
HAL Id: hal-00292648
https://centralesupelec.hal.science/hal-00292648

Submitted on 2 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Teaching the Concept of Refinement with B
Joanna Tomasik, Guy Vidal-Naquet

To cite this version:
Joanna Tomasik, Guy Vidal-Naquet. On Teaching the Concept of Refinement with B. Colloque The
B Method from Research to Teaching., Jun 2008, Nantes, France. pp.109-120. �hal-00292648�

https://centralesupelec.hal.science/hal-00292648
https://hal.archives-ouvertes.fr


109

The B Method: from Research to Teaching June 16th, 2008, Nantes, France

On Teaching the Concept of Refinement
with B

Joanna Tomasik Guy Vidal-Naquet

Computer Science Department
SUPELEC

Gif-sur-Yvette, France

Abstract

The concept of refinement is central to the development of software. It appears in various forms in the
different methodologies taught to students. A key point in the B method is the validation of the refinement
step. The B methodology exhibits mathematical properties of correct refinements, and also automatically
checkable conditions that ensure those properties. Some of the main pedagogical difficulties that the present
authors found in teaching B centered around the notions linked to refinement, at the conceptual level, and
at the tool level. Many papers have been published on the general benefits of the B method. This paper
will focus on the specific concepts linked to refinements, and on the ones which need special care. We argue
that, although B presents a complete mathematical analysis, it is beneficial to put the concept of refinement
in perspective with other theories that come from formal methods, namely, in this paper, coalgebra and
bisimulation.

Keywords: Coalgebra, Gluing invariant, Morphism, Refinement.

1 Introduction: pedagogical aspects linked to position-
ing B in a software engineering cursus

The necessity of a methodology for producing quality software is not questioned
nowadays. Such was not the case a few years ago, as shown by a study of the
Software Engineering Institute (SEI) [12]. To our knowledge, this is the last available
diagram that the SEI published which presents the evolution per year. It shows that
during the years 1987–1991 more than eighty percent of software companies were at
the initial or ”chaotic” level of maturity. As one can see on the diagram in Fig. 1,
in 2005, a few companies were still at this level. Nevertheless this diagram shows
that the maturity level of firms has increased. One of the acknowledged reasons
is the fact that engineers who have followed a cursus in software engineering and
its different methods, including formal methods, are working now in the software
development industry.

1 Email: Joanna.Tomasik@supelec.fr
2 Email: Guy.Vidal-Naquet@supelec.fr



110

Tomasik, Vidal-Naquet

We think that the B method is an adequate answer to the old (but still men-
tioned) joke:

Formal methods have been, are, and will always be, the future of software
development.

and that it will help increase the figures in the rightmost sections of this diagram.
One of the first questions that arises with teaching B is whether it should be

integrated into a general course on software engineering, or be taught in a separate
course. In view of the conceptual richness of the method, and of the need for
having practical development by students in order to show the usefulness of this
methodology, we definitely opted for the second solution.

UML occupies a central position in the teaching of software engineering. Some
semantic meanings can be associated with the graphical syntax of UML. Rational
Rose is a tool that is often associated with RUP (Rational Unified Process) and
UML. A recurrent problem encountered when teaching UML with Rose is that of
coherence between the different phases of processes of development (for instance,
with Rose, between Case View and Logical View). Students ask questions about
possible contradictions which may occur in a developed system seen on different
process stages without being detected. They are truly disappointed when learn-
ing that there is not any formal method for detecting inconsistencies. They are
also perturbed by the lack of a rigorous methodology for the construction of UML
diagrams.

In addition, the use of mathematically founded methods, such as Hoare logic,
and the corresponding system of proof seems to students to be distant from real
applications. Students are supposed to make Hoare proofs manually. The conclusion
they draw from this activity, however, is that these proofs cannot be performed
automatically and are unapplicable in real cases.

For these reasons, software engineering teachers are confronted with a quandary:

Fig. 1. Evolution of the maturity level



111

Tomasik, Vidal-Naquet

the need to use formal methods, and a lack of pedagogically effective ones. One
important aspect of teaching B is that this apparent paradox disappears because
the B methodology presents many concepts which have direct applications for the
practical development of software.

In order to obtain a coherent curriculum, the teaching of B has to be related to
the other courses on software engineering and formal methods. The common and
specific aspects of B must be addressed not only in the course on B, but also in
other courses. This means that in other courses mention of the way that B deals
with specific questions, i.e. encapsulation, should be brought out, and in the specific
course on B, the relationship with other methodologies should be examined.

Teaching the B method illustrates how the utilisation of formal methods con-
tributes to software development’s being an industrial activity. While important
concepts, such as preconditions and offensive programming, are easily understood
by students, we found that the real difficulties center around the notion of refine-
ment and the meaning of the obligations of proof that are generated. In this paper,
we will concentrate on the questions raised by refinement - not the concepts them-
selves, but on those aspects students find difficult and/or useful and on how to
address these difficulties.

In our teaching, we use the AtelierB tool. We chose this tool, as opposed to
B4free — available on the Internet without any licence — for several reasons. We
want students to become familiar with the software that is used in the industry, but
the most important reason for our choice is the possibility of generating, compiling
and executing code in a programming language. We teach in an engineering school
and our students are conscious of their future professional career development. They
want to ”see the things working”.

We observed that students work seriously during classes concerning abstract
machine definitions, refinement and project structure. The class in which students
obtain their first executable programs leads to real enthusiasm. The difference in the
attitude of the students before and after the obtention of executable code is striking.
They recognize that all their efforts to reach an appropriate expression of logical
properties lead to an executable program. They see this as a concrete outcome of
the B development process. This observation makes them strongly motivated to
progress in the B method.

Our students work on their individual projects, which have to be seen in an
overall context. Students are asked to write a specification of a proposed system
and follow the B development process to the end, i.e. an executable program,
while paying attention to reducing the number of proof obligations that are not
automatically proven. Due to the number of hours devoted to B, we cannot present
the interactive prover in detail, but we insist that the students comment on the
origin of the proof obligations generated by AtelierB. All of our students show a
deep interest in having the best possible project and they invest a lot of time and
energy in order to succeed. We are therefore convinced that the goal of obtaining
the best code for an executable program stimulates them.

One of the aspects that students appreciate in the B methodology is the con-
tinuity in the development process, and, as mentioned before, the integration of
formal methods. Predicate logic and the theory of proof system blend nicely with



112

Tomasik, Vidal-Naquet

their concrete development activities. Some residual questioning about the interest
of the method and negative feedback are linked to the refinement step.

We found that beneficial effects result from spending more time on explaining the
relationship between the states of a machine and the states of a refinement machine,
as well as from formalizing the concept expressed informally by ”a machine behaves
like another”. In order to do that in depth, we propose to make the links and
differences between refinement and coalgebra theory explicit in the teaching cursus.
We firmly believe that THE method does not exist, and that it is the duty of a
teacher to show the relationship of what she/he teaches with the other aspects of a
field.

Much of what we say is a rewriting in coalgebraic terminology of definitions and
results present in the B methodology. This fact strengthen the ideas of the existence
of links between the two approaches, and we believe that these links should be made
explicit to the students.

The paper is organized as follows after this introduction. In Section 2, we present
the fundamental concepts of coalgebas and morphisms between coalgebras. We do
not enter into mathematical details, and we hope that this section will show the
interest of this emerging field. In Section 3, we present the links between B machines
and coalgebra. In Section 4, we study the link between refinement, gluing invariants
and morphisms of coalgebras. Finally, in Section 5, we discuss methods for teaching
coalgebra theory in relation with the B methodology.

2 Basic concepts on coalgebras: observation versus con-
struction

Recently, a considerable amount of work on coalgebras was done, in order to pro-
vide a mathematical basis for the concept of observation in state based systems.
The study of coalgebra was spurred by works on bisimulation for parallel systems.
See [10] for a seminal paper on the use of coalgebras and their relationship with
objects. The papers [7] and [8] give good, pedagogical introductions to the con-
cepts and main results on coalgebras, with a short survey on relevant definitions
of the theory of categories. In [3] coalgebras are used for defining the semantic of
the Rosetta language. We found the concepts on coalgebras very well suited for
teaching the different notions of refinement in a unified way.

Algebraic definitions will tell how a system is built, while coalgebraic definitions
will tell how a system is observed. Quite often these two aspects are mixed. For
example consider the specifications for lists. There will be

• a constuctive part: how to build a list from the empty list, adding an element,
• an observation part: i.e. test for emptiness, length, last element.

A basic concept for a system that is used (but has not necessarily been developed
by the user) is that one does not know how the possible states are obtained, but
from a given state one can get some information. It is the set of states and the
correspondence between a state and the information on this state that defines a
given coalgebra. This is also the approach followed for object-oriented software
engineering.



113

Tomasik, Vidal-Naquet

For example, let us consider a traffic light system. The internal mechanism
can consist only of a timer, so the light changes at regular time interval, or, in
addition, it can use a car detection system. The user of the system ignores its
internal mechanisms and can just observe the color of the light. In this example,
we associate to a set of internal states S (which is not specified) a simple structure
consisting of the set L = {green, yellow, red} and we associate to each element of S

an element of L.
More generally, we can associate to any set X of states of a system — the car-

rier set — a more complex structure F (X) that possibly involves X. The structure
F (X) indicates what we can know about a state in X. The operation F that asso-
ciates to any carrier set the structure of what can be observed is called a signature.
Mathematically F is a functor, but this can be ignored for our purpose. A coalgebra
〈S, c〉 is a realisation of a signature F . S is a set which is a concrete ”instance” of
X and c is the observation function from S to F (S).

Definition 2.1 Given a signature F , a coalgebra for F is a couple 〈S, c〉 where S

is a carrier set of states and c is an observation function from S into F (S).

Example 2.2 Consider the following signatures

(i) F1(X) = L, with L = {green, yellow, red}.
A coalgebra 〈S, c〉 for F1 is defined by S = N and c in defined as follows:
• ∀n, 0 ≤ n mod 30 ≤ 15, c(n) = green
• ∀n, 16 ≤ n mod 30 ≤ 18, c(n) = yellow
• ∀n, 19 ≤ n mod 30 ≤ 29, c(n) = red
How the state is determined is irrelevant here. It could be done with the help
of an egg timer, an atomic watch or a deck of cards.

(ii) F2(X) = X.
For a coalgebra 〈S, c〉, the observation of a state s is a state c(s).

Generally, the interpretation of c is the next state, but it could be the pre-
ceding state, or a state that we want to avoid, or a state that we want to
reach.

For example, S = {u, v, t, w} the observation function c is given by c(u) = v,
c(v) = w, c(t) = t, c(w) = v.

(iii) F3(X) = {⊥} ∪X.
For a given coalgebra 〈S, c〉, the observation of a state s is a state c(s), or the
element ⊥. Generally, the interpretation of c(s) is the next state, if c(s) ∈ S.
When s is a state that cannot evolve (a final state), c(s) =⊥.

(iv) F4(X) = {⊥} ∪ (X ×A).
For a coalgebra 〈S, c〉, the observation of a state s is a set of pairs composed of a
state c(s) and a label in A, or the terminal element ⊥. The usual interpretation
is that if the system can evolve, then it is possible to determine in which state it
will be and also the label attached to the transition from one state to another.
This coalgebra describes a deterministic labelled transition system.

(v) F5(X) = {⊥} ∪ P (X ×A),
where P (X) is the set of all subsets of X. For a coalgebra 〈S, c〉, the observation
of a state s is a set of pairs composed of a state c(s) and a label in A, or



114

Tomasik, Vidal-Naquet

the terminal element ⊥. This coalgebra describes a non-deterministic labelled
transition system.

(vi) F6(X) = {0, 1} ×XA.
It is the signature associated with automata: given a state, the function of A

into S is given, and one can also know if the state is final or not.

The notion of morphism is central in mathematics. It captures the intuitive ideas
of an operation that preserves structures. For coalgebras, we have the following
definitions:

Definition 2.3 Let 〈S, c〉 and 〈T, d〉 be two coalgebras for the same signature F .
If m is a function from S into T , F (m) is the function that extends m to an

function from F (S) into F (T ). Informally F (m) is obtained by replacing elements
of S by their image in the expression defining an element of F (S).

For example, if — for two carrier sets S = {s, s′}, T = {t, t′} and two label sets A,
B such that a ∈ A, b ∈ B — F is the signature defined by F (S) = (S×A)×(S×B),
and m(s) = t, m(s′) = t′, then F (m)(((s, a), (s′, b))) = ((t, a), (t′, b)).

A function m is a morphism from S into T , when it respects the observation
functions: d ◦m = F (m) ◦ c.

In other words, the function m is a morphism when the following diagram com-
mutes:

S

F (S) F (T )

T

dc

m

F (m)

Example 2.4 We follow the usual mathematical notation, P (X) is the set of all
subsets of X.
F (X) = P (X × {a, b})
Let S = {s1, s2, s3}, c(s1) = {(s2, a), (s3, a)}, c(s2) = {(s3, b)}, c(s3) = {(s3, b)},
T = {t1, t2}, d(t1) = {(t2, a)}, d(t2) = {(t2, b)}.

〈S, c〉, and 〈T, d〉, can be graphically represented by the labelled transition sys-
tems, with m represented by the dotted line arcs (Figure 2). It is easy to check
that the function m(s1) = t1, m(s2) = m(s3) = t2 is a morphism. For example,
starting from s1 we have: m(s1) = t1, d(m(s1)) = {(t2, a)}. On the other hand:
c(s1) = {(s2, a), (s3, a)}, F (m)(c(s1)) = {(t2, a)}.

A main result which we will not develop here, but which is central to the coalge-
bra theory, is that if F is a ”reasonable” signature then there exists a final coalgebra
〈T, b〉 for F , meaning that for any coalgebra 〈S, c〉 for F , there is a unique morphism
from S into T . Intuitively, 〈T, b〉 represents all observations that can be made with
the signature F

We refer to [8] or [7] for more details.



115

Tomasik, Vidal-Naquet

a a a

b

s1

s2

t1

s3 t2

b b

Fig. 2. Example of morphism between two coalgebras

A morphism from S to T corresponds to a deterministic way to establish a
correspondence from S to T : given a state in S, one state in T is obtained. In
general such a correspondence is non deterministic, i.e. to one object in S there
correspond many objects in T . For example consider a LIFO queue implemented
with an array and a number (the top of the stack). Intuitively a relation R between
two sets S and T is a bisimulation for the signature functor F , when R ”is carried
through” by F . The formal definition is:

Definition 2.5 Let F be a signature, 〈S, c〉, 〈T, d〉 two coalgebreas for F , and
c : S −→ F (S), d : T −→ F (T ). A relation R ⊆ S × T is a bisimulation when there
exists a coalgebra 〈R, g〉 such that the two projections π1 : R −→ S and π2 : R −→ T

are coalgebra morphisms i.e. the following diagram commutes (Figure 3).

S

F (S) F (R)

R

c

π1

F (π1)

π2

F (π2)

g d

T

F (T )

Fig. 3. Bisimulation of coalgebras

Example 2.6 Let S = {s1, s2, s3}, c(s1) = {(s3, a)}, c(s2) = {(s3, a)}, c(s3) =
{(s3, b)}, and T = {t1, t2, t3}, d(t1) = {(t2, a), (t3, a)}, d(t2) = {(t3, b)}, d(t3) =
{(t3, b)} (Figure 4).

The relation defined by R = {(s1, t1), (s2, t1), (s3, t2), (s3, t3)} is a bisimulation.
Consider the function g from R into F (R) defined by

g((s1, t1)) = {((s3, t2), a), ((s3, t3), a)}, g((s2, t1)) = {((s3, t2), a), ((s3, t3), a)},
g((s3, t2)) = {((s3, t3), b)}, g((s3, t3)) = {((s3, t3), b)}.

It is easy but tedious to check that π1 is a morphism from 〈R, g〉 into 〈S, c〉
and π2 is a morphism from 〈R, g〉 into 〈T, d〉. In Figure 4, 〈S, c〉 and 〈T, d〉 can be
viewed as two labelled transition systems, with the relation R shown by the dotted
line. The notion of bisimulation in coalgebras is a generalization of the equivalent
notions for CCS [9] and labelled transition systems [2]. The notion of simulation
will play a central role in the way we present refinements.



116

Tomasik, Vidal-Naquet

s1 s2

s3

a a

b

a a

b

t1

t2 t3

b

Fig. 4. Example of bisimulation between two coalgebras

When coalgebras correspond to non-deterministic labelled transitions systems
(cf [2]), we have the notation s

α−→ s′ when (α, s′) ∈ c(s) ((α, s′) = c(s) in a
deterministic case). For labelled transition systems, bisimulation corresponds to
the fact that: for two labelled transition systems LS and LT with carrier states S

and T , a relation R between S an T is a bisimulation when
If sRt then

(i) for all s′ such that s
α−→ s′, there exists t′, such that t

α−→ t′ and s′Rt′,

(ii) for all t′ such that t
α−→ t′, there exists s′, such that s

α−→ s′ and s′Rt′.

When only condition (i) holds, we say that R is a simulation of LS by LT . Thus we
can see a simulation as ”half of a bisimulation”. This notion of simulation versus
bisimulation can be extended to coalgebras. We will not go into the mathematical
details about this and we refer to [11].

3 Links between B machines and coalgebras

The correspondence between B machines and signatures of coalgebras is quite nat-
ural. The notion of signature exists in B. We find it worthwhile to mention to the
students the links between the B methodology and coalgebras. It helps convincing
them that formal methods adress real problems and that there is not a unique way
for decribing a method in mathematical terms.

We give an example with a machine with two operations op1 and op2, where op1
has a parameter and produces a result, while op2 just changes the internal states
which can easily be generalized. Consider the machine:

MACHINE MA
VARIABLES XX
INVARIANT IXX
INTIALISATION Z OPERATIONS
res <-- op1(NN) = PRE INN & C1 THEN S1 END;
op2 = PRE C2 THEN S2 END
END

The expression IXX is the invariant that defines the type TXX of the variable XX,
INN is the expression that defines the type TNN of the parameter NN and TRes is the
type of the result res of the operation. The signature of the coalgebra asssociated
with the machine MA will be F (X) = ({op1}× ({⊥}∪P (TRes×X)Tpar))∪ ({op2}×



117

Tomasik, Vidal-Naquet

({⊥}∪P (X))). This signature allows us to observe sequences of operation executions
and its final colgebra is a string. We consider P (TRes ×X)Tpar and P (X) instead
of (TRes×X)Tpar and X, respectively, since S1 and S2 can be non deterministic.

Another possible signature could be F (X) = ({op1}×({⊥}∪P (TRes×X)Tpar))×
({op2} × ({⊥} ∪ P (X))). This signature allows us to observe results of every oper-
ation for a given state and its final coalgebra is a tree.

A coalgebra for F is obtained when S corresponding to a set of the states defined
by the invariant IXX and the observations is defined by the machine.

If a given state XX of the machine does not satisfy the precondition C1 , one
can observe that op1 cannot be called and c(XX) = (op1,⊥) × · · ·. If op1, whose
parameter is in Tpar, is executed for a state XX then the machine passes to a new
state i.e. the execution of S1 attributes a new value to XX (which can be the same
as the previous one) and the result is returned.

Let note that a signature does not give complete information on what the ma-
chine does, just the structure of what is produced. It depends on the observation
one wants and the degree of knowledge on the process that one wants to observe.
For example, if we are not interested in which operation is called, then for a machine
having the two operations

res1 <-- op1(NN) = ...
res2 <-- op2(MM) = ...

If these two operation are deterministic, return results of the same type TRes,
and their arguments have the same type Tpar then instead of the signature F (X) =
({op1}× ({⊥}∪ (TRes×X)Tpar))∪ ({op2}× ({⊥}∪ (TRes×X)Tpar)), it is possible
to consider the signature F (X) = {⊥} ∪ (TRes × X)Tpar. If an operation has no
precondition (or a precondition equivalent to TRUE), then it is possible to have a
signature of the form F (X) = (TRes×X)Tpar.

In the case of non-determinism of these opertations we replace (TRes × X)Tpar

by P (TRes×X)Tpar.
These exemples show that signature of coalgebras expresses what one chooses

to observe.
Similarly to choosing the coalgebra associated with the machine, one can choose

the set defined by the typing invariant and/or the set of reachable states induced
by the initialisation and the operations.

4 Refinement, morphisms, and bisimulations

Consider the machine taken from [1]:

MACHINE M1
VARIABLES yy
INVARIANT yy:FIN(NAT1)
INITIALISATION yy:={}
OPERATIONS
enter(nn) = PRE nn:NAT1 THEN yy:=yy\/nn END;
mm <-- maximum = PRE yy /= {} THEN mm:=max(yy) END
END



118

Tomasik, Vidal-Naquet

The carrier set, defined by the invariant, is equal to S = FIN(NAT1). The
signature that is naturally associated with this machine is F (X) = ({enter} ×
XNAT1)×({maximum}×NAT1). The coalgebra associated is 〈S, c〉 with S = FIN(NAT1)
and c(s) = {enter} × fs × {maximum} × max(s), if s 6= ∅), where fs : NAT1 −→ S

defined by fs(n) = s ∪ {n}.
Now, consider this second machine also taken from [1]:

REFINEMENT R2
REFINES M1 VARIABLES zz
INVARIANT zz:NAT
INITIALISATION zz:=0

OPERATIONS
enter(nn) = PRE nn:NAT1 THEN zz:=max({nn,zz}) END;
mm <-- maximum = PRE zz /= 0 THEN mm:=zz END
END

We can associate the same signature F to this machine and the coalgebra 〈T, d〉
with T = NAT and d(z) = ({enter} × gz) × ({maximum} × (⊥ if z = 0, z if z 6= 0),
where gz : NAT1 −→ T is defined by gz(n) = max(n, z).

Consider the function m from the states S of M1 into the states T of R2 defined
by m(s) = 0 if s = ∅ and m(s) = max(s) if s 6= ∅.

The initialisation of M1 produces the state where yy = ∅ and initialization of R2
produces the state where zz = 0. We have m(∅) = 0. It is easy to see that m is a
morphism from 〈S, c〉 into 〈T, d〉. In fact m is a bijection and m−1 is a morphism,
therefore m is an isomorphism.

As a consequence of the fact that m is a morphism, the executions of the op-
erations enter and maximum from corresponding states will produce corresponding
states and the same outputs. This give a precise mathematical sense to the sentences
”R2 behaves like M1”, ”M1 and R2 cannot be distinguished by their outputs”.

A specific feature of this example is that the substitutions in both machines are
deterministic. We will mention briefly some issues.

In the following we will suppose that all proof obligations concerning machines
and their refinements have been discharged.

Consider a machine MM with a state space S defining an operation op and its
refinement RR with a state space T . The gluing invariant RGI establishes a relation
R between S and T . The difference between the notion of refinement and the notion
of bismulation can be expressed as follows:
For a refinement:
Given a state s, s ∈ S such that op can be executed from state s and a state t, t ∈ T

such that sRGIt, there exists s′ and t′ such that opMM(s) = s′, opRR(t) = t′, and
s′RGIt

′.
For a simulation relation RS :
Given state s and s′ such that MM can execute op for state s and s′ ∈ opMM(s) and a
state t such that sRSt, there exists t′ such that t′ ∈ opRR(t) and s′RSt′.

Therefore, if RR refines MM, then there exists a simulation relation between the
state spaces T ′ ⊆ T and S. The relation RGI induced by the gluing invariant



119

Tomasik, Vidal-Naquet

is contained in the simulation induced by the gluing invariant, with T ′ such that
T ′ = dom(RGI). The relaxation of the precondition for a refinement ensures that
S = ran(RGI). Intuitively, the relaxation of the precondition ensures that no state
that should be taking into account by RS . Operations returning values give the same
results for corresponding states in S and T . We found that the gluing invariant plays
a role analogous to a loop invariant in the Hoare proof system: When a developer
writes a refinement of a machine he has the gluing invariant in his mind, in the same
way as when he writes a loop, he has the loop invariant in his mind. Expliciting the
invariant is one of the difficult points in the B methodology. The gluing invariant
can be seen as indications (which can be a complete indication as in the example
concerning machine M1 and R2) about the simulation relation.

Finally let us say that we do not claim that one concept can take into account
all aspects of the other, for example the question of the conservation of properties
is not dealt with by coalgebra theory, but that there exists a lot of similarities that
should be mentioned.

5 Conclusions

It is a banality to say that formal methods are indispensable. It is quite another
matter to convince students of this fact. One of our goals is that students should
become familiar with several usual formal modelling methods and their usage. It
is with concrete examples of applications that students become aware of the use
of such methods. Let us cite algebraic specification [4], first order logic and proof
systems, model checking, CCS, Petri nets [5], Performance Evaluation Process Alge-
bra (PEPA) [6]. All these models are taught with their applications, meaning that
we integrate them with the courses dedicated to the studies of different systems
and their associated software, when possible. These formalisms are used to treat
different aspects of the modelled systems: feasibility, performance, correctness and
observability, respectively. One of our goals is to show students that it is necessary
to use these formal methods. The mathematics for observation of systems have
reached a maturity level such that we find it necessary to introduce them in our
curriculum for computer sciences. It is a natural complement to algebraic specifi-
cations, and we find that they help unify concepts for parallelism and distribution
as well as concepts linked to refinement in B.

A question that still has to be answered in our school is at which point these
mathematics should be taught. In an ideal teaching environment, it should be
taught at the same time as algebraic specifications. Because of the time frame, this
seems difficult, and a specific introduction to the subject can be given independently,
before the course on B and on parallel systems.

A complete treatment of the relationships between coalgebra, bisimulation, and
B machines, would be beyond the scope of this conference. We hope that we have
given enough arguments to show that these relationships should be treated in a
curriculum on software engineering.



120

Tomasik, Vidal-Naquet

References

[1] Jean-Raymond Abrial, The B-Book: Assigning Programs to Meanings, Cambridge University Press,
1966.

[2] Luca Aceto, Anna Ingòlfsdòttir, Kim Guldstrand Larsen, Jiri Srba, Reactive Systems Modelling,
Specification and Verification, Cambridge University Press, 2007.

[3] Alexander, Cindy Kong, Defining a Formal Coalgebraic Semantics for The Rosetta Specification
Language, Journal of Universal Computer Science, Vol. 9, no. 11 (2003), pp. 1322–1349.

[4] Marie-Claude Gaudel, Gille Bernot, Bruno Marre, Françoise Schlienger, Précis de Génie Logicel,
Masson,1996.

[5] Annie Choquet-Geniet, Les réseaux de Petri: Un outil de modélisation, Dunod 2006.

[6] Jane Hillston. A Compositional Approach to Performance Modelling, Cambridge University Press, 1996.

[7] Bart Jacobs, Draft: Introduction to Coalgebra. Towards Mathematics of States and Observations,
Institute for Computing and Information Sciences, Radboud University Nijmegen.

[8] Bart Jacobs, Jan Rutten, A Tutorial on (Co)Algebras and (Co)Induction, Bulletin of the European
Association for Theoretical Computer Science, Vol. 62, pp. 222–259, 1997.

[9] Robin Milner, A Calculus of Communicating Systems, Springer Verlag, 1980.

[10] Horst Reichel, Behavioural equivalence – a unifying concept for initial and final specifications. Third
Hugarian Computer Science Conference. Akademiai Kiado, Budapest, 1981.

[11] Davide Sangiogi, On the origins of bisimulation, coinduction and fixed points, Universita of Bologna,
Italy, 2007.

[12] SEI, Progress Maturity Profile, March 2006.


