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Lattice algorithm for adaptive stable identification
and robust reconstruction of non stationary AR

processes with missing observations
Rawad Zgheib, Gilles Fleury, and Elisabeth Lahalle

Abstract—This paper deals with the problem of adaptive recon-
struction and identification of non stationary AR processes with
randomly missing observations. Existent methods use a direct
realization of the filter. Therefore, the estimated parameters may
not correspond to a stable all-pole filter. In addition, when the
probability of missing a sample is high, existent methods may
converge slowly or even fail to converge. We propose, at our
knowledge, the first algorithm based on the lattice structure
for online processing of signals with missing samples. It is
an extension of the RLSL algorithm to the case of missing
observations, using a Kalman filter for the prediction of missing
samples. The estimated parameters guarantee the stability of
the corresponding all-pole filter. In addition it is robust to high
probabilities of missing a sample. It offers a fast parameter
tracking even for high probabilities of missing a sample. It
is compared to the Kalman pseudo linear RLS algorithm, an
already proposed algorithm using a direct realization of the
filter. The proposed algorithm shows better performance in
reconstruction of audio signals.

Index Terms—missing observations, lattice, identification, re-
construction, stability, robustness

I. I NTRODUCTION

I N many practical situations, periodically sampled signals
with missing observations may be encountered. This is the

case, for example, of errors in transmission, or of temporary
unavailability of measurement. It is also the case, in coding
of audio signals or images, for compression purposes.

In many applications, such as digital communications or
systems tracking, on line processing is necessary. We are
interested here in on line reconstruction and identification of
signals that can be modeled by an AR process with randomly
missing observations. The loss of samples process follows a
Bernoulli law independent of the signal.

Several methods, such as in [1], [2], [8], [12], [16], [18],
have already been developed for on line processing of AR
signals with missing data. They use at each time only the
past available data. In [2], Bondon proposed an expression
of the optimal predictor in the least mean square sense of
AR processes with incomplete past. The predictor is adaptive,
however, it is not recursive. In [1], the problem of recursive es-
timation of the output in missing-data situations is addressed.
In [8], Isaksson derives a recursive EM algorithm for the
identification in missing data situations. It is based on the
off line version described in [7]. However, at each time, the
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inversion of a matrix is required to update the parameters.
Therefore, it suffers from a high computational complexity. In
[12], an LMS-like algorithm for simultaneous reconstruction
and identification is developed. In [16], the pseudo-linear
RLS algorithm, an adaptation of the RLS algorithm to the
case of signals with missing data, is derived. However these
two algorithms converge toward biased estimation of the
parameters. In [18], we proposed an alternative to the LMS-
like algorithm based on the incomplete past predictor [2]. It
offers simultaneous optimal identification and reconstruction.
However, this algorithm is quite time consuming. Recently
[19], we proposed to use a Kalman filter for the prediction
with the pseudo linear RLS algorithm. This algorithm is fast.
In addition, it offers optimal reconstruction and identification
in the least mean square sense.

All previously presented methods consider a direct realiza-
tion of the linear infinite-impulse response (IIR) filter. Thus the
estimated parameters may not correspond to a stable all-pole
filter unless the poles of the filter are at each time constrained
to be inside the unit circle (ex: Schur-Cohn factorization...).
This might be quite time consuming. In addition, when the
probability of missing a sample is large, existent methods
may converge slowly or even fail to converge. Therefore we
propose to identify the signal using the lattice structure of
the filter. A lattice structure is characterized by the reflection
coefficientski. The reflection coefficients estimated from data
using methods such as proposed in [4], [13] guarantee the
stability of the corresponding AR filter. The values of the
AR parameters are uniquely determined by the reflection
coefficients through the Durbin-Levinson algorithm [5], [11].

Many adaptive algorithms for the identification of lattice
filters, such as the recursive least squares (RLSL) algorithms,
have already been proposed [6], [10]. In [6], Friedlander
presents a tutorial review of lattice structures and their use
for adaptive prediction of time series. In [14], Makhoulet
al. present a general method for adaptive updating of lattice
coefficients in the linear predictive analysis of non stationary
signals. The absolute value of the estimated reflection coeffi-
cients is always less than one thus guaranteeing the stability of
the corresponding all-pole filter. In addition, it is simpleand is
adapted to non stationary signals. We are interested here inthe
extension of this method to the identification of signals with
missing observations using a Kalman filter for the prediction
of missing samples. At our knowledge, it is the first algorithm
that permits on line processing of signals with missing samples
using a lattice structure of the filter. The parameters thus
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estimated guarantee the stability of the corresponding all-pole
filter. In addition, the proposed algorithm is robust to large
probabilities of losing a sample.

In the following, we begin by some basics about the lattice
structure of the filter. A RLSL algorithm for adaptive stable
identification of non stationary processes is presented. Itis
based on the reflection coefficients calculated in [14]. In
section 3, the Kalman filter presented in [19] for the prediction
of an AR process subject to missing samples is described.
In section 4, an extension of the RLSL algorithm to the
identification of signals with missing samples is presented. It
uses for the prediction the Kalman filter presented in section
3. Finally, examples illustrate the performances of the new
algorithm. It is compared to the Kalman pseudo-linear RLS
algorithm [19]. Both algorithms are applied to the identifica-
tion and reconstruction of non stationary AR processes and
to the reconstruction of audio signals with random missing
samples.

II. A DAPTIVE IDENTIFICATION OF LATTICE FILTERS

A. Lattice structure

It is preferred to identify a signal using a lattice structure
of the filter because the stability and the robustness of the
identified filter are thus guaranteed.
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Fig. 1. Basic all-zero lattice filter.

The lattice structure is directly induced from the Levinson
recursions [11]. Letxn be the input signal,{a(L)

i } the optimal
forward AR(L) predictor coefficients,{a−(L)

i } the optimal
backward predictor AR(L) coefficients. For an AR(L) process,
the backward predictor coefficients are the same as the forward
predictor ones but their order is reversed, e.g.a−

(L)
i = a

(L)
L−i.

At time n, for the predictor of orderL, the forward prediction
error is f

(L)
n = xn −

∑L

i=1 a
(L)
i xn−i, and the backward

prediction error isb(L)
n = xn−L −

∑L

i=1 a
(L)
i xn−L+i. From

Fig. 1, at a stagel corresponding to the predictor of orderl,
the following recursions hold:

f (0)
n = b(0)

n = xn, (1a)

f (l)
n = f (l−1)

n − k(l)
n b

(l−1)
n−1 , (1b)

b(l)
n = b

(l−1)
n−1 − k(l)

n f (l−1)
n . (1c)

wherek
(l)
n is the reflection coefficient at stagel and timen.

For anLth predictor,0 ≤ l ≤ L, wherek
(0)
n = 1. The Lth

predictor coefficients at timen, {a(L)
i,n }, are uniquely computed

from the reflection coefficients using the following recursions:

• For l = 0 to L

a
(l)
l,n = k(l)

n , (2)

– For i = 1 to l − 1

a
(l)
i,n = a

(l−1)
i,n + k(l)

n a
(l−1)
l−i,n (3)

– end
• end.

A lattice structure corresponds to a stable filter if all the
reflection coefficients for1 ≤ l ≤ L verify:

|k(l)
n | < 1, 1 ≤ l ≤ L (4)

In addition to the advantages given above, the lattice has
an important orthogonalization property: the ’decoupling’ of
consecutive stages of the lattice. Therefore, theLth order least
squares lattice prediction filter contains in it predictionfilters
of all lower orders. More precisely, the firstl sections of the
Lth order lattice predictor (Fig. 1) form thelth order prediction
filter. Due to this property, the global minimization at the
lattice output is replaced by a sequence of local minimization
problems, one at each stage of the lattice.

Many methods exist for the calculation of the reflection
coefficients. They consider the minimization of the mean
quadratic forward prediction error, the mean quadratic back-
ward prediction error or a function of both errors. The
minimization of the mean quadratic forward and backward
prediction errors, called method forward and method back-
ward respectively [13], leads to two reflection coefficients.
In the stationary scalar case, both coefficients are equal. The
main drawback of these methods is that the stability of the
corresponding filter is not guaranteed. Itakura and Saito [9],
proposed to calculate the reflection coefficients as the geo-
metric mean of the coefficients obtained with the forward and
backward methods. The reflection coefficient thus calculated
verifies (4). Burg [4], proposed to calculate the reflection coef-
ficient as the harmonic mean of the coefficients obtained with
the forward and backward methods. The coefficient calculated
by Burg guarantees the stability of the corresponding all-pole
filter. Moreover, the coefficient thus calculated corresponds
to the minimization of the sum of the quadratic forward and
backward prediction errors [13]. Since we are interested inon
line identification, we introduce in the following the recursive
least square lattice algorithms.

B. RLSL algorithm

The RLSL algorithms are recursive both in time and order.
They are numerically efficient requiring onlyO(L) operations
per time update, compared toO(L2) for the RLS algorithm
using a direct realization of the filter. Besides the advantages of
lattice structures, they exhibit excellent convergence behavior
and fast parameter tracking capability. Therefore, they are
adapted to the identification of non stationary processes [6],
[10].

In [10], a geometrical approach is used to establish the
time update recursions of the RLSL estimation algorithms. A
square root normalized least squares lattice form algorithm
is presented. The unnormalized RLSL algorithm [6], [10]
minimizes simultaneously both the mean quadratic forward
prediction error and backward prediction error. This algorithm
leads to two reflection coefficients that does not guarantee the
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stability of the corresponding filter. In the normalized form,
all the variables are normalized to unit variance. A normalized
lattice structure of the filter enjoys some advantages such
as the stability of the identified model. Only one reflection
coefficient is estimated for each stagel at each timen and it
verifies (4).

In [14], Makhoul et al. proposed a general method for
adaptive updating of reflection coefficients for each stagel

and at each timen in the linear predictive analysis of non
stationary signals. They determine the reflection coefficients
by minimizing the weighted sum of the quadratic forward and
backward prediction errors. To calculatek(l)

n , they proposed
to minimize:

E(l)
n =

n
∑

i=1

wn−i

(

f (l)2
n + b(l)2

n

)

. (5)

wherewn−i is the weighting sequence. Since in a time varying
situation, we are mainly interested in the most recent ”history”
of the signal, it is convenient to weight the errors with an
exponential forgetting factor, e.g.wn−i = λn−i for 0 < λ ≤ 1.

Substituting (1) in (5) and minimizing with respect tok(l)
n

leads to:

k(l)
n = −

2
∑n

i=1 λn−if
(l−1)
n b

(l−1)
n−1

∑n

i=1 λn−i

[

f
(l)2
n + b

(l)2
n

] = −
C

(l)
n

D
(l)
n

. (6)

wheref
(l)
n and b

(l)
n are the forward and backward prediction

errors for the stagel at timen. The reflection coefficient given
by equation (6) is always guaranteed to verify the stability
condition given by equation (4) [15]. It must be noted here that
for λ = 1, the coefficient thus calculated is equal to Burg’s
coefficient [4]. This method is then an adaptation of Burg’s
method to the adaptive non stationary case. Makhoulet al.
[14], [15] proposed an adaptive estimation ofk

(l)
n through

the recursive computation on time ofC(l)
n and D

(l)
n . An

unnormalized RLSL algorithm is thus obtained by combining
the adaptive estimation on time ofk(l)

n and the recursive
equations on order (1). The recursive equations, at timen,
of the RLSL algorithm based on the reflection coefficient
calculated in [14] are:

• Initialize for l = 0

f (0)
n = b(0)

n = xn, (7a)

k(0)
n = 1, (7b)

• For l = 1 to min(L, n)

C(l)
n = λC

(l)
n−1 + 2f (l−1)

n b
(l−1)
n−1 , (8a)

D(l)
n = λD

(l)
n−1 + f (l−1)2

n + b
(l−1)2
n−1 , (8b)

k(l)
n = −

C
(l)
n

D
(l)
n

, (8c)

f (l)
n = f (l−1)

n − k(l)
n b

(l−1)
n−1 , (8d)

b(l)
n = b

(l−1)
n−1 − k(l)

n f (l−1)
n , (8e)

• end.
whereL is the filter order and1 ≤ n ≤ N , N being the length
of the signal. At each timen, a recursion of orderL is required

for the update of the different reflection coefficients knowing
all the prediction errors up to timen−1 and the current signal
value. This algorithm exhibits similar performance as the
normalized RLSL algorithm [10] and is less computationally
expensive. We propose then to extend it to the identification
of signals with missing samples, combined with the Kalman
filter presented in [19] for the prediction.

III. PREDICTION USINGKALMAN FILTER

In this section the Kalman filter used for the prediction of
AR processes subject to missing samples is described.

A. State space representation.

Let {xn} be an AR process of orderL with parameters
(a

(L)
i )1≤i≤L. It satisfies the following difference equation:

xn = a
(L)
1 xn−1 + . . . + a

(L)
L xn−L + ǫn. (9)

Where {ǫn} is the innovation process, a white noise of
varianceσ2

ǫ . The loss process is modeled by an i.i.d binary
variable{cn}, cn = 1 if xn is available, otherwisecn = 0.
The probability to measurexn is P{cn = 1} = 1− q. Let the
observation process{yn} be defined as:

yn = cnxn =

{

xn if xn is available,
0 otherwise,

(10)

Thus,yn can be regarded as the measurement ofxn subject
to missing data.

The AR process{xn} with missing observations admits the
following state space representation [19]:

{

xn+1 = A xn + ǫn [1 0 . . . 0]
⊤

yn+1 = c
⊤
n+1 xn+1

(11)

whereA =











a
(L)
1 . . . . . . a

(L)
L

1 0 0
. . .

...
0 1 0











is a LxL matrix and

xn =







xn

...
xn−L+1






, cn =











cn

0
...
0











areL-vectors.

The sample to predict is at each time the first element of
the statexn+1.

B. Kalman filter.

The predicted and filtered estimates of the state are denoted
respectivelyx̂n+1|n andx̂n+1|n+1. The corresponding estima-
tion errors covariance matrices are noted respectivelyPn+1|n

andPn+1|n+1. Kn+1 is the Kalman filter gain.
The Kalman filter equations are described in many books

such as [3]. In our case, there is no disturbance in the
observation. So, the Kalman filter equations reduce to:

Pn+1|n = APn|nA⊤ + Rǫ, (12)
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where,Rǫ = σ2
ǫ [1 0 . . . 0]

⊤
[1 0 . . . 0].

Kn+1 =

{

Pn+1|ncn+1

c
⊤
n+1

Pn+1|ncn+1
if xn+1 is available

0 otherwise,
(13)

Pn+1|n+1 = (Id − Kn+1c
⊤
n+1)Pn+1|n, (14)

x̂n+1|n+1 = x̂n+1|n + Kn+1(yn+1 − ŷn+1|n), (15)

where,
x̂n+1|n = Ax̂n|n, (16)

and
ŷn+1|n = c

⊤
n+1x̂n+1|n. (17)

Due to the state space representation chosen, the previous
Kalman filter can be simplified. Indeed, if, at timen+1, xn+1

is available, i.e.,cn+1 = 1, the termPn+1|ncn+1 is equal to
the first column ofPn+1|n and(c⊤n+1Pn+1|ncn+1) is a scalar
equal to the first term of the matrixPn+1|n. Consequently the
Kalman gainKn+1 is calculated by dividing each element of
the first column ofPn+1|n by the first element ofPn+1|n. This
requiresL multiplications instead of2L(L+1) multiplications
as in the general case of a Kalman filter. In addition, we deduce
that the first element ofKn+1, Kn+1(1), is always equal to1 if
the data is available. Recalling the filter’s equation system (15),
the first equation of it gives that when a sample is available:

x̂n+1|n+1 = x̂n+1|n + Kn+1(1)
(

yn+1 − ŷn+1|n

)

= yn+1 = xn+1.

An observed sample is thus unchanged by the Kalman filter.
Otherwise, ifxn+1 is missing, i.e.,cn+1 = 0, the predicted
statex̂n+1|n is not filtered,x̂n+1|n+1 = x̂n+1|n. It must be
noted here that if the samplexn+1 is missing, its estimation
updated during the nextL − 1 steps, is different from its
prediction provided by the Kalman filter at timen + 1, i.e.
x̂n+1|n+t 6= x̂n+1|n+1 for 1 ≤ t ≤ L − 1. Indeed, the state is
constituted of the lastL samples or their predictions if they
are missing. When a sample is available, the state is filtered
through the equation (15). As a result, some terms are added to
the predictions of the missing samples contained in the state.
Hence, the prediction of a missing sample, updated during the
L − 1 next steps, is formulated as :

x̂n+1|n+t = x̂n+1|n +

t
∑

i=1

Kn+i(i)
(

yn+i − ŷn+i|n+i−1

)

.

(18)
where 1 ≤ t ≤ L − 1. In real time applications,{zn}, the
reconstruction of the process{xn} subject to missing data, is
defined as:

zn+1 = x̂n+1|n+1 =

{

xn+1 if xn+1 is available,
x̂n+1|n otherwise,

(19)

IV. COMBINED RLSL ALGORITHM AND KALMAN FILTER

In this section, a new algorithm for online identification and
reconstruction of non stationary processes subject to missing
observations using the lattice structure of the filter is described.
It is an extension of the RLSL algorithm given by equations

(7) to the identification of signals with missing samples,
combined with the Kalman filter mentioned in section III-B for
the prediction of missing samples. The model thus identified
guarantees at each time the stability of the corresponding filter.

Referring to equations (8a), (8b) and (8c) and to equations
(1), the update of the reflection coefficients and the compu-
tation of the prediction errors uses the backward prediction
errors calculated at the previous time. We deduce recursively
that in order to calculate the reflection coefficients at time
n, all the lattice filter variables must have been calculated
at all previous times. However, the recursive equations on
order (1) used for the computation of the prediction errors,are
initialized at each time using the value of the signal (equation
(1a)). When a sample is missing, an optimal estimation in
the least mean square sense of the prediction errors is then
required, since these values are used at the next time.

Thus the cost function minimized by the proposed algorithm
is an estimation of the one in equation (5). It is given at time
n by:

Ĵ (l)
n =

n
∑

i=1

wn−i

(

f̂ (l)2
n + b̂(l)2

n

)

. (20)

where f̂
(l)
n and b̂

(l)
n are the estimates off (l)

n and b
(l)
n respec-

tively.

A. Optimal estimation of the prediction errors

The forward and backward prediction errors are defined as:

f (0)
n = b(0)

n = xn, (21a)

f (l)
n = xn −

l
∑

i=1

a
(l)
i,nxn−i, (21b)

b(l)
n = xn−l −

l
∑

i=1

a
(l)
i,nxn−l+i, (21c)

Using the missing observations theorem [17], the optimal
estimation of the prediction errors in the least mean square
sense are given by the following equations:

f̂ (0)
n = b̂(0)

n = x̂n|n, (22a)

f̂ (l)
n = x̂n|n −

l
∑

i=1

a
(l)
i,nx̂n−i|n, (22b)

b̂(l)
n = x̂n−l|n −

l
∑

i=1

a
(l)
i,nx̂n−l+i|n, (22c)

where, x̂n−i|n is the optimal prediction in the least mean
square sense ofxn−i knowing only the available samples until
time n. The equations giving the optimal estimation of the
prediction errors are analog to the definition equations (21).
The difference is that the prediction errors and the values of
the signal are replaced by their estimations. Hence, in the case
of missing observations, the recursive equations of the RLSL
algorithm at a timen become:

• Initialize for l = 0

f̂ (0)
n = b̂(0)

n = x̂n|n, (23a)

k̂(0)
n = 1, (23b)
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• For l = 1 to min(L, n)

C(l)
n = λC

(l)
n−1 + 2f̂ (l−1)

n b̂
(l−1)
n−1 , (24a)

D(l)
n = λD

(l)
n−1 + f̂ (l−1)2

n + b̂
(l−1)2
n−1 , (24b)

k̂(l)
n = −

C
(l)
n

D
(l)
n

, (24c)

f̂ (l)
n = f̂ (l−1)

n − k̂(l)
n b̂

(l−1)
n−1 , (24d)

b̂(l)
n = b̂

(l−1)
n−1 − k̂(l)

n f̂ (l−1)
n , (24e)

• end.

We propose to use the Kalman filter presented in section
III-B for an optimal prediction of the signal. The Kalman filter
uses the estimated parameters of the filter direct realization.
Since we identify the signal in the lattice filter form, therefore,
at each time, a transformation of the reflection coefficientsto
the AR parameters through equations (2) is required.

Recall here that some terms are added to the prediction of
a missing sample thanks to the Kalman filtering of the state
when a sample is available during theL − 1 following time
instants. Hence an optimal prediction of a missing sample
at time n, x̂n|n, is updated during theL − 1 subsequent
steps if some samples are available. In real time applications,
the updated estimate of a missing sample,x̂n|n+t, is used
only for the prediction of subsequent samples. The signal is
reconstructed using its prediction provided by the Kalman
filter at time n, x̂n|n. On the other hand, the forward and
backward prediction errors estimated using the predictionof
a missing sample, are used in the subsequent time step.
Therefore, as for the prediction of the sample, their value
must also be updated in the subsequent step. In order to avoid
computing their values many times, we propose the following:

If at time n a sample is missing, it is predicted using the
Kalman filter. However the prediction errors and the reflection
coefficient are not computed until the prediction of the sample
is updated, i.e. until a new sample is available. When a sample
is available at timen + t, the state is updated thanks to the
Kalman filter. It is now convenient to calculate all the lattice
variables corresponding to the missing samples between the
last available sample, at timen−h and the current timen+ t.

It must be noted here that if the time step between two
available samples is greater thanL (t − h + 1 > L), only the
predictions of the lastL−1 missing samples (those contained
within the state) are updated. The predictions of the preceding
missing samples (from timesn − h + 1 till time n + t − L)
are not updated. However, the lattice filter variables are not
yet calculated at these times. But, in order to calculate the
reflection coefficient at timen + t, all lattice filter variables
must have been calculated for all previous times. Therefore,
it is required to calculate the lattice filter variables fromtime
n−h+1 till time n+t−L even if there are no new information.

B. Proposed algorithm

The proposed algorithm can be summarised as follows. At
time n+1, the first line of the matrixA is replaced bŷa(L)⊤

n ,
the vector of the parameters estimated at timen. The matrix

is then namedAn+1.

An+1 =











â
(L)
1,n . . . . . . â

(L)
L,n

1 0 0
.. .

...
0 1 0











,

Pn+1|n = An+1Pn|nA⊤
n+1 + Rǫ,

x̂n+1|n = An+1x̂n|n

ŷn+1|n = cn+1x̂n+1|n

(25)

a) If xn+1 is available, i.e.cn+1 = 1:

Kn+1 = Pn+1|ncn+1(c
⊤
n+1Pn+1|ncn+1)

−1, (26a)

Pn+1|n+1 = (Id − Kn+1c
⊤
n+1)Pn+1|n, (26b)

x̂n+1|n+1 = x̂n+1|n + Kn+1(yn+1 − ŷn+1|n) (26c)

The predictions of the previous missing data up to time
n − L + 1 are updated thanks to the filtering of the state
in equation (26c). It is convenient now to calculate all the
variables of the lattice filter since the last available observation
at timen−h, whereh ≥ 0 depends on the observation pattern.
At each timet, for n − h + 1 ≤ t ≤ n + 1, the recursive
equations of the RLSL algorithm given by (28) are applied to
estimate the different reflection coefficientsk̂

(l)
t and prediction

errors f̂
(l)
t , b̂

(l)
t for 1 ≤ l ≤ L. The values of the forward and

backward prediction errors are initialized using the updated
estimates of the missing samples (those contained within the
filtered statex̂n+1|n+1), i.e. f̂

(0)
t = b̂

(0)
t = x̂t|n+1.

Hence,

• For t = n − h + 1 to n + 1

– Initialize for l = 0

f̂
(0)
t = b̂

(0)
t = x̂t|n+1, (27a)

k̂
(0)
t = 1, (27b)

– For l = 1 to min(L, n)

C
(l)
t = λC

(l)
t−1 + 2f̂ (l−1)t b̂

(l−1)
t−1 , (28a)

D
(l)
t = λD

(l)
t−1 + f̂

(l−1)2
t + b̂

(l−1)2
t−1 , (28b)

k̂
(l)
t = −

C
(l)
t

D
(l)
t

, (28c)

f̂
(l)
t = f̂

(l−1)
t − k̂

(l)
t b̂

(l−1)
t−1 , (28d)

b̂
(l)
t = b̂

(l−1)
t−1 − k̂

(l)
t f̂

(l−1)
t , (28e)

– end

• end.

The AR parameters at timen + 1, (â
(L)
i,n+1)1≤i≤L, are

deduced from the reflection coefficients(k̂(l)
n+1)1≤i≤L using

the Durbin Levinson recursions (equations (2)).
b) However ifxn+1 is absent,cn+1 = 0: the predicted

state, x̂n+1|n, is not filtered by the Kalman filter, and the
parameters are not updated since the reflection coefficients
(k̂

(l)
n+1)1≤l≤L are not yet calculated,
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Kn+1 = 0, (29a)

Pn+1|n+1 = Pn+1|n, (29b)

x̂n+1|n+1 = x̂n+1|n, (29c)

â
(L)
n+1 = â

(L)
n . (29d)

A flowchart describing the algorithm is presented in appen-
dices A and B.

The cost function minimized by the Kalman pseudo-linear
RLS algorithm [19] is the weighted mean of available samples
prediction errors. Thus, the parameters are not updated by the
pseudo-linear RLS algorithm if a data is missing. Indeed, the
update of the parameters using RLS algorithms is proportional
to the prediction error that cannot be calculated when a sample
is missing. However, the cost function minimized by the
proposed algorithm is the weighted mean of all quadratic pre-
diction errors. When a sample is missing, the prediction error
can not be calculated, it is replaced by its estimation. Indeed,
recall that in order to update the reflection coefficients at atime
n, the lattice filter variables must have been calculated at all
previous times. Therefore, using the proposed algorithm, the
lattice filter variables are estimated at all times even whena
sample is missing. This suggests that its speed of convergence
does not depend on the probability of losing samples. Indeed
simulations show that it presents an excellent convergence
behavior and have fast parameter tracking capability even for
a large probability of missing a sample.

The computational complexity of both algorithms has been
calculated. Since they both use the same Kalman filter for
the reconstruction, their computational complexity differ by
the identification algorithm used. For both algorithms, the
computational complexity is found to beO((1 − q)NL2),
whereq is the bernoulli’s probability of losing a sample,N

is the size of the signal andL the order of the AR model.
Simulation of both algorithms implemented on Matlab showed
close computation times. For an AR model of small order, the
proposed algorithm is faster than the Kalman pseudo-linear
RLS algorithm. However, it is slightly slower for high order
models such as for speech signals.

V. SIMULATIONS

In this section, the proposed algorithm and the Kalman
pseudo-linear RLS algorithm [19] are compared through three
experiments. The test signal used in the first experiment is a
non stationary AR process of order 2, with a high probability
of missing samples. In the second experiment, both algorithms
are applied to the reconstruction of a speech signal for different
probabilities of missing samples. The test signal used in
the third experiment is a music played on piano. For both
experiments, their performance are compared in terms of the
SNR given by:

(SNR) = 10log10

(

∑N

i=1 x2
i

∑N

i=1(xi − zi)2

)

. (30)

A. Experiment 1

The test signal used is a non stationary AR(2) process
generated over15.103 samples. The parameters of the signal
are [1.5,−1] for the first 5.103 samples,[−0.5,−1] for the
next 5.103 samples and[0.5,−1] for the last samples. The
Bernoulli’s probability of sample loss isq = 0.7. The forget-
ting factor used isλ = 0.99.

0 2000 4000 6000 8000 10000 12000 14000
−0.5

0

0.5

1

1.5

Samples

a1

 

 
Kalman pseudo linear RLS
Proposed algorithm
Original parameters

Fig. 2. Estimation ofa1 for the experiment 1.

Figure 2 shows the estimation of parametera1 with both
algorithms. It shows that the proposed algorithm converges
faster than the other one even for a large probability of
missing a sample. Smaller values of the forgetting factor offer
a faster convergence at the expense of a higher variance in
the parameters estimation. For a high probability of losing
samples, the variance can become arbitrarily large and may
lead to a divergence using the Kalman pseudo-linear RLS
algorithm. Simulations show that the speed of convergence of
the Kalman pseudo-linear RLS algorithm depend highly on the
observation pattern and on the probability of missing samples.
Indeed this experiment was repeated for 100 regenerations of
the observation pattern. The SNR obtained using the proposed
algorithm is only one time less than 10 dB, however it is 36
times using the Kalman pseudo-linear RLS algorithm. This is
due to a slow convergence or even to a divergence. Indeed,
the Kalman pseudo-linear RLS failed to converge three times.

Moreover, the figure 2 seems to show that the proposed
algorithm converges toward unbiased estimation of the pa-
rameters. However, due to the minimization of the prediction
errors when samples are missing, the identification using
this algorithm is biased. The bias decreases to zero as the
parametera2 comes close to -1. Such signals correspond to
resonant filters.

These characteristics suggest that the proposed algorithm
might have good performance for speech signals reconstruc-
tion.

B. Experiment 2

The test signal used is the English sentence ‘Mary had a
little lamb, its fleece was white as snow’ sampled atFs = 8
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kHz. This signal is reconstructed using both algorithms for
different probabilities of missing a sample. For each probabil-
ity, the observation pattern is simulated 1000 times. For each
algorithm, the mean value and the variance of the SNR are
calculated over the different simulations of the observation
pattern for each probability of missing a sample. For both
algorithms, the forgetting factor used isλ = 0.99. This value
is empirical. Simulations show that both algorithms offer good
performance in terms of reconstruction for this value ofλ. The
speech signal is modeled by an AR process of order 12.
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Fig. 3. Average SNR in terms of the probability of missing a sample for
experiment 2
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Fig. 4. Standard deviation of the SNR in terms of the probability of missing
a sample for experiment 2

Figures 3 and 4 show respectively the mean value and the
standard deviation of the SNR for both algorithms in terms of
the Bernoulli’s probability of missing a sample.

Figure 3 shows that on average the proposed algorithm
offers better performance than the other one in terms of
reconstruction error and particularly for high probabilities
of missing a sample. The average SNR obtained using the
proposed algorithm decreases linearly with the probability of

sample loss. However, it decreases exponentially using the
Kalman pseudo linear RLS algorithm. Indeed, when 60% of
samples are missing, the SNR obtained using the proposed
algorithm is of 3 dB larger than the one obtained using
the other algorithm. When 85% of the samples are missing,
this difference is of 9 dB. It must be noted here that the
reconstructed signal obtained using the proposed algorithm
is still understandable even when 85% of the samples are
missing.

Moreover, referring to figure 4, the standard deviation of the
SNR obtained with the proposed algorithm is small comparing
to the one obtained using the other algorithm. In addition, it
is almost constant for any probability of missing a sample.
This shows that the proposed algorithm is robust to a large
probability of missing a sample and to the observation pattern.
However, the standard deviation of the Kalman pseudo-linear
RLS algorithm increases exponentially with the probability of
missing samples. The Kalman pseudo-linear RLS algorithm
is then highly dependent on the observation pattern for high
probabilities of missing a sample. Indeed, for a speech signal,
the AR parameters are stationary for a small period of time,
therefore when a large number of samples are missing, the
Kalman pseudo linear RLS algorithm may fail to track the
variations of the parameters.

C. Experiment 3

In this experiment, the test signal used is a musical signal.
It is the toccata in C min of J. Bach played on piano
by Glen Gould. In musical signals, the sounds are always
voiced, corresponding to resonant filters. This suggests that
it must have also a good performance for musical signals
reconstruction. The same experiment as in experiment 2 is
repeated for the musical signal.

Table 1 illustrates the mean value and the standard deviation
of the SNR for a samples loss of 60%, 70%, 80% and 90%.
M1 and M2 are the mean values of the SNR obtained using
the proposed algorithm and the other one respectively.S1 and
S2 are the corresponding standard deviations.

TABLE I
COMPARISON OF BOTH ALGORITHMS FOR EXPERIMENT3

M1 andS1 are the mean value and the standard deviation of the SNR obtained
using the proposed algorithm,M2 andS2 are obtained using the other one.

q 0.6 0.7 0.8 0.9
M1 ± S1 (dB) 20 ± 0.16 15 ± 0.14 10.27± 0.11 5.4 ± 0.35
M2 ± S2 (dB) 16 ± 0.41 11 ± 2.46 -0.18± 12.36 -38 ± 31.8

Referring to table I, the proposed algorithm shows, as ex-
pected, good performance in reconstruction of musical signals.
As for the previous experiment, the average SNR obtained
using the proposed algorithm decreases linearly with the
probability of sample loss. However, it decreases exponentially
using the Kalman pseudo linear RLS algorithm.

Listening tests have revealed that the prediction errors, using
the proposed algorithm, are practically inaudible for thistest
and for many other signals. However, for high probabilitiesof
missing samples, the errors of reconstruction using the Kalman
pseudo linear RLS algorithm are pulse shaped and the voice is
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sometimes deformed. This is usually the case when the model
parameters are changed.
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Fig. 5. Reconstruction of the signal using both algorithms for experiment 3
at the beginning of a new note.

Figure 5 shows the reconstruction of the signal using both
algorithms at the beginning of a musical note. The beginning
of a new musical note corresponds to a jump in the AR
parameters. For a high probability of missing samples, the
Kalman pseudo linear RLS algorithm fails to adapt quickly to
the jump in the estimation of the parameters. This may result
in a transient instability leading to transient strong oscillations
in the reconstructed signal as shown in figure 5. However, the
proposed algorithm presents a fast and stable adaptation tothe
change in the parameters. The signal reconstructed using the
proposed algorithm is close to the original one.

In the case of noisy data, an observation noise must be
considered in the state space representation of the process.
Generally, the observation noise is considered additive and
independent of the process. The Kalman filter equations will
then be modified taking into consideration the observation
noise. This requires some information about the noise, for
example its variance. Since the model thus obtained is not
an AR process, a bias on the estimated parameters may be
introduced. Thus, the identification algorithm must also be
modified to deal with this case.

VI. CONCLUSION

A new algorithm for adaptive stable identification and
robust reconstruction of an AR process subject to missing
observations is proposed. At our knowledge, it is the first
algorithm that permits on line processing of signals subject
to missing observations using a lattice structure of the filter.
It is an extension of the RLSL algorithm to the case of
missing observations combined with a Kalman filter for the
prediction. This algorithm guarantees the stability of themodel
identified. In addition, it is robust to large number of missing
observations, and simulation shows that it offers a fast conver-
gence and parameter tracking for any Bernoulli’s probability
of missing samples. However, this is at the expense of a bias

in the identified model due to the cost function minimized
by the algorithm in the case of missing observations. This
algorithm has been compared to the Kalman pseudo linear
RLS algorithm [19]. The latter uses a direct realization of
the filter, hence the stability of the filter identified is not
guaranteed. In addition, simulation shows that its performance
depends highly on the observation pattern particularly for
high probability of missing samples. Simulation on speech
and musical signals shows the advantage of the proposed
algorithm in terms of reconstruction error and particularly for a
high probability of missing samples. Listening tests approves
the results obtained. Indeed, when 85% of the samples are
missing, a speech signal reconstructed using the proposed
algorithm is still intelligible. The proposed algorithm may be
modified to deal with noisy data, this may be the subject of a
further publication.
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APPENDIX A

 

 

 
 

 

 

n = L+1 
The algorithm starts at time L+1 after 
L samples are already available. 

Yes No 

No 

Yes No 

Read cn 

cn=1 

n ≥ N 

t > n 

Start 

Read the first L samples, 
N the size of the signal 

Read xn 

P = APAT+Rε 

���|��� � ������|��� 
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Initialization (refer to appendix B below) 
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End 
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(refer to appendix B below) RLSL recursions at time t   
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