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Project 1: the first steps

“One-dimensional stochastic optimization: 
application to gas storage valuation”
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1 – First Motivations and Objectives

Computation of a « gas storage valuation »:
• compute the « value » of an investment project
about a gas storage cavity,

• compute profits and risks associated with the 
ownership of a gas storage cavity, considering
an open energy market.

For technical, financial and legal reasons,
energy trading companies need to have
energy stocks.

For example: gas storage.

These are expensive investments!

How to optimize the management of gas storages?
How to compute the renting price ?
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Modeling and resolution

2.1 – Resolution method
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• Instantaneous profit: 
< 0 when injecting gas (we pay this gas)

> 0 when withdrawing gas (we sell this gas)

• Expected profit from t0 maturity (T):

• Looking for a strategy u leading to the maximal profit J*:
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2.2 – Dynamic Programming Algorithm

stock levels ga
s 
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Stock
levels

t

t0: today maturity

Computation of the maximal profit and associated strategy:
• using a « backward dynamic programming algorithm »

• fixing a strategic scenario at 
maturity

• considering 2 main variables:
admissible stock levels
possible gas prices: “alea”

• computing a 2D table of possible 
maximal profits at tn function of:

possible profit 2D table at tn+1
action from tn to tn+1

• at t0 (today) the algorithm joins the 
current stock level and gas price.

Results: 1) Expected (maximal) profit from t0 to maturity,
2) List of actions to do at each time step in any case
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Modeling and resolution

2.2 – Dynamic Programming Algorithm

withdrawal

injection

doing nothing

Looking for the
maximal profit

among 3 cases:

J* at tn+1

stock levels ga
s 
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J* at tn

Backward dynamic programming algorithm:
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2.3 – Price models (“alea”)
3 models of gas prices have been considered:

• « 1-factor Gaussian »: 
• considering one short-term random variable to model spot prices
• evolution of prices without any jump

• « 2-factor Gaussian »:
• considering one short-term and one long-term random variables
• evolution of prices without any jump

Computation of the expected profit () using trinomial trees

• « Normal Inverse Gaussian »:
• “jumping” model
• to model the impact of phenomena leading to brutal change of gas price

Computation of the expected profit () by solving a complex PDE (computed with
an iterative algorithm)
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Strategy:
• Distribute OldRes and NewRes tables of data and computations
• Compute and route only required parts of OldRes table

Distributed computing

3.1 – Parallelization strategy
• At each time step two tables are used:

– NewRes: for storing results of 
ongoing time step tn.

– OldRes: results of time step tn+1.

• Problem 1: stock levels of interest are 
contiguous but with variable bounds at 
each time step!

• Problem 2: complete set of data is too 
large to be stored on one node!

Admissible stock levels
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Computations

NewRes

OldRestn+1   results

tn results

At ti:
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Distributed computing

3.2 – Communication scheme
P2P1P0 Res at tn+1

P1 P2P0

P1 P2P0

P2P1P0

P2P1P0

BA

C D

1) Determine the new bounds and 
distribution of computations at tn

3) Determine data to send by P1

2) Determine data required 
at tn by P1: data to receive

5) Make communications according 
to routing plan with MPI library

6) Compute Res at tn

P0 P1
C A D

P2

- A BReceive
Send

4) Allocate optimal in size data      
structures

Example on P1:

Res at tn

Routing
plan

Res at tn+1
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Distributed computing

3.3 – Distributed Algorithm
Load balancing of computations at tM
Each processor computes prices at tM

Each proc. processes its range of stock values, and computes prices at tn
function of some prices at tn+1

Short post processing and final result collect

Each proc. computes the entire new load balancing map
Each proc. computes the entire new distribution map of required input data

Each proc. computes its routing planning, to redistribute input data for the next 
computation step

Each proc. resizes its local input tables (minimizing the used memory space)

Each proc. achieves its routing planning, accordingly to a fixed routing scheme:Send
Recv

Data exchange planning and execution

New computation processing
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Distributed computing

3.4 – MPI – C++ implementation
Implementation strategy:

To speed up: parallelization and overlapping of all communications during
the execution of one routing plan,

but computations and communications can not be overlapped

To size up: avoid extra communication buffers

Use of MPI_Issend / MPI_Irecv / MPI_Wait routines

Memory management to allocate strictly required memory at each step

Others communication routines have been experimented…
… “Issend / Irecv / Wait” appeared to be the fastest.

And: uses Blitz++, Boost and Clapack libraries
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4 - Testbeds
3 distributed architectures:

• Small and cheap desktop-PC cluster:
• 32 nodes: 32x (1 mono-core Pentium-IV 3GHz, 2GB of RAM)
• cheap Gigabit Ethernet network : 2x 24-port switches, double linked

• Medium sized blade-PC cluster (a cluster of Grid’5000):
• 72 nodes: 72x (2 mono-core Opteron 2GHz, 2GB of RAM)
• fast/normal Gigabit Ethernet network (1 large switch)

• IBM Blue Gene/L (EDF supercomputer):
• 4096 nodes: 4096x (2 mono-core processors, 700MHz, 1GB of RAM)
• Several fast interconnection networks

3 benchmark programs:
• with “1-factor Gaussian” price model needs speed-up

• with “Normal Inverse Gaussian” price model needs speed-up and size-up

• with “2-factor Gaussian” price model needs size-up and speed-up
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Experimental performances

5.1 – 1-factor Gaussian model
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• Small problem!

• Good scaling on BG/L and on blade PC cluster, and final speedup close to 254 and 107
• Bad scaling of the small cluster (with cheap Gigabit switches)
• Some superlinear speedup due to cache memory increase (?)

• Finally, BG/L appears 
a little bit faster than the 
blade PC cluster.

• Using 2 proc. per
node leads to poor
performances…

• But both seems to reach 
their scalability limit on this 
small problem.
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Experimental performances

5.2 – Normal Inverse Gaussian model
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• Long execution time problem 

• Higher computation/communication ratio (than for 1-factor Gaussian model)
• Good scaling and final speedup (680, 29 and 110) on all parallel machines

• Finally, Blue Gene
appears as fast as 
the blade PC cluster

• Using 2 proc. per
node does not disturb
the performances
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• Speedups are very
close of the ideal 
speedup



Stéphane Vialle, Xavier Warin
C. Makassikis, P. Mercier

Stochastic control optimization & simulation 
applied to energy management

Grid@Mons

Experimental performances

5.3 – 2-factor Gaussian model

• Using 2 proc. per
node does not disturb
(too much) the 
performances.

• Blue Gene/L achieved
better performances, 
taking advantage of
its very large number
of processors.

• Large size and long exec. time problem: at least 11GB of memory (for sequential runs)
impossible to run on 1 proc. and to compute rigorous speedups

• Highest computation/communication ratio (of the 3 benchmarks)
• Good scaling on all parallel machines
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Experimental performances

5.4 – Scalability experiment
• Previous simulations used a q-discretization factor of stock level equal to 500MWh.

• In order to run a simulation in limited time (before making a deal) and not to monopolize
too many computing resources, it is necessary to adapt to the required accuracy.

Resources required for G-2f simulations in 12000s 
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Fine simulationsRough simulations Accuracy level

Example:

Successful identification
of the right nb. of proc. to
run the parallel simulation 
in 12000s (3h20) function 
of the accuracy factor
q-discretization.

New scalability test of
our parallelization.
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Project 2: the real problem

“N-dimensional stochastic optimization 
and simulation: application to electricity 

asset management”
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6 – Second Motivations and Objectives
« Management of French electricity production to control cost

while satisfying demand »

Nuclear energy Hydraulic energy Energy trading

Thermal energy

Etc…

Goal: save energetic resources and money

Main levers: the commands to manage the 
different energetic stocks 

A N-dimensional stochastic optimization problem!

We extend our 1-D distributed stochastic control 
algorithm to N-D
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Modeling and resolution

7.1 – Dynamic Programming Algorithm
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Backward dynamic programming algorithm:

J* at tn+1

Cost [stock levels, prices,
commands]

J* at tn

Same kind of 
algorithm 

(compared to 1-D 
gas storage 
valuation)

N-D table N-D table

Cost [stock levels, prices,
commands]
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Modeling and resolution

7.1 – Dynamic Programming Algorithm
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Backward dynamic programming algorithm:

Projected
stock levels
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J* at tn+1J* at tn

Projected
stock levels
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Same kind of 
algorithm 

(compared to 1-D 
gas storage 
valuation)

2D tables!!
(implementation &
mathematic optim)
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Modeling and resolution

7.2 – Application overview
Part-1: Input file reading and initializations

• Read files and load data in each process memory space
• BG/L PFS concurrent read (no pb!)
• PC cluster NFS crash!

P0 reads data files and broadcasst data.

Part-3: stochastic simulation (compute risk associated to the optimized strategy)
• Independent Monte-Carlo forward simulations
• BUT: requires to read intermediate result of part 2

Many IO & many communications & few computations !

Part-2: stochastic optimization 
• N-D version of the previous algorithm
• + intermediate results storage

Many IO & many communications & huge computations
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Distributed computing 

8.1 – N-D data distribution strategy

• We have to split a N-stock hypercube of profits

• We have NbNodes = 2k on Blue Gene/L 
(no constraint on PC-cluster)

Split and map
a N-cube of data
on a 2k-cube of 
computing nodes

Objectives of the split: 
• to load balance the data and the computations
• to minimize the communications of the « N-D influence area » !

“cubic” split (avoid “flat” subcubes).

Part-2 data distribution requirements:

Pi

Stock-1 levelsS
to

ck
-2

 le
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Stoc
k-3

lev
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Pi

tn

tn+1Influence area
on tn computations
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Each (MPI) process 
computes this data 
distribution map

Distributed computing 

8.1 – N-D data distribution strategy
Pi: Compute the N-dimensional cube split in P = 2k subcubes, avoiding « flat cubes »

• identify the dimension with the largest « subcube edges »

repeat…
• split each of these subcube edges

Considering a 3-stock problem:
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• identify its ND-subcube in the global distribution map

Distributed computing 

8.1 – N-D data distribution strategy

• allocate optimal in size datastructures

Considering a 3-stock problem:
Pi: Compute the N-dimensional cube split in P = 2k subcubes, avoiding « flat cubes »



Stéphane Vialle, Xavier Warin
C. Makassikis, P. Mercier

Stochastic control optimization & simulation 
applied to energy management

Grid@Mons

Distributed computing 

8.1 – N-D data distribution strategy

Pi

• When all dimensions can be split each
processor manages very “cubic”
ND-subcubes:

• When at least one dimensions cannot be split 
processors manage more “flat” ND-subcubes:

Some stocks are aggregated into 
one large stock, leading to optimized
but complex computations. Then this
dimension cannot be split, and 
parallelization is not optimal.

Pi
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P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P5 Routing plan:

Recv

Send

Proc

Considering a 2-stock problem:

What happens on P5 (for example) ?

So it has to establish its routing 
plan:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P5
tn+1

At tn, it manages a new 2D-subcube, 
in the new 2D-cube P5

tn
… influenced by a 2D-subcube of 
tn+1 data

Distributed computing 

8.2 – N-D communication scheme

P6P5 P6
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P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P6P5 P6P6P5 P6P5 P6

P5 Routing plan:

Recv

Send

Proc

Considering a 2-stock problem:

What happens on P5 (for example) ?

It determines all 2D-subcubes it has
to receive from other processors

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Distributed computing 

8.2 – N-D communication scheme
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P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P6P5 P6P6P5 P6P5 P6

P5 Routing plan:

Recv

Send

Proc

Considering a 2-stock problem:

What happens on P5 (for example) ?

It determines all 2D-subcubes it has
to receive from other processors

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Distributed computing 

8.2 – N-D communication scheme
P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15



Stéphane Vialle, Xavier Warin
C. Makassikis, P. Mercier

Stochastic control optimization & simulation 
applied to energy management

Grid@Mons

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P5 Routing plan:

Recv

Send

Proc

Considering a 2-stock problem:

What happens on P5 (for example) ?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

It determines all 2D-subcubes it has
to send to other processors:

• compute « influence area » of P0

• compute the intersection with its
tn+1 2D-subcube of data

P0

Distributed computing 

8.2 – N-D communication scheme
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P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P5 Routing plan:

Recv

Send

Proc

Considering a 2-stock problem:

What happens on P5 (for example) ?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

It determines all 2D-subcubes it has
to send to other processors:

• repeat with other processors…

The routing plan of P5 is complete!
Execute it quickly!

Distributed computing 

8.2 – N-D communication scheme



Stéphane Vialle, Xavier Warin
C. Makassikis, P. Mercier

Stochastic control optimization & simulation 
applied to energy management

Grid@Mons

Distributed computing 

8.3 – C++ implementation 
Parallelization:

• MPI: Mpich-1, OpenMPI, IBM MPI
communication routines: MPI_Issend, MPI_Irecv, MPI_Wait

overlap all communications when executing a routing plan  (to speedup)
do not use “extra communication buffers” (to size up)

• + multithreading: Intel TBB or OpenMP

to speedup and to size up more (than using only message passing)

Scientific computing libraries:
Blitz++, Boost, Clapack, Sprng.

Total: 
• 57000 lines of C++ code
• 10% for parallelization management

• Same source code on PC-cluster and Blue Gene/L
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Experimental performances 

9.1 – Perf. of the optimization part
Performances of optimization part of a “7-stocks / 10-state-vars” computation
Using: MPICH-1 and TBB on IC-cluster (a PC cluster), IBM MPI on BG/L 

• Similar curves 
(compared to 1-D gas 
storage valuation)

• Performance on BG/L: 
- less important …
- high fluctuations …

Strange! We investigate.

• MPICH-1 on IC-cluster:
- 1 MPI process + 
2 threads: not better 
than 2 MPI processes,

- many failures beyond
64 nodes.
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BG/L - 1 process/node
BG/L - 2 processes/node
IC-cluster - 1 process/node

IC-cluster - 2 processes/node
IC-cluster - 1 process + 2 threads/node
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Experimental performances 

9.2 – Perf. of optim. & simu. parts
Details of the performances of a “7-stocks / 10-state-vars” computation
Using: OpenMPI and OpenMP on IC-cluster (a PC-cluster)

1E+02

1E+03

1E+04

1E+05

1E+01 1E+02 1E+03 1E+04
Nb of nodes

Te
xe

c 
(s

)

opti: 1 process/node
opti: 2 processes/node
opti: 1 process + 2 threads/node
simu: 1 process/node
simu: 2 processes/node
simu: 1 process + 2 threads/node

Optimization (part 2) 
on IC-cluster

Simulation (part 3)
on IC-cluster

• OpenMPI on IC-cluster:
- no failure beyond 64
nodes

- slower than MPICH-1
(approx. +20%)

- 1 MPI process + 
2 threads: better
than 2 MPI processes,

• Optimization: scales
Simulation: does not scale!

• Best implementation:
1 process + 2 threads,
(both for opti & simu)
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Experimental performances 

9.2 – Complete computation perf.
Performances of a “7-stocks / 10-state-vars” entire computation (parts 1, 2 and 3): 
Using: OpenMPI and OpenMP on IC-cluster (a PC cluster), IBM MPI on BG/L

• Part 3 (simulation)
limits the speedup

• 1 MPI process + 
2 threads/node: 
best implementation

• Threads not 
available on BG/L,

• OpenMP threads on 
IC cluster

• Performance
measurement on
BG/L in progress…

1E+02

1E+03

1E+04

1E+05

1E+01 1E+02 1E+03 1E+04

Nb of nodes

Te
xe

c 
(s

)

BG/L - 1 process/node
BG/L - 2 processes/node
IC-cluster - 1 process/node
IC-cluster - 2 processes/node
IC-cluster - 1 process + 2 threads/node

BG/LIC-cluster
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Conclusion and perspectives:
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10.1 - Conclusion
From parallel computing point of view:

Complex parallelization (with many comms. and IOs)
Speedup, size up and scalability on PC-cluster and BG/L supercomputers

More experimentations are required on BG/L
New experimentations are required on PC-cluster with different MPI libraries

Improvement of the stochastic simulation distributed algorithm is required…

From a user point of view:
Usual limit is 4-5 state variables on sequential machines!

Our software :
currently allows to process a « 7-stock/10-state-vars » problem in 
less than 2h on our PC-cluster. 

supports different theoretical models and allows to quickly 
experiment and evaluate new models
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10.2 - Perspectives
Next steps:

• More experiments on BG/L – 8192 processors (using IBM MPI)
• Experiments on BG/P - 32000 processors (using IBM MPI + OpenMP)
• Serial optimizations on BG, with the help of IBM
• Improvement of the stochastic simulations (part-3) 

Exploitation for energy management:
• Quick implementation and large scale evaluation of new models
• Design and experimentation of new and larger use cases

Towards a global optimization of EDF energy production.

Multi-site Grid experiments:
• Multi-site experiment on Grid’5000
• Impact of WAN on performances ?    

collaboration with AlGorille/INRIA team (Nancy)
• Improvement of process mapping on a multi-site Grid ?

collaboration with Reso/INRIA team (Lyon)

May-June 2008

May-December 2008

June 2008 …

��
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Stochastic control optimization & simulation 
applied to energy management: 

From 1-D to N-D problem distributions, on 
clusters, supercomputers and Grids.

Questions ?
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