
HAL Id: hal-00290440
https://centralesupelec.hal.science/hal-00290440v1

Submitted on 25 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large Scale Distribution of Stochastic Control
Algorithms for Financial Applications

Constantinos Makassikis, Stéphane Vialle, Xavier Warin

To cite this version:
Constantinos Makassikis, Stéphane Vialle, Xavier Warin. Large Scale Distribution of Stochastic Con-
trol Algorithms for Financial Applications. PDCoF08, Apr 2008, Miami, United States. pp.1-8,
�10.1109/IPDPS.2008.4536454�. �hal-00290440�

https://centralesupelec.hal.science/hal-00290440v1
https://hal.archives-ouvertes.fr


Large Scale Distribution of Stochastic Control Algorithms for Gas Storage
Valuation

Constantinos Makassikis, Stéphane Vialle
SUPELEC, IMS research group, 2 rue Edouard Belin, 57070 Metz, France

LORIA, ALGORILLE project team, BP 239, 54506 Vandoeuvre-lès-Nancy, France
Constantinos.Makassikis@supelec.fr, Stephane.Vialle@supelec.fr

Xavier Warin
EDF - R&D, OSIRIS group, 1 Avenue Charles de Gaulle, 92141 Clamart, France

Xavier.Warin@edf.fr

Abstract

This paper introduces the distribution of a stochastic
control algorithm which is applied to gas storage valuation,
and presents its experimental performances on two PC clus-
ters and an IBM Blue Gene/L supercomputer. This research
is part of a French national project which gathers people
from the academic world (computer scientists, mathemati-
cians, ...) as well as people from the industry of energy and
finance in order to provide concrete answers on the use of
computational clusters, grids and supercomputers applied
to problems of financial mathematics.

The designed distribution allows to run gas storage val-
uation models which require considerable amounts of com-
putational power and memory space while achieving both
speedup and size-up: it has been successfully implemented
and experimented on PC clusters (up to 144 processors) and
on a Blue Gene supercomputer (up to 1024 processors). Fi-
nally, our distributed algorithm allows to use more comput-
ing resources in order to maintain constant the execution
time while increasing the calculation accuracy.

1 Introduction and objectives

1.1 Project overview

Gas prices exhibit fluctuations which are mainly due to
the modification of demand. Because of the inelasticity of
production and demand, prices are, for example, higher dur-
ing winter than in summer. A gas storage facility allows its
owner to take advantage of the price dynamic to do some ar-
bitrage between periods where prices are high and periods
where prices are low. Recently, a lot of research has been

achieved in the field of gas storage valuation (see [2, 3] for
example). As a result, many different price models can be
used to carry out this valorization. However, these mod-
els are usually CPU and memory-consuming, and need to
be run in limited time. So, the design and implementation
of parallel algorithms are recommended to use these models
on distributed architectures in industrial environments. Spe-
cific parallelizations have been designed and experimented
in this project to run financial applications requiring both
large amount of CPU and memory in limited time. Even
if large scale distribution is not mandatory for this prob-
lem (small clusters should be enough) we have extensively
tested this method in order to prepare for the parallelization
of huge multi-stock stochastic problems used at EDF com-
pany to globally optimize its electricity production assets.

The following subsections introduce the project objec-
tives and challenges. Then, section 2 presents the mathe-
matical problem and the sequential algorithm. The design
of our optimized distributed algorithm is described in sec-
tion 3. Section 4 describes the experimental testbeds used to
evaluate our distributed algorithm. Performance measures
are analyzed in section 5, while section 6 focuses on a scal-
ability experiment of a huge benchmark. Finally, section 7
summarizes the results of this research and introduces some
future investigation ways.

1.2 Financial computing objectives

In our study, we use three different models which are
based on the dynamic of the forward curve that is given by
the gas market prices for a future delivery of energy:

• the first one is a one-factor model based on an
Ornstein-Uhlenbeck process described in [6] and com-



monly used for energy and general commodity:

dF (t, T )
F (t, T )

= σS(t)e−aS(T−t)dzS
t

where zS
t is a brownian motion on a probability space

(Ω, F, P ) endowed with a filtration {Ft, t ∈ [0, T ]},
σS is the short-term volatility, aS is a mean-reverting
term.

• the second one is based on a two-factor Ornstein-
Uhlenbeck process, hence a two-factor model designed
to catch the medium-long term behaviour of the for-
ward curve:

dF (t, T )
F (t, T )

= σS(t)e−aS(T−t)dzS
t +σL(t)e−aL(T−t)dzL

t

where zL
t , σL(t), and aL are characteristics of the

long-term Ornstein-Uhlenbeck factor.

• the third one is a one-factor model similar to the first
model except that the brownian motion used is re-
placed by a normalized Normal Inverse Gaussian pro-
cess [1]:

F (t, T ) = F (t0, T )e
M(t,T )+

∫ t

0

σS(u)e−aS(T−u)dLu

where Lu is the normalized Normal Inverse Gaussian
process with parameters α, β, δ, µ = 0. The relation
δα2

γ3 = 1 is imposed to get the Lu variance equal to u.

M(t, T ) = −
∫ t

0

δ(γ −
√

α2 − (β + σSe−a(T−s))2)ds

is designed so that the price process is a martingale.
This price model exhibits spikes that the Gaussian
model cannot reproduce.

All valuations are achieved by a stochastic programming
approach described in [6] and in section 2. If the time
needed to compute the solution with the first model is not
too long (typically less than 10 minutes), the time needed
by the other models makes them virtually unusable. Hence
the need of parallelization.

1.3 Computer science challenges

From a computer science point of view, this is a Stochas-
tic Dynamic Programming algorithm which is complex to
parallelize. Despite some natural parallelism (see section
2), computations at any given step depend on previous re-
sults and the range of data to be computed changes regu-
larly. As a result, computations and data need to be redis-
tributed at each step. This requirement leads to compute and

execute a complete routing plan at each step on each pro-
cessor. Moreover, the data required by each processor for
the next step needs to be finely identified, in order to route
and store the minimal amount of data on each processor.
This strategy is necessary to process large scale problems
on large numbers of processors. A systematic broadcast and
storage of all previous results on each processor would be
easy to implement but would require too much memory on
all processors.

A lot of research in financial computations focus on
the parallelization of option pricing, considering indepen-
dent computations [5] as well as computations requiring
many communications between processors [4]. Gas stor-
age valuation equations take into account gas stock levels
and lead to large distributed computations composed of in-
dependent computing steps and complex inter-task commu-
nication steps.

2 Stochastic control application

2.1 Description of the problem

A gas storage facility presents three regimes: injecting
gas, withdrawing gas, and just storing the gas. The gas stor-
age is a cavity characterized by:

• its size given in giga British Thermal Units (BTU) or
MWh (a standard conversion rate is used to convert
BTU to MWh preferred by electric utility);

• the daily injection/withdrawal capacity ain/aout which
depends on the stock level of the cavity It;

• the standard operating and managing cost per day
which depends on the operating regime: Kin(It),
Ks(It), Kout(It).

The storage size can be variable in time because we may
want for example to hire a portion of the cavity.

Most of the time, the gas storage manager uses its facility
according to a bang bang strategy. In this case, the instan-
taneous gain (or cost) at a date t depends on the gas price St

and the management regime. Here are the characteristics of
the three regimes:




Injection ain,s(It), with cost:
φ−1(St, It) = −Stain(It) − Kin(It)

Storage with cost:
φ0(St, It) = −Ks(It)

Withdrawal aout,e(It), with gain:
φ1(St, It) = Staout(It) − Kout(It)



The instantaneous evolution of the stock It depends on the
regime of the facility:


dIt = ain,s(It)dt in injection
dIt = 0 in storing
dIt = −aout,e(It)dt in withdrawal

We suppose that a strategy ut describing the regime taken
at date t can take three values: 1 in withdrawal regime, 0 in
storing regime, −1 in injection regime. We suppose that the
gas storage is hired between t and T , and that the regime
switching can occur at any date. At last, for simplicity, we
take a zero interest rate. Then the gain obtained by manag-
ing the facility from a date t to a date T with a strategy u is
given by:

J(t, s, c, i, u) = E(
∫ T

t

φur
(r ,Sr , Ir )dr+

J (T ,ST , IT , iT , uT )|St = s, It = c, ut = i)

where:

• J(T, ST , IT , iT , uT ) is a given final value function, for
example a penalization of the difference between IT

and a target final value Itarget
T ;

• s is the gas price at time t given by a Markovian pro-
cess;

• c is the stock level at time t;

• i is the regime at time t.

The goal of the manager is to find an optimal admissible
adapted strategy in a given set Ut, in order to maximize its
income and therefore to solve:

J∗(t, s, c, i) = sup
u∈Ut

J(t, s, c, i, u)

2.2 Algorithms

2.2.1 Stochastic control algorithm

In our models, the price of electricity is given by a Marko-
vian process. We use stochastic dynamic programming in
order to optimize the management of the facility. The stock
is discretized in equally spaced levels. Furthermore, the
regime switching occurs only at given dates (once a day):
so we discretize time in equally sized intervals ∆t. From
the final value of J∗, we evaluate the value J∗ for all the
previous dates and all the levels of the stock with the algo-
rithm of figure 1.

This algorithm is a generic one: the price model only
appears in the conditional expectation. The time loop (t
variable) is inherently sequential, unlike the stock level loop
(c variable) which can be efficiently parallelized. However,
some complex data exchange will be mandatory at the end
of each time step (see section 3).

For t := (N − 1)∆t to 0
For c ∈ admissible stock levels

For s ∈ all possible price levels
J̃∗(s, c) := max (−(ains + Kin)∆t+

E (J ∗(St+∆t , c + ain∆t)|St = s),
(aouts − Kout)∆t+
E (J ∗(St+∆t , c − aout∆t)|St = s),
−Ks∆t+
E (J ∗(St+∆t , c)|St = s))

J∗ := J̃∗ //Set J∗ for the next time step

Figure 1. Stochastic control algorithm.

2.2.2 Conditional expectation algorithm

The previous generic algorithm used for stochastic control
uses the calculation of the conditional expected gain asso-
ciated with price uncertainties. In order to evaluate this ex-
pectation, different techniques are used:

• A trinomial tree is used to generate uncertainty factors
for the Ornstein-Uhlenbeck processes [6]. With a one-
factor Gaussian model a single tree is generated, so
the expectation is evaluated very quickly (will lead to
our ”G” algorithm). With a two-factor model two trees
are combined generating far more calculation (that will
lead to our ”G-2f” algorithm). Furthermore, the long-
term tree has far more branches than the short-term tree
due to a small value of the long-term mean-reverting
coefficient. In the second case the memory needed ex-
plodes with the maturity of the evaluation.

• A Partial Integro Differential Equation of that kind is
used to calculate the expectation in the third model:

∂f

∂t
−

∫
R

(
f(x + y) − f(x) − ∂f

∂x
(x)y

)
KNIG(α,β,δ)(y)dy−

(σS
δβ

γ
− aS)

∂f

∂x
= S(x)

where the kernel KNIG(α,β,δ)(y) behaves as O(1/y2)
in 0 (it will lead to our ”NIG” algorithm). This calcu-
lation is not very memory-demanding but is far more
costly than in the Gaussian model.

3 Optimized distributed algorithm

3.1 Distribution strategy

To achieve large speedup and size-up, we have decided
to parallelize the stochastic control algorithm of figure 1 on
scalable distributed architectures, such as PC clusters and
distributed memory supercomputers. Temporal steps of the
external loop have to be run sequentially, but computations
of the second loop on stock levels can be run concurrently.
So, we have split the stock level loop on a set of processors



New
Results

it

(All) possible stock levels

P0 P1 P2

New
Results xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx

P0 P1 P2

Previous
Results

P0 P1 P2
it

i+1t

input data ranges
required and routed

next
step

stock levels processed 
at time step i+1

Cmini Cmaxi

Cmaxi+1Cmini+1

stock levels processed 
at time step i

xx
xx
xx

xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx

xxxx
xxxx
xxxx
xxxx

xxx
xxx
xxx

xx

x
x

xx
xx
xx

xxx
xxx
xxx
xxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

xx
xx

Figure 2. Example of optimized data distribu-
tion on three processors.

communicating by message passing. However, the range of
stock levels to process changes at each temporal step, and
leads to redistribute computations and data at each step.

As illustrated on figure 2, the stock level loop (from
Cmini+1 to Cmaxi+1) is load balanced on processors at
step t = i + 1, and each processor stores its results. At step
t = i (the next step), the new stock level loop (from Cmini

to Cmaxi) is load balanced on processors, and each proces-
sor requires a specific range of the previous results as input
data. Hence, each processor computes the new input data
range required to process each stock level, and deduces the
input data range required by each processor to process its
new range of stock level (according to the load balancing of
the new range of stock levels to process). Then, each pro-
cessor establishes its routing plan: it points out the range
of its previous results to send to each other processor, and
the range of previous results to receive from each other pro-
cessor. Finally, each processor executes its routing plan ac-
cording to a predetermined message passing scheme.

To store some new input data tables with different sizes
at each step, some data tables are allocated and freed at
each step on each processor. This memory management
strategy introduces some small overhead, but in exchange
minimizes the amount of memory used and therefore allows
larger problems, requiring more processors, to be treated.

3.2 Main algorithm steps

According to the strategy introduced in the previous sub-
section, we have designed the distributed algorithm de-
picted in figure 3. The first step consists in load balancing
the computations of the prices at tn by calling specific ini-
tialization routines. Then the algorithm enters a loop of n
steps (from tn−1 to t0) which encompasses two main sub-
steps: data exchange planning and execution, and new com-
putation processing.

The data exchange planning and execution sub-step

starts computing the new load balancing map and the new
input data distribution map on each processor. These com-
putations are simple, and are faster to compute entirely on
each processor than to distribute and parallelize. Then each
processor builds its routing plan and resizes its local data ta-
bles, according to the new input data distribution map. The
data exchanges are achieved just after these preliminary op-
erations, and are based on point-to-point communications.

The new computation processing sub-step is illustrated
at the bottom of the time step loop of figure 3. It consists
in a pure local and efficient computation on each processor,
according to the stochastic control algorithm of figure 1, and
to a fixed price model (see section 1.2).

3.3 MPI based implementations

Our first implementation was based on a Python top-
level program calling MPI communication routines through
the Python Pypar module [7]. This allowed users to
easily tune the top-level program and run different dis-
tributed computations, but it was limited to the use of
MPI_Bsend() routine and did not run on Blue Gene/L
(which did not support Python), and we limited our ex-
periments to a small 32 PC cluster. Our second im-
plementation has been entirely achieved using MPI and
C++ programming tools. Three different versions have
been implemented: using the blocking communication
routine MPI_Bsend(), and the non-blocking routines
MPI_Ibsend() and MPI_Issend(). Non-blocking
versions allow each PC to parallelize and overlap its mes-
sage sending and receiving at each step, and the non-
blocking MPI_Issend() routine achieves non-blocking
handshakes and requires a more complex design but avoids
to allocate extra communication buffers and to write out
again data. As the required memory is less important, this
implementation can reach greater size-up, when distributing
large applications. Moreover, its non-blocking handshake
has exhibited very limited overheads in our application ex-
periments.

4 Testbed introduction

4.1 Experimental distributed systems

Our distributed algorithms and implementations were
assessed on three different testbeds. The first was the
“Pentium-4 cluster” of SUPELEC which interconnects 32
PCs across a cheap Gigabit Ethernet network composed
of two interconnected 24-port switches. Each PC has a
Pentium-4 at 3 GHz and 2 GB of RAM. The second was
the “dual Opteron cluster” of the French experimental Grid
Grid’5000. It is composed of 72 nodes with two single
core Opteron processors at 2 GHz and 2 GB of RAM that



Load balancing of computations at t(n)
Each processor computes prices at t(n)

Each processor computes the entire new load balancing map
Each processor computes the entire new input data distribution map

Each processor computes its routing planning, to redistribute input data for the next computation step
Each processor resizes its local input tables (minimizing the used memory space)

Each processor achieves its routing planning, accordingly to a fixed routing scheme:

Each processor processes its range of stock values, and computes prices at t(i) function of some prices at t(i+1)

T
im

e 
st

ep
 lo

op
 (

fr
om

 t(
n-

1)
 to

 t(
0)

)

Short post processing and final result collect

Send
Recv

(complex) data exchange planning and execution

new computation processing

Figure 3. Main steps and sub-steps of our distributed algorithm for stochastic control.

are interconnected across a fast Gigabit Ethernet switch.
The third was the “IBM Blue Gene/L supercomputer” of
EDF R&D, providing up to 4096 nodes which communicate
through proprietary high-speed networks. Each node hosts
two processors at 700 MHz which share 1 GB of RAM.
These testbeds are various but all have mono-core proces-
sors.

4.2 Test application features

For the purpose of testing the application with our dif-
ferent models we consider the following scenario where a
gas storage owner wants to valuate his utility which has a
capacity of 100, 000 MWh for a use during two years. The
injection and withdrawal rates have values ranging between
100 and 1, 000 MWh per day and are highly dependent on
the stock level. When the stock level in the cavity is high,
the pressure is high too and makes injections more difficult
than withdrawals. Conversely, when the stock level is low,
injections are easier than withdrawals. The storage is valu-
ated for a use beginning in one year and finishing two years
later. The initial stock level is 20, 000 MWh and the final
value of the gas storage in three years is set to 0 for sim-
plicity. An annual interest rate of 8% is used as well as the
forward prices available at Zeebruge hub at the beginning
of 2006. The discretization step of the gas storage is set to
500 MWh.

The three stochastic price models are characterized by
a daily short-term volatility equal to 0.014 associated to
a daily short-term mean-reverting value of 0.0022 that to-
tally define the first Gaussian model. The two-factor model
needs two additional parameters to be defined: the daily
long-term volatility set to 0.004, and the daily long-term

mean-reverting set to 0.01. As for the Normal Inverse Gaus-
sian model it also needs two more parameters: the first one
α is set to 0.5 and is related to the kurtosis of the distribu-
tion while the second one β is set to 0 and is associated to
the asymmetry of the distribution. The time step used for
the three methods is 0.125 day. Such a refined time step is
not necessary for the valuation itself, but it is to calculate
the optimal command that could be used by a Monte Carlo
simulator in order to get, for example, the cash distribution
generated each month during the two years. The Normal
Inverse Gaussian model also needs a step for the space dis-
cretization. This step is set to 0.0125.

Using the above configuration, our three models yield
respectively 1, 355, 010, 1, 358, 930 and 1, 354, 630 which
correspond to the renting price of our fictive gas storage
space calculated in euros for a two-year period. In this gas
storage test case, it can be noticed that the prices obtained
by the three models are nearly identical. Nevertheless, other
tests have to be carried out in order to determine whether the
sophisticated model can outperform the one-factor Gaus-
sian model for different types of gas storage. As it is shown
by the performance results in the following section, such an
investigation is made possible by our distributed implemen-
tation.

5 Large experiment results

5.1 Gaussian algorithm

When using two processors per node, the Blue Gene per-
formances do not decrease: using P processors on P nodes
or P/2 nodes leads to the same execution time. At the op-
posite, the dual Opteron cluster performances fall consid-



1E4

1E3

1E2

1E1

1
 1024 256 64 32 16 8 4 2 1

Ex
ec

ut
io

n 
tim

e 
(s

)

Number of processors

G on Blue Gene
G on P4 cluster

G on Opteron cluster

1E3

1E2

1E1

1
 1024 256 64 32 16 8 4 2 1

Sp
ee

d-
up

Number of processors

S(P) = P
G on Blue Gene
G on P4 cluster

G on Opteron cluster

Figure 4. Execution times (in logarithmic scale) and speedups of the Gaussian algorithm on three
different distributed architectures, using only one processor per node.

1E6

1E5

1E4

1E3

1E2

1E1

1
 1024 256 64 32 16 8 4 2 1

Ex
ec

ut
io

n 
tim

e 
(s

)

Number of processors

NIG on Blue Gene
NIG on P4 cluster

NIG on Opteron cluster

1E3

1E2

1E1

1
 1024 256 64 32 16 8 4 2 1

Sp
ee

d-
up

Number of processors

S(P) = P
NIG on Blue Gene
NIG on P4 cluster

NIG on Opteron cluster

Figure 5. Execution times and speedup of the Normal Inverse Gaussian algorithm on three different
distributed architectures, using the maximum number of processors per node.

erably: it is faster to use P processors on P nodes than to
attempt to use 2.P processors on P nodes! So we use only
one processor per node on our PC clusters and two pro-
cessors per nodes on the Blue Gene to run the distributed
Gaussian model. Performance measures are summarized
on figure 4. When using only one processor per node,
the Blue Gene supercomputer and the dual Opteron clus-
ter achieve a superlinear speedup from 4 to 64 processors.
This can be explained by the improved cache performance
obtained from the smaller memory requirements per node
as a result of the distribution of the data. However, this
superlinear speedup tends to disappear, and the Blue Gene
speedup reaches its maximum at 512 processors. Even on
a supercomputer our parallelization of the Gaussian algo-
rithm does not scale beyond 512 processors, and its per-
formance surpasses just a little bit the one on our high-end
dual Opteron cluster using 64 processors (on 64 nodes). As
for the cheap Pentium-4 PC cluster, it does not achieve any
superlinear speedup and has a slowly increasing speedup
curve. So, a fast interconnection network seems mandatory

to achieve good performances on this distributed applica-
tion, but a medium size monoprocessor PC cluster with a
good Gigabit-Ethernet switch can be a sufficient solution to
run this distributed Gaussian algorithm.

Finally, despite some scalability problems that have been
encountered, the best sequential execution time which was
close to 15 minutes has been successfully decreased to 13 s -
15 s on a high-end cluster and a Blue Gene supercomputer.
This is a real improvement for users, that frequently run this
reference algorithm.

5.2 Normal Inverse Gaussian algorithm

Our distributed Normal Inverse Gaussian algorithm and
implementation have reached very good performances in-
dependently of the per-node number of processors that was
used. Figure 5 introduces performances achieved using the
maximum number of processors per node on the Pentium-4
cluster, the dual Opteron cluster and the Blue Gene super-
computer. The performance curves exhibit an almost per-



1E5

1E4

1E3
 1024 512 256 128 64 32 16

Ex
ec

ut
io

n 
tim

e 
(s

)

Number of processors

Blue Gene 2p/node
Blue Gene 1p/node

Opt-cluster 2p/node
Opt-cluster 1p/node
P4-cluster 1p/node

Figure 6. Execution times of 2-factor Gaus-
sian algorithm on 3 different architectures,
using 1 or 2 processors per node.

fect parallelization of the Normal Inverse Gaussian algo-
rithm on all these architectures, even on the cheap Gigabit-
Ethernet Pentium-4 cluster. The lowest execution time is
achieved by the Blue Gene when using 1024 processors.
However, the dual Opteron PC cluster achieves similar per-
formances with only 128 processors. Hence, a large PC
cluster with powerful multiprocessor nodes can be an inter-
esting alternative to run our distributed NIG algorithm, and
this regardless of its interconnection network.

In the end, our best sequential execution time which
nears 6h25 (obtained by an Opteron processor) has been de-
creased to 3 minutes using 1024 processors of Blue Gene.
Thus, our distribution makes it possible for users to use the
Normal Inverse Gaussian algorithm provided they can mo-
bilize enough computing resources.

5.3 2-factor Gaussian algorithm

The distributed 2-factor Gaussian algorithm requires
both huge amount of CPU and memory. With the current
set of parameters (see section 4.4.2) and our implemen-
tation which mainly uses two tables - for storing the old
and the new results - the application would theoretically re-
quire 2 × 5, 895 MB of memory to execute sequentially.
Hence, the application would require 1, 474 MB per node
and would easily be run on 8 nodes equipped with 2 GB
of RAM. However, due to the nature of the stochastic al-
gorithm and our distribution strategy, the overall memory
needed when parallelizing is greater than in the sequential
case. Furthermore, the kernel of the host operating system
as well as the presence of communications which are han-
dled by MPI contribute to increase the memory use. As a
result, in practice, the minimum requirement to run this al-
gorithm without swapping is 10 processors with 2 GB of
memory each.

Figure 6 shows the execution times measured. The small
32 Pentium-4 PC cluster has been able to run this bench-

mark from 16 to 32 processors, with 2 GB of memory per
PC (and per processor). On 32 processors the execution
time was approximately half of the execution time on 16
processors: the G-2f application seems to scale on this ba-
sic cluster. The dual Opteron cluster, which is equipped
with 2 GB of memory per PC, could also run our experi-
ments with 16 PCs. Execution times on P processors were
approximately the same on P nodes and on P/2 nodes, and
the benchmark successfully scaled up to 128 processors us-
ing 64 nodes and 2 processors per node. Finally, on Blue
Gene, with only 1 GB of memory per node, 32 nodes and
their memories were required. Execution times were a little
bit longer when using P processors on P/2 nodes instead of
P nodes, but the slow down was not so important. Hence,
like on the dual Opteron cluster, the G-2f application has
also been run on the Blue Gene using two processors per
node. Figure 6 shows that the G-2f application scales very
well up to 128 processors on the dual Opteron cluster and
up to 1024 processors on the Blue Gene machine. Finally,
the Blue Gene machine appears to be the most interesting
system to run the long G-2f application.

Our distributed 2-factor Gaussian algorithm has suc-
ceeded in making possible these simulations (using the
memory of at least 16 or 32 processors), and has yielded
results in 46 minutes on 1024 processors. However, the
computation of the usual speedup is impossible since the
G-2f benchmark cold not be run on a single processor.

6 Accuracy vs execution time

6.1 Interest in constant time computing

All previous calculations have been carried out using
a discretization step of the stock level q-discr equal to
500 MWh. The q-discr factor is not the unique accuracy
control parameter of the G-2f simulations, but has a signif-
icant impact on this benchmark. When needed, it is impor-
tant to be able to run these simulations with higher accu-
racy in close execution time, to get the right results without
disturbing the user planning. For example, to maintain the
analysis time at a constant value before making a deal or
an investment. But it is also important not to mobilize too
much computing resources (that could be useful for other
urgent computations). So, we have studied the scalability
of both our application and our distributed systems by try-
ing to identify the exact amount of computing resources to
maintain the execution time to 12, 000 s (3h20) when the
required accuracy increases.

6.2 Experimental scalability

The number of processors required to run the G-2f
benchmark in 12,000 s for different simulation accuracies



Table 1. Processors required to achieve G-2f computations in 12,000 s, function of the accuracy.
q-discr factor: 2000 MWh 1000 MWh 500 MWh 250 MWh
Simulation accuracy: rough simulations fine simulations

dual Opteron cluster, 2 proc. per node 18 proc. 38 proc. 88 proc. -
Blue Gene supercomputer, 1 proc. per node 32 proc. 63 proc. 132 proc. 280 proc.
Blue Gene supercomputer, 2 proc. per node 32 proc. 63 proc. 132 proc. 286 proc.

Simulation result (pricing result in Euros) 11, 065 Euros 13, 052 Euros 13, 589 Euros 13, 870 Euros

and on different system configurations, are detailed in ta-
ble 1. This extensibility experiment shows it is possible to
maintain constant the execution time of the G-2f applica-
tion when increasing its accuracy to get better results. The
last row of table 1 shows that the results’ values improve
and variations minimize when the discretization factor q-
discr decreases. Table 1 points out that the number of re-
quired processors tends to double when the discretization is
twice finer. The Blue Gene architecture has been designed
to scale up to a hundred thousands processors (to reach
PetaFlops), and it is easy to mobilize the required number
of processors to achieve a simulation with a 250 MWh dis-
cretization factor in 12, 000 s, while this was not possible on
the dual Opteron cluster. Table 1 shows that 286 Blue Gene
processors instead of 280 are required to run a strongly ac-
curate simulation in 12, 000 s when using two processors
per node instead of one. As this overhead is small, it is bet-
ter to use P processors on P/2 nodes since it mobilizes less
computing resources.

Finally, this scalability benchmark shows that our dis-
tributed strategy and implementation scale successfully on
a Blue Gene as well as on a PC-cluster architecture.

7 Conclusion and perspectives

Our first distribution of a stochastic control algorithm
used for gas storage valuation, and the numerous experi-
ments we did on three different distributed systems, have
shown it is possible to efficiently speed up and size up
stochastic control computations. Thanks to our paralleliza-
tion strategy which distributes both computations and data,
and updates this distribution at each time cycle, we have
succeeded (1) in running simulations that required at least
10 processors with 2 GB of memory each, (2) in scaling
and (3) in achieving performances on a PC cluster (up to
128 processors) as well as on a Blue Gene supercomputer
(up to 1024 processors).

The first uses of our distributed 2-factor Gaussian al-
gorithm allowed to notice that the choice of the discretiza-
tion factor is a far more relevant to the result value than the
choice of the model. However, in order to be actually used
in industrial environments, this research still need to be im-
proved. A N-dimensional version of the stochastic control

algorithm, which is used to optimize the global manage-
ment of several storage devices, still has to be distributed.

During our numerous experiments it appeared that PC
clusters are sometimes interesting alternatives to supercom-
puters, but sometimes they lack of reliability. Several fail-
ures, that led to restart the benchmarks, had to be dealt with
when using PC clusters, while we never encountered such
issues on the IBM Blue Gene/L supercomputer at EDF com-
pany. Adding fault tolerance mechanisms in our distributed
stochastic control algorithm is another topic of our current
research.

Acknowledgment

This research is part of the ANR-CICG GCPMF project,
and is supported both by ANR (French National Research
Agency) and by Region Lorraine.

References

[1] O. E. Barndorff-Nielsen. Processes of Normal Inverse Gaus-
sian Type. Finance and stochastics, 2, 1998.

[2] C. Barrera-Esteve, F. Bergeret, E. Gobet, and al. Numerical
methods for the pricing of Swing options: a stochastic ap-
proach. Methodology and Computing in Applied Probability,
2006.

[3] Z. Chen and P. Forsyth. A semi-lagrangian approach for nat-
ural gas storage valuation and optimal operation. Technical
report, 2006.

[4] A. V. Gerbessiotis. Trinomial-tree based parallel option price
valuations. International Journal of Parallel, Emergent and
Distributed Systems, 18(4), 2003.

[5] L. Henrio, V. D. Doan, M. Bossy, F. Baude, S. Vialle,
V. Galtier, and S. Bezzine. A fault tolerant and multi-
paradigm grid architecture for time constrained problems.
Application to option pricing in finance. In e-Science 2006,
Amsterdam, Netherlands, dec 2006. IEEE CS Press.

[6] P. Jaillet, E. Ronn, and S. Tompaidis. Valuation of
commodity-based swing options. Management science, 50,
2004.

[7] C. Makassikis, X. Warin, and S. Vialle. Distribution of a
stochastic control algorithm applied to gas storage valuation.
In The 7th IEEE International Symposium on Signal Process-
ing and Information Technology, Cairo, Egypt, 2007.


