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Lattice algorithm for adaptive stable identification
and robust reconstruction of non stationary AR
processes with missing observations

Rawad Zgheib, Gilles Fleury, and Elisabeth Lahalle

Abstract—This paper deals with the problem of adaptive recon- inversion of a matrix is required to update the parameters.
struction and identification of non stationary AR processes with Therefore, it suffers from a high computational complexity
randomly missing observations. Existent methods use a direct [12], an LMS-like algorithm for simultaneous reconstrodti

realization of the filter. Therefore, the estimated parameters mg . e . . .
not correspond to a stable all-pole filter. In addition, when the and identification is developed. In [16], the pseudo-linear

probability of missing a sample is high, existent methods may RLS algorithm, an adaptation of the RLS algorithm to the
converge slowly or even fail to converge. We propose, at our case of signals with missing data, is derived. However these
knowledge, the first algorithm based on the lattice structure two algorithms converge toward biased estimation of the
for online processing of signals with missing samples. It is parameters. In [18], we proposed an alternative to the LMS-
an extension of the RLSL algorithm to the case of missing . . ' . .
observations, using a Kalman filter for the prediction of missing 1K€ @lgorithm based on the incomplete past predictor [2]. |
samples. The estimated parameters guarantee the stability of Offers simultaneous optimal identification and reconstonc
the corresponding all-pole filter. In addition it is robust to high However, this algorithm is quite time consuming. Recently
probabilities of missing a sample. It offers a fast parameter [19], we proposed to use a Kalman filter for the prediction
tracking even for high probabilities of missing a sample. It \yith the pseudo linear RLS algorithm. This algorithm is fast

is compared to the Kalman pseudo linear RLS algorithm, an o . . . .
already proposed algorithm using a direct realization of the In addition, it offers optimal reconstruction and identfion

filter. The proposed algorithm shows better performance in IN the least mean square sense.

reconstruction of audio signals. All previously presented methods consider a direct realiza
Index Terms—missing observations, lattice, identification, re- tion of the linear infinite-impulse response (IIR) filter.(&hthe
construction, stability, robustness estimated parameters may not correspond to a stable all-pol

filter unless the poles of the filter are at each time consthin
to be inside the unit circle (ex: Schur-Cohn factorizatign.
This might be quite time consuming. In addition, when the

N many practical situations, periodically sampled signalsrobability of missing a sample is large, existent methods

with missing observations may be encountered. This is theay converge slowly or even fail to converge. Therefore we
case, for example, of errors in transmission, or of temporapropose to identify the signal using the lattice structufe o
unavailability of measurement. It is also the case, in apdinhe filter. A lattice structure is characterized by the reftec
of audio signals or images, for compression purposes.  coefficientsk;. The reflection coefficients estimated from data

In many applications, such as digital communications @sing methods such as proposed in [4], [13] guarantee the
systems tracking, on line processing is necessary. We gtgbility of the corresponding AR filter. The values of the
interested here in on line reconstruction and identificab AR parameters are uniquely determined by the reflection
signals that can be modeled by an AR process with randonglyefficients through the Durbin-Levinson algorithm [5]1]1
missing observations. The loss of samples process follows aviany adaptive algorithms for the identification of lattice
Bernoulli law independent of the signal. filters, such as the recursive least squares (RLSL) algosith

Several methods, such as in [1], [2], [8], [12], [16], [18]have already been proposed [6], [10]. In [6], Friedlander
have already been developed for on line processing of ARResents a tutorial review of lattice structures and thei u
signals with missing data. They use at each time only thér adaptive prediction of time series. In [14], Makhoet
past available data. In [2], Bondon proposed an expressiain present a general method for adaptive updating of lattice
of the optimal predictor in the least mean square sense gefficients in the linear predictive analysis of non staity
AR processes with incomplete past. The predictor is adaptisignals. The absolute value of the estimated reflectionficoef
however, it is not recursive. In [1], the problem of recuesas- cients is always less than one thus guaranteeing the syaifili
timation of the output in missing-data situations is adseels the corresponding all-pole filter. In addition, it is simjgled is
In [8], Isaksson derives a recursive EM algorithm for thadapted to non stationary signals. We are interested héne in
identification in missing data situations. It is based on thgxtension of this method to the identification of signalshwit
off line version described in [7]. However, at each time, theiissing observations using a Kalman filter for the predictio

. 4 . 4 of missing samples. At our knowledge, it is the first algarith
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I. INTRODUCTION



estimated guarantee the stability of the correspondingaié — Fori=1tol—1

filter. Ir).a_lddition, t'he proposed algorithm is robust to &rg NONERCSY +k(”al(l__.1) 3)
probabilities of losing a sample. i, i n \n
In the following, we begin by some basics about the lattice — end

structure of the filter. A RLSL algorithm for adaptive stable , end.

identification of non stationary processes is presenteds ItA lattice structure corresponds to a stable filter if all the
based on the reflection coefficients calculated in [14]. Nfiection coefficients foi < I < verify:

section 3, the Kalman filter presented in [19] for the predict -

of an AR process subject to missing samples is described. kWl <1, 1<I<L (4)

In section 4, an extension of the RLSL algorithm to the . . .
) P . . o ‘ In addition to the advantages given above, the lattice has
identification of signals with missing samples is presented . o i X )

an important orthogonalization property: the 'decougliog

uses for the prediction the Kalman filter presented in SHCtIct):ons:ecutive stages of the lattice. Therefore,tHeorder least

3. Finally, examples illustrate the performances of the ney uares lattice prediction filter contains in it predictidters

algor!thm. It is compared_to the Kalmar_1 pseudo-h_near_ RL§ all lower orders. More precisely, the firétsections of the
algorithm [19]. Both algorithms are applied to the idensfic L' order lattice predictor (Fig. 1) form tH&" order prediction

tion and reconstrqction of non §tationary AR Processes .aﬁlger. Due to this property, the global minimization at the
to the reconstruction of audio signals with random misSiNgyice output is replaced by a sequence of local minimizati

samples. problems, one at each stage of the lattice.
Many methods exist for the calculation of the reflection
Il. ADAPTIVE IDENTIFICATION OF LATTICE FILTERS coefficients. They consider the minimization of the mean
A. Lattice structure quadratic forward prediction error, the mean quadratickbac

ward prediction error or a function of both errors. The

It is preferred to identi ignal usin latti tr oo .
s preferred to identify a signal using a lattice struetu inimization of the mean quadratic forward and backward

of the filter because the stability and the robustness of the
identified filter are thus guaranteed.

prediction errors, called method forward and method back-
ward respectively [13], leads to two reflection coefficients
In the stationary scalar case, both coefficients are equmd. T
main drawback of these methods is that the stability of the
corresponding filter is not guaranteed. Itakura and Sailp [9
proposed to calculate the reflection coefficients as the geo-
metric mean of the coefficients obtained with the forward and
backward methods. The reflection coefficient thus calcdlate
verifies (4). Burg [4], proposed to calculate the reflectioafe
Fig. 1. Basic all-zero lattice filter. ficient as the harmonic mean of the coefficients obtained with
the forward and backward methods. The coefficient calcdlate
The lattice structure is directly induced from the LevinsoRy Burg guarantees the stability of the corresponding al-p
recursions [11]. Let,, be the input signaI{aEL)} the optimal filter. Moreover, the coefficient thus calculated correstson
forward AR(L) predictor coefficients{e ™} the optimal O the minimization of the sum of the quadratic forward and
backward predictor AR(L) coefficients. For an AR(L) proges®ackward prediction errors [13]. Since we are interesteohin
the backward predictor coefficients are the same as the fdrwiin€ identification, we introduce in the following the resive
predictor ones but their order is reversed, e:ff) = o\~ . least square lattice algorithms.
At time n, for the predictor of ordeL, the forward prediction
error is f\¥ = 2, — PO a{"z,_;, and the backward B. RLSL algorithm
prediction error isbﬁf) (L)

= Tp_ — Zle a; " Tp_r44- FrOM The RLSL algorithms are recursive both in time and order.
Fig. 1, at a stagé corresponding to the predictor of order They are numerically efficient requiring onty(L) operations
the following recursions hold: per time update, compared @(L?) for the RLS algorithm
using a direct realization of the filter. Besides the advgeseof

(0) — p(0) — . o .
fo =07 =, (1a) lattice structures, they exhibit excellent convergendeakimr
FO = fl=1) _ g 0p—D. (1b) and fast parameter tracking capability. Therefore, they ar
p(D — p=1) k:(l)f”‘l) (1c) adapted to the identification of non stationary processgs [6
n — Yn-1 T "n' Jn : [10]
where k" is the reflection coefficient at stageand timen. !N [10], @ geometrical approach is used to establish the
For an L*" predictor,0 < [ < L, wherek'”) = 1. The Lt» time update recursions of the RLSL estimation algorithms. A

square root normalized least squares lattice form algurith
is presented. The unnormalized RLSL algorithm [6], [10]
minimizes simultaneously both the mean quadratic forward
prediction error and backward prediction error. This aitdpon

leads to two reflection coefficients that does not guarartee t

predictor coefficients at time, {a(L)}, are uniquely computed

from the reflection coefficients uéing the following recorss:
e« FOori=0to L
l
ajn =10, @)



stability of the corresponding filter. In the normalizedrfgr for the update of the different reflection coefficients knogvi

all the variables are normalized to unit variance. A noreeadi all the prediction errors up to time— 1 and the current signal
lattice structure of the filter enjoys some advantages suellue. This algorithm exhibits similar performance as the
as the stability of the identified model. Only one reflectionormalized RLSL algorithm [10] and is less computationally
coefficient is estimated for each stabat each timen and it expensive. We propose then to extend it to the identification
verifies (4). of signals with missing samples, combined with the Kalman

In [14], Makhoul et al. proposed a general method foffilter presented in [19] for the prediction.

adaptive updating of reflection coefficients for each stage

and at each time: in the linear predictive analysis of non m
stationary signals. They determine the reflection coefiisie

by minimizing the weighted sum of the quadratic forward and !N this section the Kalman filter used for the prediction of

backward prediction errors. To calculatd’ they proposed AR processes subject to missing samples is described.
to minimize:

. PREDICTION USINGKALMAN FILTER

20 _ an_i (f<l)2 N b,(l)2> . ) A. State space representation.
= " " Let {z,} be an AR process of ordef with parameters
B @y, Cof ; ; P
wherew,, _; is the weighting sequence. Since in a time varyin{gai )i<i<r. It satisfies the following difference equation:
situation, we are mainly interested in the most recent dinjst €, = agL)gCW1 Lo+ a(LL)mnfL +e,. 9)
of the signal, it is convenient to weight the errors with an
exponential forgetting factor, e.g,,_; = A" ~“for0 < A < 1. Where {¢,} is the innovation process, a white noise of
Substituting (1) in (5) and minimizing with respect kg varianceos?. The loss process is modeled by an i.i.d binary
leads to: variable{c,}, ¢, = 1 if z,, is available, otherwise,, = 0.
23" A""ifﬁlfl)b,ff:f) oW The probability to measure,, is P{c, =1} =1 —gq. Let the

0 — - _ i i :
k(D = S {f(l)Q + b(m] =50 (6) observation procesgy, } be defined as:
=1 " " x,  if x, is available,
0) (1) i Yn = Enln =g therwi (10)
where £\ andby,’ are the forward and backward prediction otherwise,

errors for the stagkat timen. The reflection coefficient given Thys 4, can be regarded as the measurement,ptubject
by equation (6) is always guaranteed to verify the stabiligy missing data.

condition given by equation (4) [15]. It must be noted he® th  The AR procesgz, } with missing observations admits the
for A =1, the coefficient thus calculated is equal to Burg'g|iowing state space representation [19]:
coefficient [4]. This method is then an adaptation of Burg's

method to the adaptive non stationary case. Maklegual. { Top1 =A@+, [10...0] (11)
[14], [15] proposed an adaptive estimation iof) through Ynt+1 = C,Ll Tni1
the recursive computation on time @\’ and DY’. An ) @)
unnormalized RLSL algorithm is thus )obtained by combining @ - O ‘ ag
. . . . l .
the adap'uve estimation on time Qh‘f1 and t_he recursive \ynere 4 — is a Lx matrix and
equations on order (1). The recursive equations, at time :
of the RLSL algorithm based on the reflection coefficient 0 11 0
calculated in [14] are: cn
« Initialize for{ =0 Tn 0
€, = : , Cp, = . are L-vectors.
£ =00 =y, (72) ' :
Tn—L+1
KO =1, (7b) N Lo | |
The sample to predict Is at each time the first element of
e Forl=1to min(L,n) the statex,, ;1.
l — l—
e =0y + 2700, (8a) .
DY — )\sz,l)—1 +pu-n2 _~_bslz:11)27 (8b) B. Kalman filter.
oW The predicted and filtered estimates of the state are denoted
k,ﬁf) =— ’(ll) , (8c) respectivelyz,, 1}, andz,, 1|, 4. The corresponding estima-
Dr, tion errors covariance matrices are noted respectiily, ,,
FO = p=1) =), (8d) and P, iut1- Ky is the Kalman filter gain.
b0 = p=D _ 0 -1) 8e) The Kalman filter equations are .describe_d in many _books
" n-l wan such as [3]. In our case, there is no disturbance in the
e end. observation. So, the Kalman filter equations reduce to:

whereL is the filter order and < n < N, N being the length
of the signal. At each time, a recursion of ordeL is required Py = APM”AT + R, (12)



where,R. =02 [10.. 0] [10...0]. (7) to the identification of signals with missing samples,
P et ) ) ) combined with the Kalman filter mentioned in section IlI-B fo
T Patiens T o IS available the prediction of missi les. The model thus identified
Kni1 =4 @ic1Poriinenit _ (13) e prediction of missing samples. The model thus identifie
0 otherwise, guarantees at each time the stability of the correspondtieg fi
Referring to equations (8a), (8b) and (8c) and to equations

_ T : .
Posipnsr = (o = Kny1¢,40) Pogajn, (14) (1), the update of the reflection coefficients and the compu-

En i1t = Eniipn + Knt1Unst — Gnsipm), (15) tation of the prediction errors uses the backward predic_tio
errors calculated at the previous time. We deduce reclysive
where, that in order to calculate the reflection coefficients at time
Tppin = AZpjn, (16) n, all the lattice filter variables must have been calculated
and at all previous times. However, the recursive equations on
. T . order (1) used for the computation of the prediction errars,
yn+1\n = cn+1wn+1|n~ (17)

initialized at each time using the value of the signal (eiguat
Due to the state space representation chosen, the previgi®). When a sample is missing, an optimal estimation in
Kalman filter can be simplified. Indeed, if, at time-1, z,,,; the least mean square sense of the prediction errors is then
is available, i.e.c,.1 = 1, the termPnJrl‘ncwrl is equal to required, since these values are used at the next time.

the first column ofP, 1), and(c n+1Pn+1|ncn+1) is a scalar  Thus the cost function minimized by the proposed algorithm
equal to the first term of the matrik, ;,,. Consequently the is an estimation of the one in equation (5). It is given at time
Kalman gaink,, . is calculated by dividing each element of? by:

the fI.I’St columr_1 Qan_H\n py the first element oPn_H.‘n. '!'hls l) . an ) (f(l b(l ) (20)
requiresL multiplications instead o2 (L +1) multiplications

as in the general case of a Kalman filter. In addition, we deduc ) () 0 o

that the first element oK, 1, K,,+1(1), is always equal ta if Where f," andby,” are the estimates of,” and b, respec-

the data is available. Recalling the filter's equation systg5), tively.
the first equation of it gives that when a sample is avallable

A. Optimal estimation of the prediction errors

Engtjnar = Engap + Knpa (1) (yn+1 - ??nJrl\n) The forward and backward prediction errors are defined as:
= Yn+1 = Tp41-
An observed sample is thus unchanged by the Kalman filter. FO = p0 = xn, (21a)
Otherwise, ifz,1 is missing, i.e.c,+1 = 0, the predicted
statez,, 1, is not filtered,z, 1jn41 = Ep41)n- It Must be Za(l)xn i (21b)
noted here that if the sample, ., is missing, its estimation
updated during the next. — 1 steps, is different from its
prediction provided by the Kalman filter at time+ 1, i.e. b =,y — Za@ nTn—l+is (21c)

Zptijntt 7 Tngijnsr for 1 <t < L —1. Indeed, the state is

constituted of the lasL. samples or their predictions if theyUsing the missing observatlons theorem [17], the optimal
are missing. When a sample is available, the state is filteregtimation of the prediction errors in the least mean square
through the equation (15). As a result, some terms are adde@ense are given by the following equations:

the predictions of the missing samples contained in the stat FO 50 — 5 (22a)
Hence, the prediction of a missing sample, updated duriag th " " ’;‘"’
L — 1 next steps, is formulated as : f,(f) = Zag,lz;,j;n—ilna (22b)
t i=1
j:n+1|n+t = -i'n+1|n + Z Kn+z(l> (yn+i - gn+i\71+i—1) . R l .
i=1 b’l(’f) = i'nfl\n - Z GE,,)li”n—Hﬂm (22C)

(18)
wherel < ¢ < L — 1. In real time applications{z,}, the
reconstruction of the procegs;,} subject to missing data, is
defined as:

where, z,,_;,, is the optimal prediction in the least mean

square sense af,_; knowing only the available samples until

time n. The equations giving the optimal estimation of the

Tpt1 if 2,41 is available,  prediction errors are analog to the definition equationg.(21

Lpt1in otherwise, The difference is that the prediction errors and the valdes o
(19)  the signal are replaced by their estimations. Hence, indlse c

of missing observations, the recursive equations of thelRLS
IV. COMBINED RLSL ALGORITHM AND KALMAN FILTER algorithm at a timen become:
In this section, a new algorithm for online identificatiordan e Initialize for [ =0

reconstruction of non stationary processes subject toimgiss f(o _ b(O) = Gy (23a)

observations using the lattice structure of the filter iscdbed.

It is an extension of the RLSL algorithm given by equations

Zn41 :jjnJrl\nle = {

EO =1, (23b)



o Forl=1tomin(L,n) is then namedd,, ;.

e = el 4+ 2/, (24a) ah | adh)
DY = DY, + fImV2 45072, (24b) A 1 0] 0
n+l = ) 5
. oW :
(- _Xn_
kn - D(l)v (240) O 1 O (25)
n T
A _ FU-1) _ Lp0-1) {JnJr1|n = An+1€n|nAn+1 + R,
fa f(il) Ko 1 (24d) Tntijn = Ant18njn
bgzl) = bn—l - kg)frsl_l)7 (246) @n+l|n = C”+1jn+1‘”
« end. a) If x4, is available, i.e.c,y1 = 1:
We propose to use the Kalman filter presented in section - o
11-B for an optimal prediction of the signal. The Kalman ditt Knt1 = Popincni1(Coy1Povipnens1) 5 (26a)
uses the estimated parameters of the filter direct realizati Poiijns1 = (Ia — Kn+1CI+1)Pn+1|n7 (26b)

Since we identify the signal in the lattice filter form, thiene,
at each time, a transformation of the reflection coeffici¢ats
the AR parameters through equations (2) is required. The predictions of the previous missing data up to time
Recall here that some terms are added to the prediction,pf | | are updated thanks to the filtering of the state
a missing sample thanks to the Kalman filtering of the stajg equation (26c). It is convenient now to calculate all the
when a sample is available during tiie— 1 following time  yariaples of the lattice filter since the last available otation
instants. Hence an optimal prediction of a missing samplgtimen—h, whereh > 0 depends on the observation pattern.
at time n, &y,, is updated during thel — 1 subsequent st each timet, for n — h+ 1 < t < n + 1, the recursive
steps if some samples are available. In real time applioaf{ioeqations of the RLSL algorithm given by (28) are applied to
the updated estimate of a missing sampigy,,,;, iS used agtimate the different reflection coefficiedfd and prediction

only for the prediction of subsequent samples. The signal é?rorsf(l),l;g” for 1 <1 < L. The values of the forward and

r_econstrupted u§|ng its prediction provided by the Kalm ckward prediction errors are initialized using the updat
filter at time n, &,,. On the other hand, the forward an

O . . o stimates of the missing samples (those contained wittgn th
backward prediction errors estimated using the predictibn filtered stated ), ie f(O) — 0 _
a missing sample, are used in the subsequent time step. ' et/ L5 Jt ¢ tnt1-
Therefore, as for the prediction of the sample, their value '

must also be updated in the subsequent step. In order to avoid Fori =n—-h+1ton+1

in-{-l\n—&-l = ﬁjn—i—lm + Kn—i—l(yn—i-l - gn—&-lm) (26¢)

computing their values many times, we propose the following — Initialize for I = 0

If at time n a sample is missing, it is predicted using the
Kalman filter. However the prediction errors and the reftecti FO =50 = &y, (27a)
coefficient are not computed until the prediction of the si@mp PO _ (27b)
is updated, i.e. until a new sample is available. When a sample t ’
is available at timen + ¢, the state is updated thanks to the — Forl =1 to min(L,n)
Kalman filter. It is now convenient to calculate all the legti ’
?/arlables corresponding t'o the missing samples.between the Ct(l) _ )\Ct(l_)l +2f(l*1)t13§l__11), (28a)
ast available sample, at time—  and the current time + <. 0 0 12 2(-1)2

It must be noted here that if the time step between two Dy” = AD;2y + f; +b,_177, (28b)
available samples is greater than(t — h + 1 > L), only the - c®
predictions of the last. — 1 missing samples (those contained ki” = —Wa (28c)
within the state) are updated. The predictions of the prieged ) A(zfn S (D30-1)
missing samples (from times — h + 1 till time n + ¢ — L) fel =1 kb, (28d)
are not updated. However, the lattice filter variables are no BV = p{= — 0 f-D), (28e)
yet calculated at these times. But, in order to calculate the ) )
reflection coefficient at time: + ¢, all lattice filter variables — end

must have been calculated for all previous times. Thergfore
it is required to calculate the lattice filter variables froime ) (D)
n—h+1till time n-t— L even if there are no new information. Theé AR parameters at time + 1, (G, )1<i<z, are
deduced from the reflection coefficien(téff}rl)lgig using
the Durbin Levinson recursions (equations (2)).

b) However ifx,,; is absentc,,1 = 0: the predicted
The proposed algorithm can be summarised as follows. state, z,,,|,, is not filtered by the Kalman filter, and the

time n+ 1, the first line of the matrix4 is replaced bya) ", parameters are not updated since the reflection coefficients

the vector of the parameters estimated at timé'he matrix (kffll)lglg are not yet calculated,

o end.

B. Proposed algorithm



A. Experiment 1
The test signal used is a non stationary AR(2) process

K1 =0, (292) generated ovet5.10% samples. The parameters of the signal
Proiiins1 = Pogifn, (29b) are [1.5, —1] for the first5.10° samples,[—0.5, —1] for the
Epi1nt1 = Tntijns (29c) next 5.10° samples and0.5,—1] for the last samples. The

. (L) . Bernoulli's probability of sample loss ig = 0.7. The forget-

a\ =all) (29d) . ;

n+l noe ting factor used is\ = 0.99.

A flowchart describing the algorithm is presented in appe
dices A and B. 15H
The cost function minimized by the Kalman pseudo-line:
RLS algorithm [19] is the weighted mean of available sampl¢
prediction errors. Thus, the parameters are not updatetieoy
pseudo-linear RLS algorithm if a data is missing. Indeed, ti
update of the parameters using RLS algorithms is propatior
to the prediction error that cannot be calculated when a Eam
is missing. However, the cost function minimized by th
proposed algorithm is the weighted mean of all quadratie pr
diction errors. When a sample is missing, the predictionrerr
can not be calculated, it is replaced by its estimation. édde
recall that in order to update the reflection coefficientstaha
n, the lattice filter variables must have been calculated lat
previous times. Therefore, using the proposed algorittma, t '05’6 o0 2000 oon ato0 o000 12000
lattice filter variables are estimated at all times even when Samples
sample is missing. This suggests that its speed of convezgen
does not depend on the probability of losing samples. Indegg. 2. Estimation ofa; for the experiment 1.
simulations show that it presents an excellent convergence
behavior and have fast parameter tracking capability esen f Figure 2 shows the estimation of parametgrwith both
a large probability of missing a sample. algorithms. It shows that the proposed algorithm converges
The computational complexity of both algorithms has bedaster than the other one even for a large probability of
calculated. Since they both use the same Kalman filter farissing a sample. Smaller values of the forgetting factterof
the reconstruction, their computational complexity diffiey a faster convergence at the expense of a higher variance in
the identification algorithm used. For both algorithms, thde parameters estimation. For a high probability of losing
computational complexity is found to b&((1 — ¢)NL?), samples, the variance can become arbitrarily large and may
where ¢ is the bernoulli's probability of losing a sampl@&] lead to a divergence using the Kalman pseudo-linear RLS
is the size of the signal andl the order of the AR model. algorithm. Simulations show that the speed of convergefice o
Simulation of both algorithms implemented on Matlab showele Kalman pseudo-linear RLS algorithm depend highly on the
close computation times. For an AR model of small order, tservation pattern and on the probability of missing saspl
proposed algorithm is faster than the Kalman pseudo-lindageed this experiment was repeated for 100 regenerations o
RLS algorithm. However, it is slightly slower for high orderthe observation pattern. The SNR obtained using the propose
models such as for speech signals. algorithm is only one time less than 10 dB, however it is 36
times using the Kalman pseudo-linear RLS algorithm. This is
due to a slow convergence or even to a divergence. Indeed,
V. SIMULATIONS the Kalman pseudo-linear RLS failed to converge three times
) ) ) Moreover, the figure 2 seems to show that the proposed
In th'S. section, the p_roposed algorithm and the Kalmar:ﬂgorithm converges toward unbiased estimation of the pa-
pseud_o-llnear RLS algor_lthm [19] are compared thro_ugheth_r?ameters. However, due to the minimization of the predictio
experiments. The test signal used in the first experiment iSBors when samples are missing, the identification using

non :stgtionary AR process of arder 2, W.ith a high pmbapi”%is algorithm is biased. The bias decreases to zero as the
of missing samples. In the se_cond expenment., both a'g‘?ﬂth parametera, comes close to -1. Such signals correspond to
are applied to the reconstruction of a speech signal foewdifft .o\ nt filters

probabilities of missing samples. The test signal used iNtpaqe characteristics suggest that the proposed algorithm

the third experiment is a music played on piano. For bofjiont have good performance for speech signals reconstruc-
experiments, their performance are compared in terms of tﬂf@n

Kalman pseudo linear RLS
Proposed algorithm
— — — Original parameters

al

0.5n

14000

SNR given by:
ZN 22 B. Experiment 2
(SNR) = 10log1 I 5 (30) The test signal used is the English sentence ‘Mary had a
> i (@i — 2i) little lamb, its fleece was white as snow’ sampledFat= 8



kHz. This signal is reconstructed using both algorithms faample loss. However, it decreases exponentially using the
different probabilities of missing a sample. For each pbiba Kalman pseudo linear RLS algorithm. Indeed, when 60% of
ity, the observation pattern is simulated 1000 times. Foheasamples are missing, the SNR obtained using the proposed
algorithm, the mean value and the variance of the SNR algorithm is of 3 dB larger than the one obtained using
calculated over the different simulations of the obseorati the other algorithm. When 85% of the samples are missing,
pattern for each probability of missing a sample. For bothis difference is of 9 dB. It must be noted here that the
algorithms, the forgetting factor used ds= 0.99. This value reconstructed signal obtained using the proposed algarith
is empirical. Simulations show that both algorithms offend is still understandable even when 85% of the samples are
performance in terms of reconstruction for this value.oThe missing.

speech signal is modeled by an AR process of order 12. Moreover, referring to figure 4, the standard deviation ef th
SNR obtained with the proposed algorithm is small comparing
to the one obtained using the other algorithm. In addition, i
is almost constant for any probability of missing a sample.
This shows that the proposed algorithm is robust to a large
probability of missing a sample and to the observation patte

15

10

sk i However, the standard deviation of the Kalman pseudo4inea
RLS algorithm increases exponentially with the probapitit
= of 1 missing samples. The Kalman pseudo-linear RLS algorithm
§ is then highly dependent on the observation pattern for high
7 sy Proposed aigorthm i probabilities of missing a sample. Indeed, for a speechasign

Kalman pseudo linear RLS algorithm

the AR parameters are stationary for a small period of time,
therefore when a large number of samples are missing, the
Kalman pseudo linear RLS algorithm may fail to track the
variations of the parameters.

~10F

-15F

~20 I I I I I I I
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a C. Experiment 3

In this experiment, the test signal used is a musical signal.
It is the toccata in C min of J. Bach played on piano
by Glen Gould. In musical signals, the sounds are always
voiced, corresponding to resonant filters. This suggesis th
it must have also a good performance for musical signals

Fig. 3. Average SNR in terms of the probability of missing a sanfpr
experiment 2

» ‘ ‘ ‘ ‘ ‘ ‘ ‘ reconstruction. The same experiment as in experiment 2 is
Kalman pseudo linear RLS algorithm repeated fOI’ the mUSIca| S|gna|

Proposed algorithm

Table 1 illustrates the mean value and the standard dewiatio
of the SNR for a samples loss of 60%, 70%, 80% and 90%.
M, and M, are the mean values of the SNR obtained using
the proposed algorithm and the other one respectivgiyand
S, are the corresponding standard deviations.

20+

-
o
T

i
o
T

TABLE |
COMPARISON OF BOTH ALGORITHMS FOR EXPERIMENB

Std deviation of the SNR (dB)

M; andS; are the mean value and the standard deviation of the SNR ebtain
using the proposed algorithml/> and S2 are obtained using the other one.
0.6 0.8 9

q
0 ‘ , ‘ , ‘ ‘ ‘ M £ 51 (dB) | 20+ 0.16 | 15 0.14 | 10.27+ 0.11 | 5.4+ 0.35
oL 02 03 04 05 08 o7 08 09 Ms £ S> (dB) | 16 £ 0.41 | 11+ 2.46 | -0.184+ 12.36 | -38 + 31.8

Fig. 4. Standard deviation of the SNR in terms of the probighiif missing Referring to table |, the _proposed alg_onthm ShO_WS' QS ex-
a sample for experiment 2 pected, good performance in reconstruction of musicaledggn

As for the previous experiment, the average SNR obtained

Figures 3 and 4 show respectively the mean value and th&ing the proposed algorithm decreases linearly with the
standard deviation of the SNR for both algorithms in terms @irobability of sample loss. However, it decreases expaalgnt
the Bernoulli's probability of missing a sample. using the Kalman pseudo linear RLS algorithm.

Figure 3 shows that on average the proposed algorithmListening tests have revealed that the prediction erraigagu
offers better performance than the other one in terms thfe proposed algorithm, are practically inaudible for tteist
reconstruction error and particularly for high probahdt and for many other signals. However, for high probabilités
of missing a sample. The average SNR obtained using tméssing samples, the errors of reconstruction using thenal
proposed algorithm decreases linearly with the probghdft pseudo linear RLS algorithm are pulse shaped and the voice is



sometimes deformed. This is usually the case when the moafelthe identified model due to the cost function minimized
parameters are changed. by the algorithm in the case of missing observations. This
algorithm has been compared to the Kalman pseudo linear
RLS algorithm [19]. The latter uses a direct realization of
the filter, hence the stability of the filter identified is not

0.251 Original signal 1 o ; . A
o] | =~ Kaman pseudo iinear RLS algorithm | guaranteed. In addition, simulation shows that its perforce
: O Proposed algorithm depends highly on the observation pattern particularly for
015 high probability of missing samples. Simulation on speech
01 and musical signals shows the advantage of the proposed
0.05 algorithm in terms of reconstruction error and particyldor a
g high probability of missing samples. Listening tests appso
o 0 the results obtained. Indeed, when 85% of the samples are
missing, a speech signal reconstructed using the proposed
-0.1 algorithm is still intelligible. The proposed algorithm ynhe
o5 modified to deal with noisy data, this may be the subject of a
0 further publication.
1956 1959 196 1961 1962 1963 1964 1965 1966 REFERENCES
samples x 10"

[1] P. Albertos and R. Sanchis and A. Sala, “Output predictioder scarce
data operation: control applicationAutomatica, 35 pp. 1671-1681,
Fig. 5. Reconstruction of the signal using both algorithmsefgeriment 3 1999.
at the beginning of a new note. [2] P. Bondon, “Prediction with incomplete past of a statiannprocess,”
Elsevier, Stochastic processes and their applicatigups 67—-76, 2002.
. . . . P. Brockwell and R. Davis, “Time Series: Theory and metho8gringer-
Figure 5 shows the reconstruction of the signal using bo Verlag 1991. y ping
algorithms at the beginning of a musical note. The beginning J.p. Burg, “Maximum entropy spectral analysig?h.D. dissertation,

of a new musical note corresponds to a jump in the AIE ?egpf;)ysiq‘sT Ee;]gtt.t,. Sta?ftqrd Univ,, Stan;orlc;%mly thTSt' Stmtietual
. e . . . purpin, € Titing of ume series moaelsxev. Inst. Int. atistvol.
parameters. For a high probability of missing samples, thd 28, pp. 233-243, 1960.

Kalman pseudo linear RLS algorithm fails to adapt quickly t@] B. Friedlander, “Lattice filters for adaptive procesginin Proceedings

the jump in the estimation of the parameters. This may resuylt of the IEEE vol.70, No. 8, pp. 829-867, 1982. : .
. transient instability leading to transient stron ibns 1 A. Isaksson, “Identification of ARX Models Subject to Misg Data,
na y g g thato IEEE Transactions on Automatic Contralol. 38, pp. 813-819, 1993.

in the reconstructed signal as shown in figure 5. However, tf#¢ A. Isaksson, “A Recursive EM Algorithm for identificatiosubject to
proposed algorithm presents a fast and stable adaptatibie to ~ Missing data,” inSYSID Copenhagen, Denmark, 1994, vol. 2, pp. 679~

change in the Parameters' The S'gna_‘l _reconStrUCted usang [HT F. It;';\kura and S. Saito, “A statistical method for estiroatiof speech
proposed algorithm is close to the original one. spectral density and formant frequencies,” Biectron. Commun.vol.

In the case of noisy data, an observation noise must pe 53-A, pp. 36-43, 1970.

id d in th tat tati f th élo D. Lee and M. Morf and B. Friedlander, “Recursive leagtiares ladder
consiaered In neé state space representaton or tN€ ProCesSygiimation algorithms,1EEE Trans. on Acoustics, Speech and Signal

Generally, the observation noise is considered additive an Processingvol. 29, pp. 627—641, 1981.
independent of the process. The Kalman filter equations wif] N. Levinson, “The Wiener (Root Mean Square) Error Gida in Filter

> DU o . Desi Prediction,). Math. Phys.vol. 25, pp. 261-278, 1947.
then be modified taking into consideration the observaugpz] esian and Pred ":Gt'.ogliurya;nd s ol 2, pp. 26,278, 1 ?nodg“

noise. This requires some information about the noise, for in the case of missing observationdEEE Transactions on Signal
example its variance. Since the model thus obtained is not Processingvol. 45, No. 6, pp. 15741583, 1997.

AR bi th fi ted t J. Makhoul, “Stable and efficient lattice methods foreln prediction,”
an process, a bias on the estimated parameters ma EEE Trans. on Acoustics, Speech and Signal Procesgipg423-428,

introduced. Thus, the identification algorithm must also be 1977.
modified to deal with this case. [14] J. Makhoul and R. Viswanathan, "Adaptive lattice methddr linear
prediction,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, Tulsa, OKpp. 83-86, April 1978.
VI. CONCLUSION [15] J. Makhoul and L. Cosell, “Adaptive lattice analysis sgeech,”IEEE
. . . . Trans. on circuits and systemeol. 28, pp. 494-499, 1981.
A new algorithm for adaptive stable identification anghs] R. Sanchis and P. Albertos, “Recursive identificationder scarce

robust reconstruction of an AR process subject to missing measurements - convergence analysfjtomatica, 38 pp. 535-544,

. . o . 002.
observations is proposed. At our knowledge, it is the fir 1 C. Therrien, “The missing observations theorem and a pevof of

algorithm that permits on line processing of signals subjec "Levinson's recursion/in Proc. IEEE Int. Symp. Circuits and Systems
to missing observations using a lattice structure of therfilt  (ISCAS), Kobe, Japampp. 2307-2308, 2005.

: : : 8] R. Zgheib and G. Fleury and E. Lahalle, “New fast rectgsilgorithms
It is an extension of the RLSL algorlthm to the case d]l for simultaneous reconstruction and identification of ARgagses with

missing observations combined with a Kalman filter for the missing observations,Proc. Fourteenth European Signal Processing
prediction. This algorithm guarantees the stability oftinadel 119] Csnf;rehncg, E%SI(ECSI' Flofenctf.éta?OgG" New f it £

. . e o P . Zgheib and G. Fleury and E. Lahalle, “New fast alduorit for
Identlfled,' In addmo_n, I IS_ robust to large, number Of M| simultaneous identification and optimal reconstruction afl stationary
observations, and simulation shows that it offers a fast@en AR processes with missing observationteEE Proc. Twelveth Digital
gence and parameter tracking for any Bernoulli's probghbili ~ Signal Processing Workshop, Wyoming, U$B. 371-376, 2006.

of missing samples. However, this is at the expense of a bias



APPENDIXA

Read the first. samples,
N the size of the sigr

v

Initialization (refer tc appendix E below)
The algorithm starts at timer 1 after
7 L samples are already availal

P = APA+R,

Rnn-1 = AXn-1jn-1

= Cﬁnln—l
Readc,

Yes c=1 No

Readx, v

_ 1%colof P
15t elt of P a,=a,
P=(l4—KC) P R
A A - Zn = Xy
Xnn = Xpn-1 + K(xn — %) +
[z - Zn—L+1]T = Rnin N
¢ a,,z,

t=m+1

»]

0 0
£O = pO = 4
v

| RLSL recursions at timt |(refer to appendix B below)

Na /tjn\ Yes
y

Durbin Levinson to calculaia,, (refer tc appendix B lelow)

v v
SR —_ T
m =
[
Yes No
n>N
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Initialization : is at timeL since the algorithm starts at tirhe: 1.

ﬁL|L =[x xq]7,

[z, 2] = L, Z, is the signal reconstruction process
0O - 0
e
0o - 1

R,=[10..0]7[10..0],

1 - 0
P=103[5 ]
0 - 1
[k® ... ®]=[0 - 0],
@ . pP]=[0 - o],

[fL(O) fL(L)]=[0 0],

m=1L, A=0.99, mis for each time, the instant of the last previous availalbhplea
[d® ... g®]=[0 - 0], n®, d® arethe numerator and the denominator of the reflection
[ W] =[o ol coefficient k(. They are updated at each time recursi
n e n = ves
RLSL recursions at timet : Durbin Levinson at timen:
+
n® = 20O 4 £ VpED ay, = k@
o _ o (1-1)2 (1-1)2
d® = 2d® + (£492 4 p412) =1
LD = n® | No Yes of O =g
T d0
v 4 I=1+1
ft(l) — ﬁ(l_l) + k(l)bgl_—ll) A
l -1 -1
bg) — b§—1 ) + k(l)f;:( )




