an ease-to-use tool, and allow to identify collateral
challenges. For example, some hot plasma simulation codes of our partners have been
specially designed for global shared memory parallel computers. Intensive computa-
tion steps are split by optimized data rearrangement operations inside the global shared
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memory. But on large distributed architectures this kind ofoperations would be pro-
hibitive. Some codes need to be re-designed and based on local computations, in order
to support efficient runs on large distributed memory architectures and straightforward
fine-grainedimplementations withparXXL. We are convinced that this algorithmic and
programming methodology is required to achieve large multi-scale simulations.

2 Related work

On the modeling side, Valiant’s seminal paper on the BSP, see[1], has triggered a lot
of work on different sides (modeling, algorithms, implementations and experiments)
that showed very interesting results on narrowing the gap between, on one hand, fine
grained data structures and algorithms and, on the other, coarse grained architectures.
But when coming to real life, code developers are usually left alone with theclassical
interfaces, even when they implement with a BSP-like model in mind.

Development environment with explicit coarse grained parallelism, like MPI and
OpenMP, usually lead to efficient executions but are not adapted to fine grained pro-
gramming, and require experimented parallel developers. At the opposite, high level
computation tools like Mathematica or Mathlab are comfortable tools to implement a
simulation model from mathematical equations. But these high level tools have poor
performances and use C++ code generators and classical distributed C++ libraries to
create more efficient codes (an interface betweenparXXL and a Mathematica EDP
solver based on cellular automata is under development). Some distributed OS man-
aging a virtual shared memory like Kerrighed [2] allow to easily implement parallel
algorithms, but they are limited to small clusters and require coarse-grained algorithms
and optimized memory management to achieve performances.

Many generic cellular languages and distributed object libraries have been designed
for parallel and distributed architectures, like Cape [3] or Carpet [4]. But they focus
oncellular automatawith cell connection limited to a predefined neighboring andwith
synchronous cell communications (similar to thebufferedparXXL mode). Moreover,
these researches seems to have slowed down since 2000. Finally, some Java based dis-
tributed environments exist, based on message passing and remote method invocations
like ProActive [5] or on virtual shared memory like JavaSpaces [6]. Our personal ex-
periments have exhibited good speedup and good scalability, and Java Virtual Machine
performances are improving. But Java has not been yet adopted by the scientific com-
munity to implement intensive computations, and remains slower than C++.

So, implementing dynamic data structures (such ascellular networks) efficiently on
a large scale often remains an insurmountable hurdle for real life applications.parXXL
as proposed in this paper was created to lower that hurdle, inthat it implements a general
purpose development environment for fine grained computation on large parallel and
distributed systems.

3 Software architecture

TheparXXL development environment is split into several, well-identified layers which
historically come from two different project sources,SSCRAP andParCeL6. Its soft-
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ware architecture is introduced on Fig. 1, and demonstratesthe split of these two main
parts into the different layers. The (former)SSCRAP part introduces all the necessary
parts to allow for an efficient programming in coarse grainedenvironments; interfaces
for the C++ programming language, the POSIX system calls, tools for benchmarking,
a memory abstraction layer and the runtime communication and control. The (former)
ParCeL6 part introduces acellular development environment and a set of predefined
and optimized cell networks. These programming models ofSSCRAP andParCeL6 are
detailed in the next sections.

par::cellnet Cellular networking
x





y

ParCeL6par::cell Cellular programming environment

par::step Organizing BSP-like supersteps x



















y

SSCRAP

par::cntrl Runtime communication and control
par::mem Memory abstraction and mapping
par::bench Benchmarking tools
par::sys System interfaces (POSIX)
par::cpp C++ wrappers and utilities

Fig. 1.parXXL software architecture

4 SSCRAP programming model

SSCRAP is a programming environment that is based on an extension ofthe BSP pro-
gramming model [1], called PRO [7]. It proved to be quite efficient for a variety of
algorithms and platforms, see [8]. Its main features what concern this paper are:

Supersteps with relaxed synchronization:Originally, BSP was designed with strong
synchronization between the supersteps. PRO (and thusSSCRAP) allows a process
to resume computation as soon as it receives all necessary data for the next super-
step. Thepar::cntrl layer (see Fig. 1) implements these features inparXXL.

A well identified range of applicability: SSCRAP is clearly designed and optimized
for coarse grainedarchitectures. These are architectures for which each processor
has access to a private memory that allows it to keep track of one communication
to every other processor. If the platform hasp processors, as a minimal condition
this private memory must thus holdp machine words, a fact to which we refer
as the architecture having “substantially more memory than there are processors”.
All modern high performance computing architectures (mainframes and clusters)
easily fulfill this criterion.

Comfortable encapsulation of data: The work horse ofSSCRAP is a data type
(chunk in the par::mem layer) that encapsulates data situated on different sup-
ports such as memory and files which then can be mapped efficiently into the ad-
dress space of the processes. TherebySSCRAP can efficiently handle huge data (e.g
larger than the address space) without imposing complex maintenance operations
to the programmer.
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Portability: SSCRAP is uniquely based on normalized system interfaces (par::sys),
most important are POSIX file systems, POSIX threads and MPI for communica-
tion in distributed environments. Therefore it should run without modification on
all systems that implement the corresponding POSIX system calls and/or provide a
decent MPI implementation.

Performance: This portability isnotobtained by trading for efficiency. In the contrary,
we provide two run-times, one for shared memory architectures (threads) and one
for distributed computing (MPI). These are designed to get the best out of their re-
spective context: avoiding unnecessary copies on shared memory and latency prob-
lems when distributed. All this is achieved by only linking against the respective
library, no recompilation is necessary.

5 ParCeL6 programming model

Thepar::cell level of parXXL architecture (see Fig. 1) implements theParCeL6 ex-
tended cellularprogramming model [9]. It is based oncells that are distributed on
different processors, and on a sequentialmasterprogram:ParCeL6 developers design
and implement some cell behavior functions, and a sequential program to install and
to control a parallel cellular net. This mixed programming model is easy to use and
facilitates the design ofcellular servers: a classical client can connect to the sequential
program, that runs cellular computationson demand. Main features ofParCeL6 cellular
model are:

A dynamic cellular network: Starting from an empty network of cells, the sequential
program creates cells on all available processors. Each cell has an individual set
of parameters, and the first action of these cells is usually to connect each other to
create a cellular network (a cell output can be connected to an unlimited number of
cell inputs). This network is dynamic and may evolve at any point of the execution
(cells and connections can be created or removed).

Six cell components:A cell is composed of (1) a uniquecell registration, some (2)
parametersand (3)private variables, (4) somecell behavior functions, (5) a unique
multi valuedoutput channel, and (6) several multi valuedinput channels. The first
is imposed byParCeL6 mechanisms, the others are defined by the developer.

A cyclic/BSP execution of the cell net:A ParCeL6 cycle consists of three steps: com-
putation, net evolution and communication. Each cell is activated once during the
computation step, where it sequentially reads its inputs, updates its output, and
issues some cell netevolution requests. These requests define, kill, connect or dis-
connect some cells, and are executed during the net evolution step.

Three modes of cellular communications:During the communication step,buffered
outputsare copied to their connected cell inputs. Their propagation is fast and is
adapted to synchronous fine grained computation (cell inputs do not change dur-
ing the computation steps). The propagation of adirect outputto a connected cell
input is triggered each time arefreshcommand is executed for it. This mechanism
has a large overhead but is required by some asynchronous finegrained computa-
tions [9].Hybrid outputsare an attempt to get both fast and asynchronous cellular
computations: they propagate their value one time per computation step and per
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processor (cells on different processors can read different values during one com-
putation step).

Moreover, somecollectormechanisms allow the cells to save data during their compu-
tation steps and themaster programto gather, sort and store these data at the end of
a computation step. Symmetrically, someglobal cell net communication mechanisms
allow the sequential program to send input data to the cells (like camera images).

Finally, a classicParCeL6 application code includes three main parts: thesequen-
tial master routinecontrolling the cell net installation and running cellularcomputation
steps, the cell creation and connection operations to establish the cell net (can be easily
implemented using the cell net library, see next section), and the cell computation func-
tions that implement a fine grained computing model (like Maxwell equations, neural
network computations. . . ). So, a fine grained algorithm can be straightforwardly imple-
mented onParCeL6, especially when an adapted cell net template exists in the library,
without dealing with parallel processing difficulties.

6 parXXL main functionalities

Optimized cell network library Thepar::cellnet library (see Fig. 1) is a collec-
tion of cell network installers: application code can easily deploy a cell network just
using aninstaller object. Eachinstaller has to be set with the application cell behavior
functions, the cell parameter and cell variable types, and the cell network size. Then, it
installs the cells and their parameters, and connects the cells according to a predefined
communication scheme. Deployments are optimized: (1) the number of cells is bal-
anced among the processors, (2) with preference neighboring cells are installed on the
same processor, and (3) cell net installation is split into small steps to limit the memory
required by the deployment operations.

Thepar::cellnet library currently includes networkinstallersthat place the cells
on a2- or 3-dimensional grid, and that will connect a given cell to all its neighbors that
are ‘close’ with respect to a certain ‘norm’: e.g an installer of type

par::cellnet::mesh< 3, L2, 2, applicationType >
will position the cells on a3-dimensional grid, and connect all cells that are at distance
2 in the Euclidean (L2) norm. The remaining information of the particular application
network (such as the individual cell functions etc) is specified via the type parameter
applicationType that is defined by the application. Currently available norms are
L0, L1 andL2.

We are currently working on an extension of this setting to general dimensions.
More generally, other types of regular networks (honeycomb, regular crystals) and other
types of norms (e.g ellipses) may be implemented easily if needed.

Process specificationGenerally aparXXL program executes severalparXXL-processes
in an MIMD fashion. The kind of execution (POSIX threads or MPI processes) and the
number of processes is not fixed in the code but only decided atlink or launch time,
respectively.
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int define_cell(descriptor_t const& Descr, register_t& Reg);
int kill_cell(register_t const& Reg);

template< class TPARAM >
int define_cell_param(TPARAM const& param,

register_t const& Reg);

Listing 1. par::cell::context_t, main cell management functions

According toParCeL6 programming model (see Section 5), thepar::cell layer
restricts the MIMD execution model so that apar::cell program is composed of a
sequentialmasterprogram and a set ofworkerprocesses hosting and running cells. The
masterprocess installs and controls the cell net deployed on theworkersusing some
high level cell management functions described above.

This master-workerarchitecture is adapted to many scientific computing applica-
tions, butindustrial applications useclient-serverarchitectures. To support both sci-
entific and industrial applications, theparXXL masterprocess may also implement a
serverinterface (installing a cell net, accepting client connections and running cell net
computationson demand) and run on a specificservermachine. The user can point out
this machine at runtime among the pool used to distribute theparXXL program, using
the -s option (Server name). For example, on a cluster using the MPIparXXL run-
time: ”mpirun -np 100 MyAppli -s PE20 ...” runs the application ”MyAppli”
on 100workersand installs themaster-serverprocess on the ”PE20” machine.

To avoid themaster-serverbeing overloaded by cell computations, the optimized
cell net librarypar::cellnet allows to install or not to install cells on themaster-
serverprocess, using the-E option (Exclude) at runtime. By default, themasterprocess
is the theparXXL-process0 and hosts cells.

Cellular network management The mainparXXL functions to easily manage a cellu-
lar network from the sequential program of the master process are shown in Listings 1
and 2. They are all members of thepar::cell::context_t class.

Functiondefine_cell allows to define a new cell, specifying its number of out-
put values, its connection mode (buffered, or hybrid, see Section 5).parXXL defines
its registration and its host processor. However it is possible to specify the host pro-
cessor to optimize the cell net mapping; this is done by thepar::cellnet library
to create optimized cell networks. Usually the cells are defined by the sequential pro-
gram of the master process, but they can be defined on any processor in parallel. This
strategy will be exploited in the next version of thepar::cellnet library to create
larger networks faster. When some cells have been defined on one or several proces-
sors, functionconductCellUpgrade executed on the master processor runs some
processor communications and creates cells on different processors. Similarly, func-
tions define_cell_param andconductParamInstall allow to define and asso-
ciate some datastructures to cells (the cell parameters) and to send and install these
parameters in the corresponding cell bodies on their host processors.
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int conductCellUpgrade(void);
int conductParamInstall(void);

int conductComputation(ActivKind_t kind, size_t PermutIndex);
int conductLinkUpgrade(void);
int conductOutPropagate(void);
int conductCollect(size_t CollectorId);

int conductHalt(void);

Listing 2. par::cell::context_t, main cellular network management functions

The next group of functions is usually called in acomputation loopexploiting the
cellular network. FunctionconductComputation activates all cells on each processor
for one compute cycle: each cell runs its current behavior function once. On a particular
parXXL-processor theorder of the cell activation may be specified: the order of their
storage (default), its reverse, or in the specific order of a permutation table. In most
cases, this order has no impact on the program result and has not to be considered
in the design of the program. But some rare andasynchronouscellular programs are
sensitive to the cell activation order (when using thehybrid communication mode). So,
parXXL allows to quickly change this order to check the sensitivityof the program to
this parameter using the parameters of functionconductComputation.

FunctionconductLinkUpgrade allows to establish the cell links that were de-
fined during the previous cell computation step. It generates some processor commu-
nications and datastructure update, that are mandatory to send cell output into con-
nected cell input buffers on remote processors. Then functionconductOutPropagate
can route eachbufferedcell output to its connected input cell buffers, and thehybrid
cell outputs can be routed automatically during the cell computation steps. Functions
conductCellUpgrade andconductLinkUpgrade have only to be called when a the
cellular network is established or changes during a cycle; in the common case that a
cellular network is created and linked during the first cycles and fixed thereafter, they
may be avoided once the network structure remains stable.

FunctionconductCollect is called to gather data that cells stored in acollec-
tor during the previous computation steps on the master process. Thus,collectorsare
distributed datastructures allowing tocollectsome results on the master process.

The last function,conductHalt, allows to halt all the processes excepted the mas-
ter process running the sequential program. NoparXXL function can be called after this
function has been executed.

Memory allocation As already mentioned above, efficient handling of large datasets
is crucial for a good performance of data intensive computations. The template class
par::mem::chunk provides comfortable tools that achieve that goal. Its maincharac-
teristic is that it clearly separates theallocationof memory from the effectiveaccessto
the data.
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Allocation can be done on the heap (encapsulatingmalloc), at a fixed address (e.g
for hardware buffers) or by mapping a file or POSIX memory segment into the address
space (encapsulatingopen, shm_open and mmap). By default the decision between
these different choices is left for the time of execution andcan thus easily be adapted
according the needs of a specific architecture.

Access to the data is obtained by an operation calledmapping. Mapping associates
an address for the data in the address space of theparXXL process and returns a pointer
where the programmer may access it. When the memory is not usedanymore, it will
in general be unmapped. The template classpar::mem::apointer provides a com-
fortable user interface that, as the name indicates, may basically be used as if it was an
ordinaryC pointer.

Mapping and unmapping can happen several times without the data being lost. In
general it is much healthier for the application to free resources during the time they
are not needed. In particular the system may chose torelocate the data at different
addresses for different mapping periods, and will be thereby be able to react to increase
or decrease of the size of individualchunk s.

Mapping can also just request parts of the total memory (calledwindowin parXXL).
In such a way a program maye.g handle a large file quite efficiently: it may just
map (and unmap) medium sizedchunks one after another and handle them separately.
Thereby a program may handle files that do not fit entirely intoRAM or do not even fit
in the address space of the architecture (4GiB for 32bit architectures).

An important property ofchunks is that they maygrowwhile they are not mapped.
par::mem::stack uses this property for a simple stack data structure. This isinten-
sively used by thepar::cell layer to collect (and withhold) data during a computa-
tion phase on each processor before this data then can be communicated in its entirety
in a communication phase. TherebyparXXL is able to avoid the fragmentation of cell
communications into large numbers of small and unefficient messages (distributed ar-
chitecture) or memory writes (shared memory).

7 Application and performance examples

Application introduction To start to validate the scalability ofparXXL we have de-
signed and experimented a 3D Jacobi relaxation on acubeof cells, with up to hundred
millions of cells. This application has been implemented like a classicalparXXL pro-
gram. The sequentialmasterprocess installs a cellular network on a pool ofworkers,
and conducts a computational loop executed by eachworker. There is no client-server
mechanism implemented in this application, but it could easily be turned into a parallel
Jacobi relaxation server withparXXL functionalities (see Section 6).

During the cell net installation steps, the cells are created with one output value,
and are connected to their neighbor cells: up to six neighbors for a cell inside the cube.
To easily deploy large cubes of cells, we have used thepar::cellnet library, that
installs optimized cellular networks (see Section 6). Then, theparXXL program enters
a long loop of cell computations and cell output propagation(to the connected cells).
The cells inside the cube update their output value with the average of their neighbor
output values, while cells on the cube border maintain theiroutput value unchanged.
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Fig. 2.Benchmarks on Grid-eXplorer: up to400 million cells using up to310 processors

All the cell outputs of this application are routed to the connected cell inputs after
each computation steps (bufferedcommunication mode). At the end of the relaxation,
some slices of the cell cube results arecollectedon themasterprocess to be stored or
displayed (seecollector introduction in Section 5).

Experimental performances Fig. 2(a) shows for different problem sizes how execu-
tion time of a relaxation cycle decreases as a function of thenumber of processors. The
benchmark platform is theGrid-eXplorer1 cluster composed of bi-processor machines
(a large PC cluster), runningparXXL and its MPI-based runtime. These experiments
exhibit regular decreases.

parXXL scales: On large enough problems, for the same problem size the time de-
creases linearly when increasing the number of processors.

However, the execution time of a complete relaxation cycle depends on the problem
size (the number of cells): it has complexityO(N), whereN is the number of cells in
the particularparXXL execution. To easily compare the execution times for increasing
problem sizes, in Fig. 2(b) we show the average time to run a cell once: the execution
time per cycle and per cell.

parXXL is robust: This time remains constant for a fixed number of processors, inde-
pendently of the problem size or still decreases when running more cells on more
processors (see the curves for128, 192 and310 processors).

By that,parXXL succeeded to scale up to400 millions of cells and310 processors on a
PC cluster.

8 Conclusion and perspectives

Main parts of theparXXL architecture are implemented and operational, and first ex-
periments show that theparXXL architecture scales up to some hundred processors for

1 https://www.grid5000.fr/mediawiki/index.php/Orsay:Home
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a large, fine grained application. Further development willconsist in the following: (1)
improve theglobal communication mechanismsto send data from the sequential pro-
gram to the cells, such as camera images, (2) design and implement an efficienthybrid
cell communication mode, (3) full generalization of thepar::cellnet regular net-
works and a parallel deployment of these nets.

Future experiment will be run on a larger number of processors of the Grid-eXplorer
machine, and on a Grid of clusters using Grid5000 (the Frenchnation-wide experimen-
tal Grid). Our short-term goal by the end of this year (2006) is to deploy more than
a billion of cells for simulations of laser-crystal interaction, a collaboration with re-
searchers from the LMOPS laboratory.

To ease the implementation of this type of application from physics, aparXXL in-
terface with a Mathematica PDE solver is under development (together with LMOPS).
Our goal is to automatize the translation of a Mathematica code for PDE solving into
a distributed large scale cellular computation. It will allow to speedup many research
steps, avoiding long and tedious code translations.
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