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ABSTRACT Several recent papers have considered these robust DOE

This paper presents the idea of sequential model-robust Delechniques for the identification of ODE parameters. As-
sign of Experiments (DOE) for the identification of dynamic Pery and Macchietto [14] considered the problem of de-
systems modeled with an Ordinary Differential Equation Sign robustness with respect to the parameter starting val-
(ODE). The studied DOE problem consists in selecting se- Ues- They considered that the design is affected by a poor
quentially the instants where the measures will be done inStarting values of the parameters and try to derive a coiteri
order to best estimate the system's parameter. The robustthat is robust against these starting values. In [15], Gaodw
ness is achieved by considering a statistical representati €t al- propose a min-max design criterion for the parameter
of the model error defined as the difference between the trugdentification of a linear first-order ODE:
ODE and the ODE used in the model. The idea of model- . N
ing the model error with a statistical representation hasnbe B(t) = a” 2(t) +ult) + r(t) (@)
widely explored in the DOE literature for the identification wherex(t) is the state variabley(t) is the control input,
of static systems. However, there have been little previousgnd r(t) is an unknown departure from the simple model
works that apply this idea for the identification of dynamic i(t) = a* z(t)+u(t) (misspecification). All these functions
systems. This paper initiates an exploration of this idea in gre scalar and defined on a finite interffaltna. Scalara*
the context of first-order ODE. The model error is modeled s the parameter to be identified.
by using a kernel-based representation (Gaussian process) We have studied the same identification problem pro-
A new criterion for the instant selection is constructed and posed by Goodwin et al. (equation (1)) but we have consid-
tested on an illustrative example. The design reached withered a statistical approach of the model er@) instead of
the proposed sequential robust criterion is compared withthe bound approach derived from the used min-max crite-
the design reached with the non-robust version of criterion rion.
and with the classical uniform design. The presence of a non-negligible misspecification has
a great influence on the identification of the parameter
1. INTRODUCTION and also on the selection of the instatjtsvhere the state
variablez(t) will be measured. Misspecified ODE may en-
For parametric identification problems, the purpose of DOE counter frequently, especially in the biological field wier
is to adjust the selection of the experimental conditions to the main reaction to be modeled is polluted by additional
improve the quality of the parameter estimation. This has terms whose definition by a specific function would not be
motivated many researches on DOE over almost a centuryfeasible.
[1, 2, 3, 4, 5]. The DOE technique was later adapted to the =~ We definea* as the value that minimizes tHg-norm
problem of dynamic systems identification [6, 7, 8]. Some of the misspecification(¢):
of the recent works are summarized in [9]. e
. There haye be.e.n sgveral wor.ks on robust DOE_, espe- a* = arg min/ (&(t) — az(t) — u(t))2 at (2
cially for the identification of static models for engineer- @ Jo
ing design problems. Design robustness with respect to the
model error (misspecification) was first discussed by Box _ 1 ]
and Draper [10] who studied the effect of taking a one- 10 éstimater”™ = —-—, the time constant of the system. The
degree polynomial regression model when the target is two-aim of designing experiments is to reach an accurate esti-
degree. After that, many authors have further discussedmation of7* with a small number of experiments. This is
and developed this idea with different assumptions aboutparticularly important when obtaining experiments is diffi
the misspecification [11, 12, 13]. cult, for example for material or cost reasons.

For a practical reason justified in section 3.1, we choose
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The estimation ofr* is performed from a database of In the design stage, the estimated paramgtds used

collected data. Suppose that the initial pdift = 0,y = in order to find the next design poity{,1:
x(to)) is known and that a set ef collected datd (¢;, y;) € desi
_ . esig A
10,tmax) X R,i = 1,...,n} has already been collected. The tn+1 = arg gg}'] ¢, )
t;'s form the initial design denoted b§,, = [t1,....t,] ", _ _ o
they;’s are noisy observations af = x(t;). Therefore, the The paper is organized as follows. The next section il-
observation equation is defined as: lustrates the proposed approach and in particular the sta-
tistical representation used fo(t) and the derived design
Yo = o criterion 7989\, 7,.). Mathematical developments for cal-
yi=xi+e, i=1...n culating the criteria7®s™(r, ¢,,,y,,) and J9s9\¢, 7,,) are
not straightforward. They are detailed in section 3. In the
where the observations errer are normal and i.i.d.ef ~ fourth section, an example is presented in order to illtstra
N(0,02), o2 is supposed to be known). the improvements of the proposed sequential design over

Suppose that we desire to refine the estimation™of  the classical uniform design and the non-robust version of
by adding a new design poimf,; and its corresponding  the proposed sequential design. Section five concludes the
observation Valu@n_;,_l to the collected data. Then, the pro- paper by presenting the main contributions.
blem of sequential DOE is to choose the next design point
tna1 that will best refine the estimation.

An important issue in designing experiments for dynam-

ical system identification is the fact that design crite®a g g section presents the proposed sequential robust crite
nerally depend on the unknown parameter which has to bej,, Jdesianz 7. )

2. PROPOSED APPROACH SCHEME

. 2 ; _ ). As mentioned in the introduction, the
identified. To solve this problem, a sequential DOE strategy i contribution of this work is the presence of the model

is generally implemented. This strategy consists in alter- o4y which improves the robustness of our design cri-
nating between parameter estimation stages and designingerion_

stages, as shown in figure 1 [2, 16, 17, 18]. The model error(t) is generally a relative smooth func-
tion. This is the reason why we model it by a Gaussian pro-
cess asin[19, 20] (see [21] for a Gaussian process tutorial)

A Gaussian process is a random field defined by its mean
I & Yn I and covariance function:

I]Ei:[r(t)] =0, V't € [0, tmay
Y Elr(t)r(t)] = c(t—t), ¥ (t,) € [0, tma]
ES“&‘%Q” n=n+l whereE[.] denotes the expected value asid= ¢(0) de-
notes the variance of the model error. The relevance of
. & — & tnia} modeling the misspecification by a Gaussian process rises
v Yn ¢ {¥n:Un+1} because for some classes of covariance functions, Gaussian
Desi i processes span a rather large space (infinite-dimensional)
gn : .
stage Therefore,_ this type of representation matches the robust-
ness requirement: the design point., that we look for
toin m_ust Iea.d. to a good estimation.p_erfc_)rmgnce whatever is the
v misspecification. The misspecification is unknown but our
idea of robustness states that the chosen design point must
Experimentation| guarantee a good level of performance (on average) over a
wide range of potential misspecifications. The theoretical
Yn+1 expression of the proposed criterion is directly derivedrfr
the use of the statistical representation @ that was sug-
Fig. 1. Sequential DOE gested:
, . . 2
In the estimation stage, the unknown parameteiis TNt 72) :{emfﬂ,r} (Faia(t) =77) } ®)
estimated using the collected observations:

estim wheret,, 11 is the updated estimation of ande,, = [ey, ..., en}T.
Tp = arg minJ =T, &, yn) The use of the expected value ovefi.e. r(t), ¢ € [0, tmax)
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assures the robustness with respect to the model misspecifieovariance function will be used to compute a precise value

cation.

3. MATHEMATICAL DEVELOPMENTSOF THE
CRITERIA

This section presents the mathematical developments of thér)

estimation and design criteria introduced in the previous
section.

3.1. Estimation stage criterion

The first stage of the DOE procedure consists in estimating
the unknown parameter* givenn observations. This sec-
tion presents a detailed formulation of the parameter @stim
tion procedure. Two estimators of are presented: the pro-
posed robust estimator (considering model-err@) and
measurement erras(t)) and its non-robust version (consi-
dering only measurement erreft)). The non-robust ver-
sion will be used for comparison in section 4.

First, let's use a numerical integration scheme in order
to discretize the state equation (1) at the instants

ti ti t;
x(ti)=xzo+a" /x(&)d9+/u(0)d9+/r(0)d9 4)
0 0 JO
wherei = 1,...,n. A numerical integration scheme is pre-
ferred over a derivative one for stability reasons.
The second term in (4) is approximated by the trape-

zoidal integration method. Thus,, = [z(t1), ..., z(t,)] "
can be written in vector form:
Xn = To + a*Wan +u, +ry, (5)

-
whereu,, = glu(a)de,...,fo"u(e)de} is the control in-
put vector defined by the input signa(t) which is known.
T
3 (6)d0, ., [;"r(6)do]

r, =

is unknown and its pos-

sible values depend on the used statistical representation

Then x n matrix W,, contains the coefficients of the trape-
zoidal integration method.

The estimation ofr* is performed from the collected
datay,, = [y(t1),...,y(t,)] which are noisy observations
of (5):

Yn =To + a*Wn (Y'n - en) +u, +e, +r,
The estimatorr,, must be coherent with the definition

of 7*. In (2), 7* is obtained by minimizing thé&.5-norm,
which is a natural Maximum Likelihood criterion when er-

of E
{en,r}

of the quality of an estimator).

The 7,, estimator is thus obtained by considering the
Maximum Likelihood of the vectoe,, + r,, with r(¢) sup-
osed to be i.i.d. (r(t) ~ N(0,s?)). When supposing
(t) i.i.d., the vectorr,, is a Gaussian vector. K < j,
the (k, 7) coefficient of itsn x n covariance matribD,, is
equal tos%t,. Thus, the Likelihood criterion is constructed
with a covariance matrix equal {®,, + 021,,) with I,, a
n x n identity matrix. Therefore, The estimator expression
is given by:

{(f—n - T*)Q} (main importance for the evaluation

! Ya Wi (D, +021,) 7L [y, _Vn}T

wherev,, = g + u,.
The non-robust estimator is simply obtained by consid-
eringD,, = 0 in the previous equation.

3.2. Design stagecriterion

The expectation computation in (3) may be reached because,
for a given misspecification, a given design, and a given
noise realizatiorie,,, e,,11], it is possible to write analyti-
cally the expression af,,. 1. Indeed, the solution of (1) is:

tmax

(r(0)4u(0)) exp(—a*0)do
()

z(t)=xzq exp(a*t) —l—exp(a*t%

The integral terms in the previous equation are obtained by
a fine discretization of the experimental dom@intmay-
Let {¢.},—1...m be this time discretization. In the following,
subscript’) denotes vector calculated at these instants (e.qg.
v, = [r(th)..r(t,,)]).

Thus, equation (7) can be written in vector form:

X =P (O + 1) + £,

whereP] is them x m matrix of integration coefficients
(classical trapezoidal integration including expondifitinc-
tion) andf’,, = [zgexp(a*t))... zoexp(a*t,)]’ is the
function f(t) = xo exp(a*t) evaluated at the: discretiza-
tion instants.

Following the same procedure, thecollected data can

be written:
Yn = Pn (rlm + u/m) + f:n, + e, (8)

whereP, is an x m matrix containing the integration coef-

rors are i.i.d. The same assumptions are kept to construcficients for then collected data, anf, is the functionf(¢)

the estimator?,,. Thus, the obtained estimator will be con-
sistent {,, — 7*), which is the main importance for an
estimator. We will see in section 3.2 that a more realistic

evaluated at observation instafts, . . ., t,).
The sequential DOE consists in choosing the next de-
sign pointt,,+; which will refine the parameter estimation.
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To estimate the unknown parameterusingn + 1 obser- cgen)- This point is illustrated in the next section. Now, do-
vations, we have to adopt the estimation expression in (6): ing statistics on (11) is possible becauSen is constant
and one has to do statistics only @gn This justifies our

= = - suggestion of working with* instead ofa*.

Y1 Wait1 (Dot +02Lni1) 7 Yot — V] Knowing thatDen is constant, the criterion in (3) is ap-

) ) o ©) _ proximated by:
Using (8), the expression of the parameter estimation (9) is

; . ; . . 1
rewritten in the following form: Jlesiony 7y — E A
Den {en,ent1,r}

Yo 1t Wii1(Dng1 4+ 02101) "W 1y

7A—n-‘rl -

s / a
r mMnumr m T T, Vaum + Chum Num

7A—n+1 - = (10)
r/ ) Muei'm + '), Vden+ Cgen  Den The stochastic variablel = 1/} Mr/,,, + '} v + ¢
where, consists of the products of correlated Gaussian variables.
Therefore, it may be computed thanks to a singular value

Myen, :PI+1WI+1(DH+1 + O’gIn—H)ian-&-l
Vaen =Py i Wy 1 (Dngy + 02L41)
(for1 +e€nt1 —x0)

+P) (D1 + 02L1) " Wit (i1 + €n41) wherec; is a constant value; ~ N (0,1,41), andS. is a
diagonal matrix.

The meann4 and the variance? of A can be calcu-

Wit (Fuy1 +eni1) lated as functions ., v, andc.:

Myum :PT—’Lr-‘erI—i-l(DTL‘Fl + Uzln+1)7lwl+1pn+1 Z)\ N
_ ma = kT Cy
Vium =Py 1 W, (D1 + 02L,40) 7 -
1T
+ [(Dn—H + O'E,In-&-l) 1] )

2
2 2 2
0% =2) A7+ e |+ vy
Wi (s1-+ 01 ot (u) <

Cnum = ;|L—+1 (fn+1 + en+1)T (Dn+1 + U§In+1)_1
Wn+1 (fn+1 + en+1)

decomposition:

A=2'S,z+z' v, +c,

Cden = (fn+1 + €nt+1 — X())T (DnJrl + O—SInJrl)_l

where )\, is the k-th element in the diagonal &, and vy

andxq is then + 1 vector|z, ..., zo] . is the k-th element ofv,. The expression af%si9"js thus
As the parameter estimation expression (10) is derived,tractable:

the criteria derivation is accomplished by taking the expec 1
tation of (7,,., — 7*)° with respect to the model and obser- JOSNE, 7)) = —— (m + 0%)
vation errors as shown in (3). At this step,réds unknown, Den
it is replaced by its estimatiofi,. This is the purpose of
the two-stage sequential DOE presented in the introduction
Expression (10) can be written as follows:

4. ILLUSTRATIVE EXAMPLE

In this section, an illustrative example is given in order to
. i} v My, +1) v+e A show the advantage of performing DOE (comparison of de-
Tnb1m T N O / T = (11) signs reached by a sequential DOE approach and other de-
r ml\/Idenr m T I, Vden+ Cden Den . . . . N
. ) signs reached with the classical uniform criterion) and the
where,M = Muum — 7nMden Vv = Vnum = 7nVden @d  5qvantage of considering a model error (comparison of the

¢ = Cnum — Tncden DOINg statistics on (11) is not evident 056564 design with the non-robust design obtained by ta-
because of the presence of stochastic variables in the num king D,, = 0 in the estimation stages amg — 0 in the

rator and denominator. Fortunately, for reasonable ChOicedesign stages).

of the model error variance?, the variations Ofegen = In this example, the control input is taken tod@) = 0
/ / ! P . !
r';, Maent'm + 1’ Vaen are negligible compared @Qen and the system is only allowed for the initial conditign=
A eatec _c 1 c 1.
Den  €dent Cden . Cden + PO %fde” The Gaussian kernel is used because it is the most used

c kernel for the Gaussian process covariance [19]:
Furthermore, it was noticed that the variations-gf-egen
Cden N 2
t—1t
L. Lo 1 o 2 . /
are negligible compared to the variations-of-¢ 4. There- ot =1') = 5~ exp [ ( b\ > ] » V(1) € [0, tma]

Cden
fore, the denominator is supposed to be constant (equal to (12)
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where, s> (Gaussian process variance) ahdcorrelation

distance) are the Gaussian process parameters. The kerne

is used with the Gaussian process parameters valugs-of
0.01 andX = 0.2. The approach used to choose these values
is based on a maximin efficiency criterion (see [19, 20] for
more details).

Having a set of initial points between the initial time
value ¢; = 0) and the intermediate time valug,(), the
goal is to select the time values betwégrandtmax in order
to best estimate the parameter Lettmax = 30 s the final
time, tiny = 1 S and¢; = [0.33,0.66, 1] T the initial design
vector. The initial parameter valug = —0.5 and the time
constant corresponding valueris = 2 s.

T T
Proposed Robust Design
Non-robust design

= = = Uniform Design

»
)

IN
T

w
T

Mean of the square errors
w
o

Ind
wn

N
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15F

The proposed approach has been tested with a Monte- 0 5 10 15 20 % 80

Carlo method where 200 identification problems were cre-
ated. Each problem is defined by a particular realization of
the Gaussian proces$t) and by a particular realization of
the observation errag,, with o2 = 0.05.

In section 3, an assumption abaitn was made. We
have assumed that the variation&b&/Mdenr’Jrr’,T,Lvden are
negligible in front of the constant terege,. Therefore Den
was considered to be constabitn = cgen. Figure 2 gives
the histograms aDen ande 4 x Cd% obtained from the 200
realizations of-(¢). The variations oDen values are small
enough compared t§,.,, and to the variations afy x @
Therefore, the assumption abadien and the notice gbout

L & . .
the variations of5—egen made on section 3 are valid.
den

=
o
=]

: :
—— Cdon = 04989

=

1S)

S
T

a
S
T

Number of realizations

-0.495 -0.49 -0.485 -0.48

Den

0 .
-0.51 —-0.505 -0.5

w
=]

N
=]
T

.
o
T

Number of realizations

o
1]

I
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Cden
eq x =2
c

Fig. 2. Histograms ofDen ande 4 x “4<™

Figure 3 shows the mean of the square erférs.; —
7*)2 when 30 design points are added. The comparison

Number of added design points

Fig. 3. Comparison among the three criteria

convergence of the proposed approach over the other two
approaches.

200 — :
“ V_l_“'l‘

ol ‘ ‘ ‘ ‘
0 5 10 15 20 25 30
200 —

T T T ’
100 |
ol .
0 5 10 15
T T T
0 5 10 15

[ Proposed Robust Design
Mean

[ Non-Robust Design|
Mean

20 25 30

200 —
[ uniform Design

Mean

100

20 25 30
Number of added design points

Fig. 4. Histograms of the number of added points with a
threshold equal t@.8 x 103

Another way of comparison is to compare the number
of added design points to reach a square error lower than
a fixed threshold. Figure 4 compares the histograms of the
added design points for the three criteria. The correspond-
ing means are shown in Table 1. Itis clear that the proposed
approach is the most efficient because it needs the small-
est number of added points. This result may be particularly
interesting when the number of experiments has to be small.

Robust| Non-robust| Uniform

is done among the proposed sequential approach, the nonF\1oan Added Points

robust version of the sequential approach and the uniform
approach where the design points are distributed uniformly

3.69 7.90 11.88

Table 1. Means of the number of added design points

over the experimental domain. The results show a faster
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5. CONCLUSION AND FUTURE WORK [10] G. E. P. Box and N. R. Draper, “A basis for the se-
lection of a response surface desigdpurnal of the

This paper has discussed the idea of designing robust ex- American Statistical Associatiprvol. 54, pp. 622—
periments for dynamic systems. The main contribution of 654, 1959,
this paper is the idea of modeling the misspecification by ) o )
a statistical representation (Gaussian process). Ther papd11] G. Montepiedra and V. V. Fedorov, “Minimum bias
has presented a detailed derivation of the proposed criteri designs with constraints,Journal of Statistical Plan-
showing the simplifications and main contributions. Fipall ning and Inferencevol. 63, pp. 97-111, 1997.
an illustrative example was presented showing the improve-[lZ] R. X. Yue and F. J. Hickernell, “Robust designs for
ment in the speed of parameter convergence over other cri- fitting linear models with misspecification3tatistica

teria. . _ Sinica vol. 9, pp. 1053—-1069, 1999.
The proposed idea is tested on a very simple context

since it is restricted to first-order linear ODE. The goal of [13] Z. Fang and D. P. Wiens, “Robust regression designs

the paper is to show the relevance of using a statistical rep- for approximate polynomial models,Journal of Sta-
resentation associated with a statistical criterion ireotd tistical Planning and Inferengevol. 117, pp. 305-321,
reach robust estimators. Further works on more complex 2003.

systems (non-scalar and non-linear ODE) are in progress, . - .
4] S.P. Asprey and S.Macchietto, “Designing robust opti-

We also plan to exploit the proposed criterion to design for [14] : .
botht,, and the value of the control input. mal dynamic experiments,Joural of process control
" vol. 12, pp. 545-556, 2002.
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