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 Band-Pass Continuous-Time Delta-Sigma Modulators 
Employing LWR Resonators  

 
 
 
 
 
 
 

Abstract— A new topology and design method for 
continuous-time (CT) band-pass delta-sigma modulators 
is presented in this paper. The proposed modulator 
employs a Lamb Wave Resonator (LWR) possessing high 
Q-factor. This kind of resonator presents many 
advantages comparing with the LC or Gm-C resonators. 
Furthermore, the proposed topology is entirely 
compatible with the LWR transfer functions. This method 
facilitates the design of band-pass delta-sigma modulators 
in a wide range of central frequencies (fc).  

I. INTRODUCTION  

Band-pass delta-sigma modulators are widely used in 
telecommunication and mobile technologies where the needs 
for low-power, high-resolution and small-size are of critical 
importance. Recently, several CT delta-sigma modulators 
based on Gm-c or LC resonators have been reported. Their 
major advantage is compatibility with all the Integrated 
Circuit (IC) implementation technologies [1]. However, it is 
known that these modulators suffer from performance 
degradation for a number of reasons. First of all, in narrow 
band digitization, the non-idealities of constituent Gm-c or LC 
resonators are the limiting factors. Secondly it is difficult to 
realize the resonators with high Q-factor due to the parasitic 
loss, especially at high frequencies. Although Q-enhancement 
circuits can be employed, the linearity of the resonator will be 
deteriorated. In addition the resonant frequency of the 
resonator is sensitive to process and temperature variations. 
Consequently it is still difficult to achieve high accuracy, 
especially in the case of narrowband digitization [2]. In order 
to improve the actual performance of the CT delta-sigma 
modulator, the need of an accurate resonator with high-Q 
factor is critical. 
Recent progress has made the integration of micro-
mechanical devices with CMOS circuits on a single chip 
possible. Moreover, it is well known that the electro-
mechanical resonators are accurate resonators and possess 
high-Q factors [3]. In this research, micro-mechanical 
resonators, especially Lamb Wave Resonators are applied to 
design the delta-sigma modulator. 

II. LAMB WAVE RESONATOR (LWR) 

The structure of Lamb Wave Resonator (LWR) which is 
similar to Acoustic Wave resonator (SAW) and Film Bulk 
Acoustic Resonator (FBAR), is composed of a piezoelectric 

layer sandwiched between two thin electrodes and placed on 
a membrane (Fig. 1). However, FBAR operates using vertical 
wave propagation; the LWR employs lateral wave 
propagation. Indeed, in LWR, the resonance appears when 
the length L is proportional to half wavelength. Changing the 
resonance frequency, while keeping standard lateral 
dimension, is possible through specific electrode designs [4].  

 
Fig. 1.  Lamb wave resonator working on (a) fundamental (b) third harmonic 

The advantages of LWR can be listed as: 1- Accurate central 
frequency without the need for tuning. 2- High loaded Q-
factor above 500 that can be easily attained. 3- Wide 
available resonant frequency range up to Gigahertz. 4- High 
temperature stability. 

 
Fig. 2.  Model of one-port LWR resonator  

Fig. 2 shows a model used for most of one-port micro-
mechanical resonators which can be connected to a resistive 
load RL. This model can be also a modeler of the LWR.  Rm, 
Cm and Lm are the motional resistance, capacitance and 
inductance, respectively. C0 is the inherent static capacitance 
between the two terminals. These parameters could be found 
through the resonance and anti-resonance frequencies, which 
are the results of a finite element simulation [4]. Equation (1) 
is the transfer function of the LWR resonator. 
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Regarding this model, like the other micro-mechanical 
resonators, the LWR gives a resonance and anti-resonance 
frequencies. The resonance frequency ( sω ), anti-resonance 
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frequency ( pω ) and Q-factor (Q) of the resonator can be 
calculated, respectively, as follow: 
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Hlwr does not have an ideal second-order resonator transfer 
function and moreover, it is passive and has an insertion loss. 
These issues lead us to propose a new resonator structure 
(Fig. 3), where x referents the LWR.   

 
Fig. 3.  Proposed resonator topology to anti-resonance cancelation  

The major advantage of this structure is the anti-resonance 
cancelation. Two capacitive paths (Cc) are added and a 
differential signal is used to drive the resonator and Cc. These 
paths act effectively as a negative capacitance. If Cc is made 
equal to C0, the effect of C0 can be completely cancelled. 
Additionally the insertion loss of the resonator can be 
compensated by the gain stage. Supposing an ideal amplifier 
(Av >> 1/(RmCm) & Rg=0) the result of the transfer function 
for resonator topology can be expressed as follow.  
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Hres can be regarded as an ideal second-order resonator. 
Consequently this topology based on the LWR, seems to be a 
prefect candidate for the delta-sigma modulator filter and will 
be used all over this study.  

III. CONTINUOUS-TIME MODULATOR SYNTHESIS  

Before the illustration, it should be noted that our goal is to 
design a large band delta-sigma modulator which work at a 
central frequency between 0.2fs and 0.3fs where fs is the 
sampling frequency. Consequently the proposed method is 
reliable for central frequencies between 0.2fs and 0.3fs.  
Several structures have been reported to synthesise a CT 
delta-sigma global filter. The most famous of them are mono-
boucle structure [5] and multi-boucle structure [6].  
The filter transfer function of the mono-boucle structure 
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a modifiable parameter to synthesise and as a result it can not 
be eliminated. So this transfer function can exclusively be 
realized using Gm-c or LC resonators due to the existence of 
this term. On the other hand, due to the several modifiable 
parameters, the multi-boucle topology is a flexible structure 
that can support all type of transfer function. However the 
number of modifiable parameters complicates the calculation 
and the circuit implementation. In this paper a new topology,    

using only ‘pure resonator’ is presented (Fig.4). There are 
two major advantages for this structure: 1- The filter transfer 
function of this structure is compatible with the LWR. 2- This 
topology employs a minimum number of modifiable 
parameters. 

 
Fig. 4.  Proposed topology for a Continuous-time 6th order delta-sigma  

The design of the delta-sigma modulator using the topology 
of Fig.4 will be explained in four steps.   
A. Global Filter Design   
The best way to design a CT delta-sigma modulator is to start 
from a DT delta-sigma modulator filter transfer function, 
which satisfies all the demand in term of resolution and 
stability. Then, the transformation expressed in (4) will be 
used in order to achieve its CT delta-sigma filter counterpart.  
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                (4) 
Where 1−L  denotes the inverse Laplace transform, TZ  the z-
transform at sampling period ( sT ) and )(sB  denotes delay and 
non-ideality part of DAC and ADC functionality. In this 
approach, we use standard tools available in symbolic 
calculation programs such as Laplace and z-transform.  
This method which is vastly explained in [5] is almost 
preferred due to its facility and the low cost of the simulation 
time in DT domain.  
B. DAC Delay Optimization  

The global filter transfer function of Fig.4 (dotted line) is 
calculated in (5). dp1, dp2 and dp3, the enumerators of the 
resonators, are second order polynomials (a0s2+a1s+a2).  
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Multiplying b1s at all the expression proves that there exists 
no “s0 “term in the numerator of HFilter. Consequently, 
regarding the form of HFilter, it’s really essential that the 
numerator of G(s) has also no “s0” term. It means that the 
G(s) calculated by (4) is usually, out of form unless the DAC 
delay is correctly settled. However, the DAC delay can be a 
help to solve this issue.  
Fig.5 shows the coefficient value of “s0 “term variation of the 
G(s) numerator versus DAC delay for several central 
frequencies for a sixth order delta-sigma modulator. As it is 
shown, this variation is almost linear versus DAC delay and 
consequently it is possible to calculate a DAC delay for 
which the “s0” term is equal to zero. We proposed an 



optimization method on DAC delay to formulate G(s). In this 
method, a quasi-linear function is calculated to find this DAC 
delay without simulation.  

 
Fig. 5.  s0 term variation versus DAC delay  

C. Synthesis Method  
To realize G(s), we require equating the numerator (NG(s)) 

and the enumerator (EG(s)) of G(s) by the numerator (NFilter) 
and the enumerator (EFilter) of (5), respectively. This condition 
leads to constitute a non-linear system of equations which is 
given by (6). n and m are respectively, the degree of 
numerator and enumerator of G(s).   
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In order to calculate the unknown parameters, we need to 
simultaneously solve the two parts of (6). This system of 
equation should provide a sufficient number of equations for 
calculating all unknown coefficients. Regarding the 
numerator’s order of G(s) and Hfilter, F1 is expressed in (7) in 
order to grant the sufficient number of equations.  
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As a result the vector of unknown parameters will be: [b1, b2, 
b3, g1, g2, g3, g4]. The actual mathematical solver routines 
which are usually the standard algorithm as those available in 
the MATLAB optimization toolbox can be used. Here we 
propose to use the Newton's method to solve the system of 
equations. Newton's method computes the equation and its 
Jacobian matrix for each iteration, in order to find a step by 
solving the system of linear equations. The Jacobian matrix 
of (6) is calculated in (8). This method only works if the 
initial value vector [b10, b20, b30, g10, g20, g30, g40] is close 
enough to the true zero. Consequently it is important to study 
the Jacobian matrix of the non-linear equation to find the best 
start point.  
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The calculation results of (6) shows that for the central 
frequency between 0.2fs and 0.3fs the value of g4 is almost 
equal to zero; so it can be neglected to simplify the realizing 

and F1 can be replaced by g3 with no effect on performance. 
Table.1 shows the value of g4 for several frequencies.  

 
Central frequency  0.21fs 0.24fs 0.27fs 0.3fs 
g4 value  0.02 0.032 0.058 0.082 
D. Stability Analysis  

CT topologies are sensitive to analog parameters. Large 
mismatches in analog parameters may lead to performance 
degradation or even instability. We propose to analyze 
stability using the modulus margin. Modulus margin is a 
number which can be a comprehensible reference to compare 
different circuits’ stability and sensitivity. Therefore, the 
modulus margin should be as large as possible. 
 

 

 

 

 

 

Fig. 6.  Modulus ( ZΔ ), gain ( KΔ ) and phase ( ϕΔ ) margins for a loop 
frequency characteristics 

Modulus, gain and phase margin indicators correspond to 
different geometrical terms, characterizing the distance 
between the Nyquist plot of the open-loop and the critical 
point [ ]0,1 j− . As it is shown in Fig. 6, the modulus margin 
( zΔ ) is defined as the radius of the circle centered in 
[ ]0,1 j− and tangent to the Nyquist plot of the filter [7].  
The definition of the vector connecting the critical point, with 
the Nyquist plot, results in: 
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LFT is the Loop Filter Transfer function of the system. In 
another word the modulus margin is equal to the inverse of 
the modulus of the sensitivity function )( ωjs . So modulus 
margin covers the gain and phase margins information. It is 
preferable to be as little sensitive as possible to analog 
parameters. This margin is substantial and is counted as one 
of the most important parameters in the design of CT 
modulators.  

This design procedure is illustrated in the following 
chapter through the following example.   

IV. DESIGN EXAMPLE AND SIMULATION RESULTS   

Let us consider a sixth order delta-sigma modulator working 
at a central frequency equal to 0.22fs. The OSR is equal to 64 
and the Q-factor is chosen equal to the realistic value of 900. 

fc=0.23

fc=0.21

fc=0.25 

fc=0.27

 
fc=0.29 

DAC delay 

s0 term 
value  

axesIm

axesRe

KΔ
1

ϕΔEω

Cω

ZΔ

1−
1

Table1. g4 variation versus central frequency 

Loop frequency characteristics



The DAC delay value, for which the coefficient of “s0” is 
equal to zero, is calculated out of the optimization method on 
DAC delay and is approximately equal to 1.71Ts; where Ts is 
the sampling period. So, through (4) the global filter transfer 
function can be calculated as follow  

6.9735 +0.016818s +10.953s +0.017608s +5.733s +0.0046077s +s
1.4711s -1.4711s -6.6006s -0.76101s -1.6837s-)( 23456

2345
=sG

  
Afterwards using the system of non-linear equations (6), the 
unknown parameters of Fig.4 has been found.  
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This procedure can be applied easily to design the delta-
sigma modulator for different central frequencies.  
Fig.7 shows the Noise Transfer Function (NTF) of the 
topology of Fig.4 for three central frequencies. (fc= 0.22fs , 
fc=0.25fs , fc=0.28fs). The DAC delay value is respectively 
equal to 1.71 Ts, 1.43 Ts and 1.2 Ts and it should be noted that 
g4 is neglected all over the simulations.  
 

 
 
 
Fig. 7.  Noise Transfer Function for three central frequencies (fc). (a): fc=0.22 
(b): fc = 0.25  (c) : fc=0.28  

 In order to analyze the stability through the modulus margin, 
first, the loop filter transfer function (LFT) should be 
calculated. However, due to the sample and hold function at 
the ADC input, the global transfer function of the modulator 
cannot be expressed in continuous-time.  

 

Fig. 8.  (a): CT topology   (b): DT counterpart of (a), the sampler is out of the 
loop.  

The proposed solution in this paper uses a transformation of 
CT modulator to its DT equivalent (Fig.8). Afterward the 
modulus margin can be calculated through (9) and FG(Z). 

With the intention of benchmarking the design, the result of 
stability analysis (Fig. 9) is compared with that of a 
Schereier’s modulator topology [1].  

 

Fig. 9.  Modulus margin for the proposed topology and the Schreier’s 
topology  

The results show that the performance of this modulator 
matches perfectly that of a 6th order delta-sigma modulator in 
spite of the approximation due to removing g4. It should be 
mentioned that this structure can easily be extended to orders 
higher than three, by creating three gain stages for each added 
resonator.  

V. CONCLUSION 

In this paper, a new topology and method to synthesize 
the band-pass continuous-time delta-sigma modulators using 
the LWR was briefly presented. Employing LWR resonators 
is a help to avoid performance degradation due to the low Q-
factor of the LC or Gm-C resonators. LWR has the advantage 
of high Q-factor, wide resonant frequency range and accurate 
resonant frequency. With the proposed anti-resonance 
cancellation method, it seems to be the prefect candidate for 
delta-sigma modulator’s resonator. Another advantage of this 
method is the facility of calculations and implementation of 
the topology due to lower number of components comparing 
with the other topologies.  Finally a stability study, based on 
modulus margin is presented which alleviates the comparison 
of stability and sensitivity of different topologies.  
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