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ABSTRACT

This paper presents the idea of sequential model-robust De-
sign of Experiments (DOE) for the identification of dynamic
systems modeled with an Ordinary Differential Equation
(ODE). The studied DOE problem consists in selecting se-
quentially the instants where the measures will be done in
order to best estimate the system’s parameter. The robust-
ness is achieved by considering a statistical representation
of the model error defined as the difference between the true
ODE and the ODE used in the model. The idea of model-
ing the model error with a statistical representation has been
widely explored in the DOE literature for the identification
of static systems. However, there have been little previous
works that apply this idea for the identification of dynamic
systems. This paper initiates an exploration of this idea in
the context of first-order ODE. The model error is modeled
by using a kernel-based representation (Gaussian process).
A new criterion for the instant selection is constructed and
tested on an illustrative example. The design reached with
the proposed sequential robust criterion is compared with
the design reached with the non-robust version of criterion
and with the classical uniform design.

1. INTRODUCTION

For parametric identification problems, the purpose of DOE
is to adjust the selection of the experimental conditions to
improve the quality of the parameter estimation. This has
motivated many researches on DOE over almost a century
[1, 2, 3, 4, 5]. The DOE technique was later adapted to the
problem of dynamic systems identification [6, 7, 8]. Some
of the recent works are summarized in [9].

There have been several works on robust DOE, espe-
cially for the identification of static models for engineer-
ing design problems. Design robustness with respect to the
model error (misspecification) was first discussed by Box
and Draper [10] who studied the effect of taking a one-
degree polynomial regression model when the target is two-
degree. After that, many authors have further discussed
and developed this idea with different assumptions about
the misspecification [11, 12, 13].

Several recent papers have considered these robust DOE
techniques for the identification of ODE parameters. As-
pery and Macchietto [14] considered the problem of de-
sign robustness with respect to the parameter starting val-
ues. They considered that the design is affected by a poor
starting values of the parameters and try to derive a criterion
that is robust against these starting values. In [15], Goodwin
et al. propose a min-max design criterion for the parameter
identification of a linear first-order ODE:

ẋ(t) = a∗ x(t) + u(t) + r(t) (1)

wherex(t) is the state variable,u(t) is the control input,
and r(t) is an unknown departure from the simple model
ẋ(t) = a∗ x(t)+u(t) (misspecification). All these functions
are scalar and defined on a finite interval[0, tmax]. Scalara∗

is the parameter to be identified.
We have studied the same identification problem pro-

posed by Goodwin et al. (equation (1)) but we have consid-
ered a statistical approach of the model errorr(t) instead of
the bound approach derived from the used min-max crite-
rion.

The presence of a non-negligible misspecification has
a great influence on the identification of the parametera∗

and also on the selection of the instantsti where the state
variablex(t) will be measured. Misspecified ODE may en-
counter frequently, especially in the biological field where
the main reaction to be modeled is polluted by additional
terms whose definition by a specific function would not be
feasible.

We definea∗ as the value that minimizes theL2-norm
of the misspecificationr(t):

a∗ = arg min
a

∫ tmax

0

(ẋ(t)− ax(t)− u(t))
2
dt (2)

For a practical reason justified in section 3.1, we choose

to estimateτ∗ = −
1

a∗
, the time constant of the system. The

aim of designing experiments is to reach an accurate esti-
mation ofτ∗ with a small number of experiments. This is
particularly important when obtaining experiments is diffi-
cult, for example for material or cost reasons.
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The estimation ofτ∗ is performed from a database of
collected data. Suppose that the initial point(t0 = 0, y0 =
x(t0)) is known and that a set ofn collected data{(ti, yi) ∈
]0, tmax] × R, i = 1, ..., n} has already been collected. The
ti’s form the initial design denoted byξn = [t1, ..., tn]⊤,
theyi’s are noisy observations ofxi = x(ti). Therefore, the
observation equation is defined as:

y0 = x0

yi = xi + ei, i = 1 . . . n

where the observations errorei are normal and i.i.d. (ei ∼
N (0, σ2

e), σ2
e is supposed to be known).

Suppose that we desire to refine the estimation ofτ∗

by adding a new design pointtn+1 and its corresponding
observation valueyn+1 to the collected data. Then, the pro-
blem of sequential DOE is to choose the next design point
tn+1 that will best refine the estimation.

An important issue in designing experiments for dynam-
ical system identification is the fact that design criteria ge-
nerally depend on the unknown parameter which has to be
identified. To solve this problem, a sequential DOE strategy
is generally implemented. This strategy consists in alter-
nating between parameter estimation stages and designing
stages, as shown in figure 1 [2, 16, 17, 18].

ξn,yn

Estimation

Design

Experimentation

ξn ←− {ξn, tn+1}
τ̂n

tn+1

yn+1

n = n + 1
stage

stage

yn ←− {yn, yn+1}

Fig. 1. Sequential DOE

In the estimation stage, the unknown parameterτ∗ is
estimated using then collected observations:

τ̂n = arg min
τ

Jestim.(τ, ξn,yn)

In the design stage, the estimated parameterτ̂n is used
in order to find the next design pointtn+1:

tn+1 = arg min
t>tn

Jdesign(t, τ̂n)

The paper is organized as follows. The next section il-
lustrates the proposed approach and in particular the sta-
tistical representation used forr(t) and the derived design
criterionJdesign(t, τ̂n). Mathematical developments for cal-
culating the criteriaJestim.(τ, ξn,yn) andJdesign(t, τ̂n) are
not straightforward. They are detailed in section 3. In the
fourth section, an example is presented in order to illustrate
the improvements of the proposed sequential design over
the classical uniform design and the non-robust version of
the proposed sequential design. Section five concludes the
paper by presenting the main contributions.

2. PROPOSED APPROACH SCHEME

This section presents the proposed sequential robust crite-
rion Jdesign(t, τ̂n). As mentioned in the introduction, the
main contribution of this work is the presence of the model
errorr(t) which improves the robustness of our design cri-
terion.

The model errorr(t) is generally a relative smooth func-
tion. This is the reason why we model it by a Gaussian pro-
cess as in [19, 20] (see [21] for a Gaussian process tutorial).
A Gaussian process is a random field defined by its mean
and covariance function:

E
r
[r(t)] = 0, ∀ t ∈ [0, tmax]

E
r
[r(t)r(t′)] = c(t− t′), ∀ (t, t′) ∈ [0, tmax]

2

whereE[.] denotes the expected value ands2 = c(0) de-
notes the variance of the model error. The relevance of
modeling the misspecification by a Gaussian process rises
because for some classes of covariance functions, Gaussian
processes span a rather large space (infinite-dimensional).
Therefore, this type of representation matches the robust-
ness requirement: the design pointtn+1 that we look for
must lead to a good estimation performance whatever is the
misspecification. The misspecification is unknown but our
idea of robustness states that the chosen design point must
guarantee a good level of performance (on average) over a
wide range of potential misspecifications. The theoretical
expression of the proposed criterion is directly derived from
the use of the statistical representation ofr(t) that was sug-
gested:

Jdesign(t, τ̂n) = E
{en,en+1,r}

[

(τ̂n+1(t)− τ∗)
2
]

(3)

whereτ̂n+1 is the updated estimation ofτ∗ anden = [e1, ..., en]
⊤.

The use of the expected value overr (i.e. r(t), t ∈ [0, tmax])
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assures the robustness with respect to the model misspecifi-
cation.

3. MATHEMATICAL DEVELOPMENTS OF THE
CRITERIA

This section presents the mathematical developments of the
estimation and design criteria introduced in the previous
section.

3.1. Estimation stage criterion

The first stage of the DOE procedure consists in estimating
the unknown parameterτ∗ givenn observations. This sec-
tion presents a detailed formulation of the parameter estima-
tion procedure. Two estimators ofτ∗ are presented: the pro-
posed robust estimator (considering model-errorr(t) and
measurement errore(t)) and its non-robust version (consi-
dering only measurement errore(t)). The non-robust ver-
sion will be used for comparison in section 4.

First, let’s use a numerical integration scheme in order
to discretize the state equation (1) at the instantsti:

x(ti)= x0 + a∗

∫ ti

0

x(θ)dθ+

∫ ti

0

u(θ)dθ+

∫ ti

0

r(θ)dθ (4)

wherei = 1, ..., n. A numerical integration scheme is pre-
ferred over a derivative one for stability reasons.

The second term in (4) is approximated by the trape-
zoidal integration method. Thus,xn = [x(t1), ..., x(tn)]

⊤

can be written in vector form:

xn = x0 + a∗Wnxn + un + rn (5)

whereun =
[

∫ t1

0
u(θ)dθ, ...,

∫ tn

0
u(θ)dθ

]⊤

is the control in-

put vector defined by the input signalu(t) which is known.

rn =
[

∫ t1

0
r(θ)dθ, ...,

∫ tn

0
r(θ)dθ

]⊤

is unknown and its pos-

sible values depend on the used statistical representation.
Then×n matrixWn contains the coefficients of the trape-
zoidal integration method.

The estimation ofτ∗ is performed from the collected
datayn = [y(t1), ..., y(tn)]

⊤ which are noisy observations
of (5):

yn = x0 + a∗Wn(yn − en) + un + en + rn

The estimator̂τn must be coherent with the definition
of τ∗. In (2), τ∗ is obtained by minimizing theL2-norm,
which is a natural Maximum Likelihood criterion when er-
rors are i.i.d. The same assumptions are kept to construct
the estimator̂τn. Thus, the obtained estimator will be con-
sistent (̂τn → τ∗), which is the main importance for an
estimator. We will see in section 3.2 that a more realistic

covariance function will be used to compute a precise value

of E
{en,r}

[

(τ̂n − τ∗)
2
]

(main importance for the evaluation

of the quality of an estimator).
The τ̂n estimator is thus obtained by considering the

Maximum Likelihood of the vectoren + rn with r(t) sup-
posed to be i.i.d. (r(t) ∼ N (0, s2)). When supposing
r(t) i.i.d., the vectorrn is a Gaussian vector. Ifk ≤ j,
the (k, j) coefficient of itsn × n covariance matrixDn is
equal tos2tk. Thus, the Likelihood criterion is constructed
with a covariance matrix equal to(Dn + σ2

eIn) with In a
n× n identity matrix. Therefore, The estimator expression
is given by:

τ̂n =
y⊤

n W⊤
n (Dn + σ2

eIn)−1Wnyn

y⊤
n W⊤

n (Dn + σ2
eIn)−1 [yn − vn]

⊤
(6)

wherevn = x0 + un.
The non-robust estimator is simply obtained by consid-

eringDn = 0 in the previous equation.

3.2. Design stage criterion

The expectation computation in (3) may be reached because,
for a given misspecificationr, a given design, and a given
noise realization[en, en+1], it is possible to write analyti-
cally the expression of̂τn+1. Indeed, the solution of (1) is:

x(t)=x0 exp(a∗t)+exp(a∗t)

∫ tmax

0

(r(θ)+u(θ)) exp(−a∗θ)dθ

(7)

The integral terms in the previous equation are obtained by
a fine discretization of the experimental domain[0, tmax].
Let {t′i}i=1...m be this time discretization. In the following,
subscript(′) denotes vector calculated at these instants (e.g.
r′m = [r(t′1)...r(t

′
m)]⊤).

Thus, equation (7) can be written in vector form:

x′
m = P′

m (r′m + u′) + f ′m

whereP′
m is them × m matrix of integration coefficients

(classical trapezoidal integration including exponential func-
tion) and f ′m = [x0 exp(a∗t′1) . . . x0 exp(a∗t′m)]

⊤ is the
functionf(t) = x0 exp(a∗t) evaluated at them discretiza-
tion instants.

Following the same procedure, then collected data can
be written:

yn = Pn (r′m + u′
m) + fn + en (8)

wherePn is an×m matrix containing the integration coef-
ficients for then collected data, andfn is the functionf(t)
evaluated at observation instants(t1, . . . , tn).

The sequential DOE consists in choosing the next de-
sign pointtn+1 which will refine the parameter estimation.
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To estimate the unknown parameterτ∗ usingn + 1 obser-
vations, we have to adopt the estimation expression in (6):

τ̂n+1 =
y⊤

n+1W
⊤
n+1(Dn+1 + σ2

eIn+1)
−1Wn+1yn+1

y⊤
n+1W

⊤
n+1(Dn+1 + σ2

eIn+1)−1 [yn+1 − vn+1]
⊤

(9)
Using (8), the expression of the parameter estimation (9) is
rewritten in the following form:

τ̂n+1 =
r′

⊤
mMnumr

′
m + r′

⊤
mvnum + cnum

r′⊤mMdenr′m + r′⊤mvden+ cden
=

Num

Den
(10)

where,

Mden =P⊤
n+1W

⊤
n+1(Dn+1 + σ2

eIn+1)
−1Pn+1

vden =P⊤
n+1W

⊤
n+1(Dn+1 + σ2

eIn+1)
−1

(fn+1 + en+1 − x0)

+P⊤
n+1(Dn+1 + σ2

eIn+1)
−1Wn+1 (fn+1 + en+1)

cden =(fn+1 + en+1 − x0)
⊤

(Dn+1 + σ2
eIn+1)

−1

Wn+1 (fn+1 + en+1)

Mnum =P⊤
n+1W

⊤
n+1(Dn+1 + σ2

eIn+1)
−1Wn+1Pn+1

vnum =P⊤
n+1W

⊤
n+1((Dn+1 + σ2

eIn+1)
−1

+
[

(Dn+1 + σ2
eIn+1)

−1
]⊤

)

W⊤
n+1 (fn+1 + en+1)

cnum =W⊤
n+1 (fn+1 + en+1)

⊤
(Dn+1 + σ2

eIn+1)
−1

Wn+1 (fn+1 + en+1)

andx0 is then + 1 vector[x0, ..., x0]
⊤.

As the parameter estimation expression (10) is derived,
the criteria derivation is accomplished by taking the expec-
tation of(τ̂n+1 − τ∗)

2 with respect to the model and obser-
vation errors as shown in (3). At this step, asτ∗ is unknown,
it is replaced by its estimation̂τn. This is the purpose of
the two-stage sequential DOE presented in the introduction.
Expression (10) can be written as follows:

τ̂n+1−τ∗ ≈
r′

⊤
mMr′m + r′

⊤
mv + c

r′⊤mMdenr′m + r′⊤mvden+ cden
=

A

Den
(11)

where,M = Mnum − τ̂nMden, v = vnum − τ̂nvden and
c = cnum− τ̂ncden. Doing statistics on (11) is not evident
because of the presence of stochastic variables in the nume-
rator and denominator. Fortunately, for reasonable choice
of the model error variances2, the variations ofǫden =
r′

⊤
mMdenr

′
m + r′

⊤
mvden are negligible compared tocden:

A

Den
=

ǫA + c

ǫden+ cden
≈

c

cden
+

1

cden
ǫA −

c

c2
den

ǫden

Furthermore, it was noticed that the variations of
c

c2
den

ǫden

are negligible compared to the variations of
1

cden
ǫA. There-

fore, the denominator is supposed to be constant (equal to

cden). This point is illustrated in the next section. Now, do-
ing statistics on (11) is possible becauseDen is constant
and one has to do statistics only onA. This justifies our
suggestion of working withτ∗ instead ofa∗.

Knowing thatDen is constant, the criterion in (3) is ap-
proximated by:

Jdesign(t, τ̂n) =
1

Den
E

{en,en+1,r}

[

A2
]

The stochastic variableA = r′
⊤
mMr′m + r′

⊤
mv + c

consists of the products of correlated Gaussian variables.
Therefore, it may be computed thanks to a singular value
decomposition:

A = z⊤Szz + z⊤vz + cz

wherecz is a constant value,z ∼ N (0, In+1), andSz is a
diagonal matrix.

The meanmA and the varianceσ2
A of A can be calcu-

lated as functions ofSz, vz andcz:

mA =
∑

k

λk + cz

σ2
A =2

∑

k

λ2
k +

(

∑

k

λk

)2

+
∑

k

v2
k

whereλk is thek-th element in the diagonal ofSz andvk

is thek-th element ofvz. The expression ofJdesign is thus
tractable:

Jdesign(t, τ̂n) =
1

Den

(

m2
A + σ2

A

)

4. ILLUSTRATIVE EXAMPLE

In this section, an illustrative example is given in order to
show the advantage of performing DOE (comparison of de-
signs reached by a sequential DOE approach and other de-
signs reached with the classical uniform criterion) and the
advantage of considering a model error (comparison of the
proposed design with the non-robust design obtained by ta-
king Dn = 0 in the estimation stages andrn = 0 in the
design stages).

In this example, the control input is taken to beu(t) = 0
and the system is only allowed for the initial conditionx0 =
1.

The Gaussian kernel is used because it is the most used
kernel for the Gaussian process covariance [19]:

c(t− t′) = s2 exp

[

−

(

t− t′

λ

)2
]

, ∀(t, t′) ∈ [0, tmax]

(12)
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where,s2 (Gaussian process variance) andλ (correlation
distance) are the Gaussian process parameters. The kernel
is used with the Gaussian process parameters values ofs2 =
0.01 andλ = 0.2. The approach used to choose these values
is based on a maximin efficiency criterion (see [19, 20] for
more details).

Having a set of initial points between the initial time
value (t0 = 0) and the intermediate time value (tint), the
goal is to select the time values betweentint andtmax in order
to best estimate the parameterτ∗. Let tmax = 30 s the final
time, tint = 1 s andξ3 = [0.33, 0.66, 1]⊤ the initial design
vector. The initial parameter valuea∗ = −0.5 and the time
constant corresponding value isτ∗ = 2 s.

The proposed approach has been tested with a Monte-
Carlo method where 200 identification problems were cre-
ated. Each problem is defined by a particular realization of
the Gaussian processr(t) and by a particular realization of
the observation erroren with σ2

e = 0.05.
In section 3, an assumption aboutDen was made. We

have assumed that the variations ofr′
⊤
mMdenr

′
+r′

⊤
mvdenare

negligible in front of the constant termcden. Therefore,Den

was considered to be constantDen ≈ cden. Figure 2 gives

the histograms ofDen andǫA×
cden

c
obtained from the 200

realizations ofr(t). The variations ofDen values are small

enough compared tocden and to the variations ofǫA×
cden

c
.

Therefore, the assumption aboutDen and the notice about

the variations of
c

c2
den

ǫden made on section 3 are valid.
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Fig. 2. Histograms ofDen andǫA ×
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Figure 3 shows the mean of the square errors(τ̂n+1 −
τ∗)2 when 30 design points are added. The comparison
is done among the proposed sequential approach, the non-
robust version of the sequential approach and the uniform
approach where the design points are distributed uniformly
over the experimental domain. The results show a faster
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Fig. 3. Comparison among the three criteria

convergence of the proposed approach over the other two
approaches.
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0
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200

0 5 10 15 20 25 30
0

100

200

Number of added design points

Uniform Design
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Non−Robust Design
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Proposed Robust Design
Mean

Fig. 4. Histograms of the number of added points with a
threshold equal to1.8× 10−3

Another way of comparison is to compare the number
of added design points to reach a square error lower than
a fixed threshold. Figure 4 compares the histograms of the
added design points for the three criteria. The correspond-
ing means are shown in Table 1. It is clear that the proposed
approach is the most efficient because it needs the small-
est number of added points. This result may be particularly
interesting when the number of experiments has to be small.

Robust Non-robust Uniform
Mean Added Points 3.69 7.90 11.88

Table 1. Means of the number of added design points
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5. CONCLUSION AND FUTURE WORK

This paper has discussed the idea of designing robust ex-
periments for dynamic systems. The main contribution of
this paper is the idea of modeling the misspecification by
a statistical representation (Gaussian process). The paper
has presented a detailed derivation of the proposed criterion
showing the simplifications and main contributions. Finally,
an illustrative example was presented showing the improve-
ment in the speed of parameter convergence over other cri-
teria.

The proposed idea is tested on a very simple context
since it is restricted to first-order linear ODE. The goal of
the paper is to show the relevance of using a statistical rep-
resentation associated with a statistical criterion in order to
reach robust estimators. Further works on more complex
systems (non-scalar and non-linear ODE) are in progress.
We also plan to exploit the proposed criterion to design for
bothtn and the value of the control input.
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