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Subband architecture for Hybrid Filter Bank
A/D converters

Davud Asemani, Member, IEEE, Jacques Oksman, and Pierre Duhamel, Fellow, IEEE

Abstract—Hybrid Filter Bank (HFB) A/D converters (ADC)
are a candidate to realize the wide-band ADC for future
telecommunication systems. The classical HFB-based ADCs are
simulated in both time and frequency domains using simply-
realizable analog filters in this paper. The high sensitivity of
HFB to realization errors of analysis filter bank is studied and it
is shown that a new HFB architecture is necessary to employ
the blind techniques for correcting the analog imperfections.
Using the discrete-time model of HFB, a Multiple-Input Multiple-
Output (MIMO) model is proposed for the HFB so that a new
architecture called subband HFB-based ADC is obtained. The
subband HFB ADC not only leads to a better resolution but is less
sensitive to realization errors than the classical case. Besides, a
Linear-Time Invariant (LTI) system represents the input-output
relation of subband HFB without any spectral overlapping in
contrary to the classical HFB. Thus, blind techniques may be
used for correcting the realization errors in the subband HFB.

Index Terms—Hybrid Filter Bank, A/D converter, Software-
Defined Radio.

I. INTRODUCTION

THE demand for A/D or D/A converters with higher
speeds has dramatically increased for realizing the new

communications concepts such as Software-Defined Radio
(SDR) approach [1]. Using a wide-band A/D or D/A converter,
the conventional analog sharp filters and channelizer are
substituted by digital filtering [2] and then the cost of receiver
is independent of the channel number. Nowadays, the perfor-
mance of ADCs can not still fulfill the requirements of the
wide-band receiver of SDR approach. To achieve higher speeds
of conversion, the use of A/D converters in parallel has been
attractive during the several decades [3], [4]. Time-interleaving
and discrete-time Hybrid Filter Bank (HFB)A/D converters
have been proposed to realize a parallel A/D conversion
[5], [6]. These structures include the on-chip compatibility
with dense digital signal processors. The discrete-time Hybrid
Filter Bank (HFB) architecture overcomes the problems of
extremely high sensitivity to the mismatch of converters and
timing errors from which time interleaving structure suffers
much [7]. Considering the disadvantages of discrete-time filter
bank such as limited band-width and switching noises, analog
filter banks have been offered to operate instead of discrete-
time analysis filter bank in the HFB structures. Fig. 1 shows
the continuous-time HFB-based A/D converter neglecting the
quantization noise [8]. It includes two (analog analysis and
digital synthesis) filter banks. Since the Perfect Reconstruction
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Fig. 1. The classical HFB-based A/D converter.

Fig. 2. The subband architecture of HFB-based A/D converter for estimating
the subband components of the input signal.

(PR) condition can not hold in practice using Finite-Impulse
Response (FIR) (or even Infinite-Impulse Response (IIR))
synthesis filters [9], [10], the reconstructed output x̂[n′] of
an M-branch HFB-based ADC is associated with the real
input samples x[n′] = x(n′T ) through one distortion and (M-1)
interference (aliasing) terms [9]. To achieve a wide-band A/D
conversion, the analog analysis filters are required to operate at
high frequencies. Then, the feasibility of analog filters at high
frequencies would be important. For this purpose, the simply-
realizable first- and second-order analog filters (equivalent
to RC and RLC circuits) may be good candidates. Using
these simple analysis filters along with simple FIR synthesis
filters, an acceptable performance has been reported for HFB-
based ADC if a small oversampling ratio is applied [11].
Different weighed sum of distortion and aliasing terms have
been proposed as the optimization criterion for designing the
HFB-based ADCs [12]. However, the fundamental challenge
in the implementation of HFB-based A/D converters is the
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related high sensitivity to the realization errors [13]. In fact,
a very small deviation in the parameters of analysis filter
bank results in a large degradation of performance so that the
respective HFB ADC would no longer be useful [14]. Digital
compensation appears to be a suitable way to overcome this
high sensitivity to realization errors of analog analysis filters.
Sanada and Ikehara have proposed a decorrelating technique
for correcting the realization errors [15]. Nevertheless, the
proposed method needs a reference input to estimate the
parameters of analysis filters and is not a blind technique
(calibration). Besides, they have regarded a specific case where
no synthesis filters are used. In this paper, the general HFB
structures are considered in which simply-realizable first- and
second-order analysis filters are used. The aim of this paper is
to study firstly the origins of this high sensitivity to realization
errors in the classical HFB-based ADCs. Secondly, a new
architecture called subband HFB is proposed to which the
methods such as blind deconvolution and decorrelation may be
applied for correcting the realization errors without any need
to the reference input (Fig. 2). To focus on the interference
terms, quantization noises are neglected throughout this paper
for convenience. This supposition may simply hold if a high
resolution ADC is used at each branch of HFB so that the
quantization noise is much less than the interference terms [7],
[9]. In this case, the interference terms would be dominant for
determining the output resolution. Throughout this paper, n
and n′ are considered as the discrete-time indexes respectively
associated with the sampling rates 1

MT and 1
T for better

following the structures. In the next section, the classical HFB
architecture is reviewed and studied. Then, the necessity of a
new HFB architecture for correcting the analog non-idealities
using the blind techniques is shown in section II. Section III
provides a discrete-time model of HFB structure. Using the
discrete-time model of HFB, subband HFB architecture is
obtained and studied in section IV. At last, the results are
summarized in the conclusion.

II. THE CLASSICAL HFB ADCS

A. Perfect Reconstruction Equations

According to Fig. 1, the classical HFB-based ADC uses M
A/D converters sampling at the rate of 1

MT which is M times
less than the Nyquist rate 1

T associated with the analog input
x(t). The analog input signal x(t) is supposed to be limited
to the frequency interval [−π

T , π
T ]. Realization of HFB A/D

converter is feasible if and only if the presumed analysis filters
hold some conditions [4]. This condition requires the analysis
filters are chosen so that the respective analysis matrix is non-
singular at the band of interest. Neglecting quantization noise,
the A/D converters at each branch of an M-branch HFB ADC
(Fig. 1) may be replaced by a simple sampler at 1

MT . Each
signal xk[n] (0 ≤ k ≤ M − 1) may be obtained from filtering
and then sampling the analog input x(t). Then, the spectral
representation Xk(e jω) of xk[n] can be described in terms of
input X( jΩ) as:

Xk(e jω) =
1

MT

+∞

∑
p=−∞

[
X( jΩ)Hk( jΩ)

]
Ω= ω

MT − 2π
MT p

(1)

where Ω and ω represent the frequency associated with the
analog and discrete-time signals respectively. Then, the output
x̂[n′] may be described in the frequency domain X̂(e jω) as
following [9]:

X̂(e jω) =
1

MT

+∞

∑
p=−∞

[
X( jΩ) ·

M−1

∑
k=0

Hk( jΩ) ·Fk(e jω)
]

Ω= ω
T − 2π

MT p

For better interpreting above relationship, X̃( jΩ) and H̃k( jΩ)
are supposed as the periodic extensions (with the period 2π

T )
of X( jΩ) and Hk( jΩ) respectively limited to the frequency
interval [− π

T , π
T ] [16]. Using X̃( jΩ) and H̃k( jΩ), the output

X̂(e jω) may be described as follows [16]:

X̂(e jω) =
1

MT

M−1

∑
p=0

[
X̃( jΩ) ·

M−1

∑
k=0

H̃k( jΩ) ·Fk(e jω)
]

Ω= ω
T − 2π

MT p
(2)

The equality (2) may be rewritten as follows:

X̂(e jω) = X̃( j
ω
T

) ·T0(e jω)︸ ︷︷ ︸
distortion part

+
M−1

∑
m=1

X̃( j
ω
T
− j

2π
MT

m) ·Tm(e jω)

︸ ︷︷ ︸
aliasing part

where the distortion T0(e jω) and aliasing Tm(e jω) functions
(m = 1, . . . ,M−1) are:


T0(e jω) = 1

MT ∑M−1
k=0 Fk(e jω) · H̃k( j ω

T )

Tm(e jω) = 1
MT ∑M−1

k=0 Fk(e jω) · H̃k( j ω
T − j 2π

MT m)
(3)

The Perfect Reconstruction (PR) is accomplished when the
output and input samples are the same except with a possible
delay nd : x̂[n′]=x(n′T − ndT ). The PR conditions may be
interpreted as the following equations:


T0(e jω) = e− jωnd

Tm(e jω) = 0 m = 1, . . . ,M−1
(4)

B. Designing the digital synthesis filters

Using the PR equations (4), an HFB-based ADC may
be designed provided that one of the respective synthesis
or analysis filter banks are a priori known. Considering the
constraints of analog circuits, it is practically preferred to
design the digital synthesis filters according to a preselected
set of analog circuits as analysis filters. To follow conveniently
the design of digital synthesis filters, the PR equations are
firstly described in the matrix-vectorial format. Invoking (4),
the PR equations at the frequency ω may be described for an
M-branch HFB-based ADC as follows:

T(e jω) =
1

MT
H( j

ω
T

)F(e jω) (5)

where the vectors T(e jω) and F(e jω) (M×1) are:

T(e jω) =
[

T0(e jω),T1(e jω), · · · ,TM−1(e jω)
]T

F(e jω) =
[

F0(e jω),F1(e jω), · · · ,FM−1(e jω)
]T
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and H( j ω
T ) represents a matrix (M ×M) whose (m,n)th el-

ement is H̃n( j ω
T − jm 2π

MT ) (m,n ∈ [0,M − 1]). Assuming N
equally-spaced frequency points {ωi, i = 1,2, · · · ,N}, the
equality (5) may be generalized in the matrix form as follows:

TN =
1

MT
HNFN (6)

where the new vectors TN and FN (MN ×1) are:

TN =
[

T(e jω1)T ,T(e jω2)T , · · · ,T(e jωN )T
]T

FN =
[

F(e jω1)T ,F(e jω2)T , · · · ,F(e jωN )T
]T

and the analysis filters matrix HN is as following:

HN =




H( j ω1
T )

H( j ω2
T ) 0

0
. . .

H( j ωN
T )




MN×MN

Invoking (6), the PR equations may be established for the
mentioned N frequency points as following:

HNFN = B (7)

where the constant vector B is defined as follows:

B =
[

B(e jω1)T ,B(e jω2)T , · · · ,B(e jωN )T
]T

B(e jωi) = MT

[
e− jωind ,0, · · · ,0

]T

(M×1)

The frequency response of synthesis filters can be obtained
from (7) using the known analysis filters. Assuming a known
analysis filter bank, the problem is to design the respective
suitable digital synthesis filters. The Finite-Impulse Response
(FIR) filters are conveniently-realizable. Using FIR filters, the
equations would be linear in terms of the unknown coefficients
of synthesis filters as well. Considering IIR digital filters, the
problem of instability may appear [18]. Supposing the FIR
filters of the order L− 1, the kth synthesis filter fk[n] (k =
0,1, · · · ,M−1) is zero except for the range 0 ≤ n ≤ L−1 as
following:

fk =
[

fk[0], fk[1], · · · , fk[L−1]
]T

FN used in (7) may be related to the impulse responses
{ fk[n],k = 0,1, · · · ,M − 1} through the matrix A of Fourier
transform as following:

A.f = FN (8)

where f is the overall vector of FIR synthesis filters as follows:

f =
[

f T
0 , f T

1 , · · · , f T
M−1

]T

ML×1

and the matrix A of the Fourier transform is:

A =




A(e jω1)
A(e jω2)

...

A(e jωN )




MN×ML

that A(e jωi) is itself another matrix as:

A(e jωi) = IM ⊗aT (e jωi)

where IM is the identity matrix (M×M) and ⊗ stands for the
Kronecker production. The vector of aT (e jωi) is described as
following:

aT (e jωi) =
[
1, e− jωi , · · · , e− jωi(L−1)

]
1×L

Finally, according to the preceding relations, the impulse
response f of synthesis filters may be related to the analysis
filters matrix H as following:

HNFN = B Af = FN (9)

The first matrix equation in (9) (associated with (7)) consists
of a square matrix H which has to be non-singular. The
error emerges as soon as the second matrix equation in (9)
(associated with the FIR approximation) is considered. The
matrix A (MN ×ML) is necessarily chosen as a tall matrix
(N > L) to provide an acceptable interpolation. Then, the
solution is not unique and can only approximate the associated
equations. Integrating the relations of (9) and applying the
Least Squares (LS) optimization technique, it yields:

f◦ = arg
f

min ‖(HNA)f−B‖ = (HNA)†B

=
[
(HNA)H(HNA)

]−1

(HNA)HB
(10)

where f◦ is the LS solution and (.)† and (.)H represent
the pseudo-inverse and conjugate-transpose of the operand
respectively. Using f◦, the ideal condition (the aliasing and
distortion functions equal to zero and a pure delay system
respectively) does not hold. The non-ideality depends on the
optimization technique and L.

C. Simulation of an eight-branch classical HFB ADC

Using a simply-realizable class of analog circuits as the
analysis filter bank, an eight-branch HFB-based A/D converter
is designed and simulated in this section. It is supposed that
the analysis filter bank is composed of the second-order RLC
circuits except one first-order RC circuit as low-pass filter.
All the second-order RLC circuits are assumed to have a
constant passing band. The synthesis filters are supposed to
be FIR digital filters with 64 coefficients. The simulations
lead to a mean aliasing of −46 dB which is not practically
so acceptable (Fig. 3). When longer FIR synthesis filters
are used, no important change is seen in the performance
except a little improvement (the mean aliasing of −53 dB for
L = 128). To improve the performance, it has been offered not
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−0.5 0 0.5
−150

−100

−50
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Aliasing (first term)

dB

Normalized frequency

oversampling effect

oversampling zone

without oversampling
mean = −46dB

oversampling ratio = 7%
mean = − 86dB

Fig. 3. First aliasing terms (in dB) vs. the normalized frequency for an
eight-channel HFB structure. FIR synthesis filters have 64 coefficients and
oversampling ratios are 7% and 0%.

to consider the analog frequency borders (around ± π
T ) [11].

It would be equivalent to use a small oversampling ratio α
so that the equations representing the border frequencies are
eliminated because the input spectrum is now supposed to
be [− π

T (1−α),+ π
T (1−α)] [11]. Using a small oversampling

ratio, the preceding relationships (9) are still valid but a
weighting matrix W is incorporated in (7). The weighting
matrix W is an MN×MN identity matrix except some prede-
fined diagonal elements are substituted by zero to eliminate the
respective equation. The optimum oversampling ratio for this
eight-branch HFB structure has been reported about 7% [14].
The mean aliasing has been improved so much considering
the oversampling ratio α = 7%. The distortion function is
always acceptable 0 dB with the little variations (< 10−5dB).
For better comparing, the first aliasing terms are illustrated in
Fig. 3 in the cases where the oversamling ratios of 7% and
0 are used. Fig. 3 shows a narrow band gap at the negative
frequencies for the first aliaising term in the case of α = 7%.
It represents the oversampling band with a shift of m 2π

MT for
each aliasing term Tm(e jω) according to (2) and (3) [16].

III. NECESSITY OF A NEW ARCHITECTURE

As it was explained in the previous section, the classical
HFB-based A/D converter may provide a suitable performance
by using the oversampling process. However, the analog
circuits of analysis filter bank are in practice subject to the
analog imperfections since the related electronic components
include deviations from design values. The realization errors
are mostly originated from the non-ideal phenomena due to
fabrication [19]. Meanwhile, there are some time-dependent
variations in the parameters of analog circuits as well. These
analog imperfections may be associated with aging and am-
bience factors such as temperature drifts. The synthesis filter
bank is designed according to the nominal parameters and not
the real ones. So, the designed synthesis filter bank would not
be optimum for the real analysis filter bank. On the other
hand, HFB structures have exhibited a large sensitivity to
the imperfections of analysis filter bank [14]. Considering the
same eight-branch HFB structure of the previous subsection,

0 2 4 6 8 10
−200

−150

−100

−50

0

dB

Mean aliasing (Oversampling=7%)
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0 2 4 6 8 10
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−50
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Maximum aliasing (oversampling=7%

Deviation from typical values(%)
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Fig. 4. Mean (above) and maximum (below) aliasing functions in dB versus
the deviation from typical values (%) for the the classical HFB ADC and the
oversampling ratio 7%. L stands for the length of FIR synthesis filters.
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−60
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0

dB

Mean aliasing (no oversampling)
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0 2 4 6 8 10
−200

−150

−100

−50

0

dB

Maximum aliasing (oversampling = 7%)

Deviation from typical values (%)
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LS

Fig. 5. Mean aliasing functions in dB versus the deviation from typical
values (%) for TLS and LS optimization methods considering no oversampling
(above) and the oversampling ratio 7% (below) for L = 128.

the simulations have been repeated for 1000 trials of the
Gaussian realization errors. Figure 4 shows the mean and
maximum values of aliasing function versus the deviations
from nominal parameters of analysis filters considering the
oversampling ratio of 7% for different lengths of FIR synthesis
filters. The performance of classical HFB in presence of analog
imperfections deteriorates largely [14] (Fig. 4). Total Least-
Squares (TLS) optimization method is a candidate for decreas-
ing the sensitivity to deviations of the coefficient matrix [20].
However, using the TLS, no improvement is obtained in the
performance (Fig. 5). In fact, the TLS improves the perfor-
mance for zero-residual problems [20]. The design of synthesis
filter bank of HFB is not a zero-residual problem since there
is no FIR synthesis filter bank leading to a null aliasing
contribution (refer to the previous section). The sensitivity of
solution (here synthesis filter bank) to the realization errors is
proportional to the square of the condition number of coeffi-
cient matrix (here analysis matrix) [20]. Figure 6 exhibits the
condition number of analysis matrix versus the oversampling
ratio for the assumed eight-branch HFB. The condition number
grows exponentially with the oversampling ratio. It means that
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Fig. 6. The condition number of analysis matrix versus oversampling ratio
(%) for an eight-channel HFB A/D converter. L represents the number of
coefficients of FIR synthesis filters.

the oversampling process increases the sensitivity although it
provides an improvement in the absence of realization errors.
On the other hand, the classical HFB can not provide an
acceptable performance unless the oversampling process is
considered (section II-C). A modified classical HFB structure
called two-stage HFB has been already proposed [16]. The
two-stage HFB is even more sensitive to realization errors than
the classical HFB though it provides an improvement in the
absence of realization errors [14].
One of the possibilities to overcome this high sensitivity is
to apply a compensation technique. Without calibration (non-
blind) facilities, the required compensation method would
use a blind estimation technique since neither input nor the
exact transfer functions of analysis filters are known. If the
realization errors are estimated, the proper transfer functions
of analysis filters would be available for being used in the
design of synthesis filters. Blind deconvolution method has
already been used for estimating the realization errors of
analog circuits [17]. For this purpose the included analog
system has to be LTI as well as the Nyquist criterion is
respected. This technique can not be applied to the output
xk[n] of each branch in the HFB structure since there is an
undersampling process included. It can not be applied to the
global output x̂[n] either since the HFB structure represents a
non-LTI system in practice according to the aliasing terms.
Then, it can not be directly applied to the classical HFB.
Accordingly, a new architecture may be searched for HFB-
based ADC to which blind techniques can be applied for
estimating the realization errors. The new HFB architecture
should represent an LTI system between the related input-
output without any spectral overlapping.

IV. DISCRETE-TIME MODEL OF ANALYSIS FILTER

For conveniently following the extraction of the new HFB
structure (next section), it is better to have the analysis part
fully described in the discrete-time domain. Thus, a discrete-
time model of analysis part is obtained in this subsection
without loss of generality. The analysis part has been already
modeled in the discrete-time domain by Shu et. al. to obtain

Fig. 7. The analysis part of the classical HFB-based A/D converter shown
in terms of the decimation procedure.

a Minmax criterion [12]. We propose here a totally different
method for providing the discrete-time model of analysis part.
The analysis part of HFB is considered (see Fig. 2). Fig. 7
shows the analysis part where each A/D converter at 1

MT
has been replaced with the tandem of a sampler at 1

T and
a decimator (neglecting the quantization noise). The analog
input x(t) and the analysis filter bank are the only parameters
which are not described in the discrete-time domain. The
analog input x(t) may be sampled without any spectral over-
lapping at 1

T since x(t) holds the Nyquist rate 1
T . Accordingly,

x(t) can be represented in the discrete-time domain by x[n′]
where x[n′]=x(n′T ). Invoking Fig. 7, the output xk(t) of each
analysis filter Hk(s) can be explained in the frequency-domain
as follows:

Xk( jΩ) = Hk( jΩ)X( jΩ) k = 0,2, ...,M−1

Xk( jΩ) is band-limited since X( jΩ) is a band-limited signal
(limited to the Nyquist rate 1

T ). Considering this property,
Hk( jΩ) can be substituted with another analog filter Ȟk( jΩ)
as follows:

Xk( jΩ) = Ȟk( jΩ)X( jΩ) k ∈ {0,2, ...,M−1}
where Ȟk( jΩ) is defined as:

Ȟk( jΩ) =




Hk( jΩ) Ω ∈ [− π
T ,+ π

T ]

0 elsewhere
(11)

According to (11), Ȟk(s) is evidently band-limited. Its impulse
response ȟk(t) may be sampled at 1

T without any spectral
overlapping. If the continuous-time impulse response ȟk(t) is
sampled at the rate 1

T , the discrete-time impulse response hk[n′]
may be obtained as following:

hk[n′] = ȟk(n′T ) n′ = · · · ,−2,−1,0,1,2,3, · · ·
This relationship can be described in the frequency-domain as
follows:

Hk(e jω) =
1
T

+∞

∑
m=−∞

Ȟk( jΩ− j
2π
T

m)
∣∣∣∣
Ω= ω

T
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Fig. 8. Analog filter
H( jΩ) and its equiv-
alent in discrete-time
domain for HFB struc-
ture.

Fig. 9. The discrete-time model for the analysis part of HFB-based A/D
converter. n′ and n represent the discrete-time indices associated with the
sampling rates 1

T and 1
MT respectively.

Fig. 8 shows the discrete-time equivalent Hk(e jω) for an
exemplary analog filter Hk( jΩ). Accordingly, the analog filter
Hk( jΩ) can be substituted by Hk(e jω) in the discrete-time
domain. Substituting x(t) and Hk( jΩ) with x[n′] and Hk(e jω)
respectively, the samplers are eliminated and the discrete-time
model of analysis part is obtained. The related discrete-time
model of analysis part is shown in Fig. 9. Considering that
model, the objective of HFB-based A/D conversion is now to
achieve the unknown signal x[n′].

V. SUBBAND ARCHITECTURE FOR THE HFB-BASED ADCS

A. Simple illustration of Subband HFB concept

Before mathematically extracting the (subband) MIMO
model of HFB architecture, the principal idea is simply
demonstrated in this subsection. For convenience, the analysis
part of a two-branch HFB (M = 2) is considered. Without loss
of generality, the frequency responses of the original input
X(e jω) and the analysis filter H0(e jω) are supposed to be as
shown in Fig. 10. Invoking (1) and according to Fig. 9, x0[n]
may be described as follows (M = 2):

X0(e jω) =
1
2

X(e j ω
2 ).H0(e j ω

2 )+
1
2

X(e j( ω
2 −π)).H0(e j( ω

2 −π))
(12)

To better observe (12), this equality is shown in Fig. 10.
The decimation procedure is carried out by two operations in
Fig. 10 in reference with the two narrow-band parts (in bricks
and hexagons): spectral dilating, and addition. If these two
narrow-band components of the input signal are considered

Fig. 10. The detailed
demonstration of
the decimation after
filtering. The input
X(e jω) passes an
analysis filter H0(e jω)
and then decimated
by M = 2. The output
X0(e jω) has an LTI
relationship with the
spectral parts shown in
hexagons and bricks.
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Fig. 11. The extraction of subband signals S0(e jω) and S1(e jω) from the
original input X(e jω) for a two-branch HFB structure by decimating (one
out of 2) the narrow-band (hexagonal and brick) parts. The associated LTI
filters H00(e jω) and H01(e jω) may be obtained similarly from the analysis
filter H0(e jω).

as the virtual inputs, there exist no spectral overlapping and
these new inputs would have an LTI relationship with the
output X0(e jω). Fig. 11 shows schematically these new input
signals S0(e jω) and S1(e jω) obtained from the narrow-band
components of X(e jω) by decimation. We call these signals
the subband components of the input x[n′]. It may be seen
that X0(e jω) is produced from the subband signals S0(e jω)
and S1(e jω) as follows (Fig. 11):

X0(e jω) = S0(e jω)H00(e jω)+S1(e jω)H01(e jω) (13)

According to (13), X0(e jω) consists of the subband signals
S0(e jω) and S1(e jω) passing through two LTI filters H00(e jω)
and H01(e jω). In general case (Fig. 9), we can state that the
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Fig. 12. The schematic illustration for extracting each subband signal Sk(e jω)
(0 ≤ k ≤ M−1) from the original signal X(e jω).

outputs x0[n], x1[n], ..., and xM−1[n] of analysis part may be
associated to M subband signals through an LTI relationship
(M subband signals would exist for an M-branch HFB). Then,
an LTI model may be established between virtual subband
signals and outputs x0[n], x1[n], ..., and xM−1[n]. This model is
mathematically discussed and provided in the next subsection.

B. Subband model of the HFB analysis part

The discrete-time model of analysis part is considered
(Fig. 9). It is proposed to consider M discrete-time signals
s0[n], s1[n], ..., and sM−1[n] called subband signals. Using the
previous subsection V-A, each sk[n] may be extracted from
the original input x[n′] in the frequency domain as shown
in Fig. 12. When k is even (k = 0,2, ...) , Sk(e jω) may
mathematically be interpreted as follows (Fig. 12) [18]:

Sk(e jω) =




1
M X(e j ω

M + jk π
M ) ω ∈ [0,π]

1
M X(e j ω

M − jk π
M ) ω ∈ [−π,0]

(14)

and for k = 1,3, ..., it will be:

Sk(e jω) =




1
M X(e j ω

M − j(k+1) π
M ) ω ∈ [0,π]

1
M X(e j ω

M + j(k+1) π
M ) ω ∈ [−π,0]

(15)

The subband signals may be produced as shown in Fig. 13
where an ideal subband filter Gk(e jω) is used at each branch.
Gk(e jω) is a virtual filter (no need to produce it) being zero at
all the frequencies except k π

M ≤ |ω| ≤ (k+1) π
M . Gk(e jω) may

be considered as demonstrated in Fig. 14. There is no spectral
overlapping or ambiguity due to the decimation procedure in
the production of s0[n], s1[n], ..., and sM−1[n] because of the
narrow-band nature of subband filters.
The outputs of analysis part (x0[n], x1[n], ..., and xM−1[n]) can
be reconstructed in terms of these subband signals. Similarly
to (13), each xk[n] may be produced from the subband signals
as following:

Xk(e jω) =
M−1

∑
m=0

Hkm(e jω)Sk(e jω) (16)

where Hk0(z), Hk1(z), ..., and Hk(M−1)(z) are extracted from
the analysis filter Hk(z) like to the subband signals (similar
to (14) and (15)). Generalizing (16) to all the branches leads
to the following matrix relation:

x[n] = H[n]� s[n] (17)

Fig. 13. The subband MIMO model for the analysis part of HFB-based A/D
converter. The subband signals {s0[n], s1[n],..., sM−1[n]} and {x0[n], x1[n],...,
and xM−1[n]} are inputs and outputs respectively.

Fig. 14. The subband
filter Gk(e jω) is zero
in the interval |ω| ≤ π
except for k π

M ≤ |ω| ≤
(k +1) π

M .

where � represents the element-wise convolution and the
vectors x[n] and s[n] are:

x[n] =
[

x0[n],x1[n], ...,xM−1[n]
]T

s[n] =
[

s0[n],s1[n], ...,sM−1[n]
]T

and H[n] is an M × M matrix of digital analysis filters
and its (k,m)th element is the impulse response of Hkm(z).
Accordingly, the vector of subband signals s[n] is related to
the available signals vector x[n] through an LTI operation.
Invoking (17) and using the preceding remarks, the analysis
part of HFB structure may be modelled in the discrete-
time domain using a MIMO structure as shown in Fig. 13.
Assuming the subband signals s[n] and the outputs of analysis
part x[n] as the input and output vectors, an LTI MIMO system
has been achieved. The decimation procedure exists no longer
between input-output signals.

C. Subband HFB-based ADC

Using the MIMO model of analysis part (Fig. 13), a new
HFB architecture for A/D conversion can be proposed. Fig-
ure 2 shows this subband HFB-based A/D converter applying a
matrix of digital filters called synthesis filter matrix F(z) to the
analysis part. This new ADC reconstructs the subband signals
s0[n], s1[n], ..., and sM−1[n] instead of the original input x[n′]
though x[n′] can be reconstructed through the computations
from the subband signals. The synthesis filter matrix would
tend to the inverse of analysis filter matrix H[n] used in (17).
The MIMO model of analysis part (Fig. 13) may be employed
for designing the synthesis filter matrix F(z). Considering
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Fig. 13 and Fig. 2, PR equations at each frequency ω will
be:

F(e jω).H(e jω) = I.e− jωnd (18)

where I represents the identity matrix (M×M) and nd stands
for an arbitrary delay. nd is considered for maintaining the
causality. F(e jω) and H(e jω) are the frequency representation
of the synthesis and analysis filter matrices respectively. Solv-
ing (18) leads to the synthesis filters matrix F(e jω) at each
frequency ω as following:

F(e jω) = e− jωnd H−1(e jω) (19)

where the existence of H−1(e jω) has implicitly been assumed.
The relation (19) may be established for N equally-spaced
frequency points (like to section II-B) so that the frequency
response of each synthesis filter Fi j(e jω) can be achieved in
the whole spectrum. Supposing that each synthesis filter is FIR
with L coefficients, N must be selected larger than L to have
an overdetermined problem. On the other hand, the overfitting
procedure may occur if N is chosen much larger than L. In
this paper, N has been selected between 2L and 3L. Using FIR
synthesis filters, some distortion and interferences may appear
at the output signals. Each output ŝk[n] can be interpreted
in terms of distortion and Inter-Channel Interference (ICI)
terms in this case. ICI terms are equivalent for the aliasing
terms considered in the classical HFB structure (section II).
Supposing the matrix F(e jω) of FIR synthesis filters, T(e jω)
is defined as following:

T(e jω) = F(e jω)H(e jω)

T(e jω) is a matrix containing distortion and ICI terms. It
reveals that the estimated value ŝk[n] of kth subband signal
sk[n] may be developed in the frequency domain as following:

Ŝk(e jω) = Tk,k(e jω)Sk(e jω)︸ ︷︷ ︸
distortion term

+
M−1

∑
m=0,m�=k

Tk,m(e jω)Sm(e jω)

︸ ︷︷ ︸
ICI terms

(20)

The (k)th diagonal element Tkk(e jω) of T(e jω) stands for the
distortion function related to the subband signal Sk(e jω). The
other M−1 elements of (k)th row of the T(e jω) represent the
relative ICI terms. e− jωnd is the ideal value of the distortion
function and the ICI elements are desired to be ideally null.

D. Comparing subband and classical HFB architectures

1) Performance with perfect analysis filters: An eight-
branch subband HFB structure is considered using the same
analysis filters of section II-C. The analysis filters are assumed
to include no realization error. Supposing different lengths of
FIR synthesis filters, the subband HFB-based ADC has been
simulated in the frequency domain. The average ICI values
are not so acceptable for practical applications reminding
that the quantization noises are neglected (table I). The poor
performance is related to the limitations of FIR digital filters
used in the synthesis stage. For reducing the ICI terms, we
offer to allocate a small part of frequency borders (low and
high frequencies) at each subband spectrum as Guard Band
(GB). Using a GB ratio of 7%, the performance improves

Fig. 15. The ICI terms due to the 4th subband component versus normalized
frequency. Each FIR synthesis filter includes 64 coefficients and the GB ratio
is 7%.

largely in terms of ICI functions (table I). The ICI terms
associated with one of the subband signals (s3[n]) is illustrated
in Fig. 15. Table I lists the ICI and distortion averages in dB for
the subband HFB structures in the cases of 0% and 7% guard
band ratios. Larger GB ratios lead to a better performance in
terms of the ICI terms because some constraints associated
with the GB frequencies are relaxed in the design of FIR
synthesis filters. On the other hand, changing GB has only
slight effect on the sensitivity since the condition number of
coefficient matrix remains unchanged. Using Simulink/Matlab,
both the classical and subband HFB structures are simulated
in the time domain to directly compare the related output
resolutions with the same oversampling and GB ratios. A chirp
signal covering the first subband spectrum is applied to both
HFB structures as input. In the case of subband HFB, all
subband outputs are null except the first subband ŝ0[n] which
is directly corresponding to the original input. Figure 16 shows
the error spectra for the classical and subband HFBs. It may
be seen that the error spectrum covers the whole spectrum in
the classical HFB case though the input is limited to the first
subband. Besides, a large signal appears at the oversampling
spectral area which has to be filtered out. In the subband
HFB case, this Post-Filtering (PF) procedure for filtering out
the GB spectral area is not required unless the original input
spectrum covers the GB parts. Using the well-known relation
of 6dB/bit between SNR and resolution, the output resolution
can be described in bits [18]. The output resolutions of both
(subband and classical) HFB structures are listed in table II.

TABLE I
THE ICI AND DISTORTION AVERAGES OF AN EIGHT-BRANCH SUBBAND

HFB STRUCTURE. L REPRESENTS THE LENGTH OF FIR FILTERS.
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Fig. 16. The error spectra (in dB) versus normalized frequency for the
subband (blue) and classical (red) HFB structures. Considering the same
oversampling and GB ratios of 7%, each FIR synthesis filter includes 64
coefficients. A chirp sweeping the first subband is applied as the input signal.

It may be seen that the subband HFB-based ADC provides a
slightly better resolution than the classical one supposing FIR
synthesis filters of the same order.

2) Sensitivity to realization errors: To study the sensitivity
to the realization errors, the mentioned eight-branch subband
and classical HFB structures have been simulated consider-
ing Gaussian-distributed realization errors for the electronic
elements of analysis filter bank. The simulations have been
repeated for 1000 trials of random mutually-independent real-
ization errors. Firstly, an analog input is considered including
one sinusoidal signal located at the middle of first subband
(0.5 π

8T ). Fig. 17 shows the average resolution of both (subband
and classical) HFB structures versus STD of error distribution
considering 64 coefficients for each FIR synthesis filter. The
resolutions have been shown in the presence or without PF
procedure. As it was mentioned in the preceding subsection,
PF process filters out the signal component at the oversampling
and GB spectral areas for the classical and subband HFBs
respectively. It is seen that the subband HFB exhibits less
sensitive to the realization errors than the classical HFB for
the sinusoidal input. The simulations have been repeated for
a chirp input signal sweeping the first subband spectrum as
well. Fig. 18 demonstrates the output resolutions versus the
STD of error distribution. Again, the subband HFB appears
less sensitive to the relation errors than the classical one. It
may be seen the output resolution of classical HFB degrades
so much if the PF process is not considered.

TABLE II
OUTPUT RESOLUTION OF CLASSICAL AND SUBBAND HFB-BASED ADCS.

SUPPOSING THE SAME OVERSAMPLING AND GB RATIOS OF 7%, FIR
FILTERS WITH L = 64 COEFFICIENTS ARE USED.
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Fig. 17. The output resolution (in bits) of the classical and subband HFB-
based ADCs versus STD of realization errors for a sinusoidal input. Each
FIR synthesis filter includes 64 coefficients and both the oversampling and
GB ratios are 7%.
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Fig. 18. The output resolution (in bits) of the classical and subband HFB-
based ADCs versus STD of realization errors for a chirp input.

3) Computational complexity: The classical HFB-based
A/D converter consists of M FIR synthesis filters, but the
subband architecture needs M2 ones (compare Fig. 1 and
Fig. 2). For one FIR filter with L coefficients, L multiplying
operations and delay components are effectively necessary.
Then, for implementing the synthesis stage, the subband
architecture will need M2L multiplications to be compared
with ML ones in the classic case. Nevertheless, it does not
require the upsampling operations (zero-padding by M) in the
subband case. Moreover, the subband HFB structure provides
M output samples compared with only one output sample
obtained from the classical HFB. Therefore, the computational
complexity per each output sample is equivalent for both HFB
structures.
To thoroughly compare the computational complexity, the
design phase has to be considered as well. In the design phase,
FIR synthesis filters are obtained. Assuming N frequency
points for designing the synthesis filters, conventional HFB
structure would require the inversion of an MN ×MN matrix.
The subband HFB needs the inversion operation of N matrices
with the dimension M × M. In practice, N must be much
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larger than M (N >> M) to have an acceptable interpolation
(sections V-C and II-B). Thus, the design phase of classical
HFB architecture is obviously much more complex than the
subband one. The complexity of the design phase is particu-
larly important when an adaptive method might be employed
to estimate the real analysis filter bank for compensating
realization errors.

VI. CONCLUSION

The classical HFB-based ADC may provide an acceptable
performance using perfect analog analysis filter bank provided
that a small oversampling ratio is applied. The condition
number of analysis filters matrix grows exponentially with
the oversampling ratio as well as the related sensitivity to
realization errors of analysis filters. The subband HFB-based
may be used for directly A/D converting and demodulating
the Frequency-Division Multiplexing (FDM) components of
original analog input. The subband HFB provides at least
a better performance of one bit compared to classical case.
The subband HFB is less sensitive to the realization errors
of analysis filters than the classical HFB as well. At last, the
subband HFB can employ the blind techniques for correct-
ing the analog imperfections. The subband HFB architecture
seems interesting particularly when the information signals are
accommodated in the FDM channels of a wide-band analog
signal.
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