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José Picheral
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ABSTRACT

Most exiting array signal processing techniques for bearing estima-
tion are strongly relied on the far-field assumption. When the sources
are located close to the array, these techniques may no longer per-
form satisfactorily. In this work, we propose a tensor-based algo-
rithm which is dedicated to the joint estimation of the range and the
bearing of multiple narrow-band and near-filed sources in a spatially
white Gaussian noise. Automatic paring of the model parameters is
achieved for an uniform linear array. By means of numerical simu-
lation, we show that for low Signal To Noise Ratio, the proposed
algorithm is more accurate than the Higher Order Statistics (HOS)-
based ESPRIT algorithm for small/moderate number of snapshots.

Index Terms— Parameter estimation, DOA estimation

1. INTRODUCTION

An important problem in a wide variety of applications such as
radar, sonar, speech, communication, etc. is locating in space the
sources of signals received by an array of sensors. Most attention has
been restricted to the far-field source model. In the far-field source
localization, a source location is characterized only by its bearing
since the wavefront from a far-field source can be assumed to be
planar for a Uniform Linear Array of sensor (ULA). However, when
the sources are located close to the array, the planar assumption is no
longer valid. The wavefront in such cases is spherical. In 2D near-
field source localization, a source location is characterized by its bea-
ring and range and the conventional high resolution DOA estimation
methods are no longer applicable.
A modified 2D-Music algorithm have been proposed in [1] but it
requires a multidimensional search. Higher-Order Statistics (HOS)-
based methods [2] can handle non gaussian noise and the model pa-
rameters pairing is automatic. But these methods are only efficient
for a large number of snapshots. A method based on Second-Order
Statistics (SOS) has been proposed in [3], it is more accurate than
HOS-based methods for small/moderate number of snapshots but it
does not provide an automatic paring of the estimates. An SOS-based
method with automatic paring has been proposed in [4] but it works
only for cross array.
In this paper, we present a tensor-based method exploiting the SOS
properties of the model. The interest of this method is that it provides
an automatic paring and it has the same accuracy as the SOS-based
method.

2. DEFINITION OF THE MODEL AND ASSOCIATED
COVARIANCE SEQUENCES

2.1. Definition of the model

We consider M near-field, uncorrelated, narrowband sources.
Each source is characterized by its range rm, its bearing ωm and
a complex amplitude αm(t). Let a linear array with N = 2L + 1
uniformly spaced sensors with interelement spacing Δ. In near-field,
using a second-order Taylor expansion, the t-th observation on sen-
sor p ∈ [−L : L] can be approximatively [5] modeled as

xp(t) =

M∑
m=1

αm(t)ei(ωmp+φmp2) + np(t) (1)

where np(t) is an additive gaussian noise spatially white. The pulsa-
tions ωm and φm are functions of the bearing θm and the range rm

of the m-th source, they can be expressed as :

ωm = −2π
Δ

λ
sin θm (2)

φm = π
Δ2

λrm
cos2 θm (3)

where λ is the source wavelength.

2.2. Covariance sequences

If we assume that the near-field sources are uncorrelated, ie.,
E{αm(t)αm′(t)∗} = σ2

mδm−m′ where σ2
m is the variance of the

m-th source, then

rb(p) = E{xp+b(t)xp(t)∗} (4)

=
M∑

m=1

σ2
mei(ωmb+φmb2)ei2pbφm . (5)

3. JOINT VANDERMONDE-TYPE DECOMPOSITION

3.1. Definition of the tensor

Let H be a L×L×2 three-order tensor (or three-way array). We
denote by [H]s the s-th vertical slice of tensor H. Then, we define
each slice by

[H]1 = H∗
0 , [H]2 = H1 (6)
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where ∗ means conjugate and

H0 =

⎡
⎢⎢⎢⎣

r−1(−L
2
) r−1(−L

2
+ 1) . . . r−1(0)

r−1(−L
2

+ 1) r−1(−L
2

+ 2) . . . r−1(1)
...

...
...

r−1(0) r−1(1) . . . r−1(
L
2
)

⎤
⎥⎥⎥⎦ ,

H1 =

⎡
⎢⎢⎢⎣

r1(−L
2
) r1(−L

2
+ 1) . . . r1(0)

r1(−L
2

+ 1) r1(−L
2

+ 2) . . . r1(1)
...

...
...

r1(0) r1(1) . . . r1(
L
2
)

⎤
⎥⎥⎥⎦

with rb(p) defined in expression (4). Remark that tensor H is par-
tially Hankel-structured, ie., each vertical slice has a Hankel struc-
ture.

3.2. ”Two-side” Vandermonde-type decomposition

First remark that the two covariance sequences involved in each
vertical slice is defined according to

r1(p) =
∑
m

σ2
mei(ωm+φm)e2iφmp

(7)

r−1(p) =
∑
m

σ2
me−i(ωm−φm)e−2iφmp. (8)

Based on these covariance sequences, there exists a ”two-side”
Vandermonde-structured matrix, defined by

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−2iφ1
L
2 e−2iφ2

L
2 . . . e−2iφM

L
2

...
...

...

e−2iφ1 e−2iφ2 . . . e−2iφM

1 1 . . . 1
e2iφ1 e2iφ2 . . . e2iφM

...
...

...

e2iφ1( L
2 −1) e2iφ2( L

2 −1) . . . e2iφM ( L
2 −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×M

(9)

which jointly decomposes each vertical slice of tensor H according
to

H∗
0 = ZΘ0Z

T
(10)

H1 = ZΘ1Z
T

(11)

where

Θ0 =

⎡
⎢⎣

σ2
1ei(ω1−φ1) 0

. . .

0 σ2
Mei(ωM−φM )

⎤
⎥⎦ , (12)

Θ1 =

⎡
⎢⎣

σ2
1ei(ω1+φ1) 0

. . .

0 σ2
Mei(ωM +φM )

⎤
⎥⎦ . (13)

4. ESTIMATION OF THE BEARING AND THE RANGE BY
ALS-PARAFAC ANALYSIS

4.1. Decomposition of the modes of tensor H
The particular structure described in the previous section implies

a suitable structure into the modes (or also called matrix unfoldings)

of tensor H. Let H(1), H(2) and H(3) be these modes. The explicit
definition of these matrices can be found in reference [6] and by
tacking into account expressions (10) and (11), it comes

H(1) = H(2) =
[
H∗

0 H1

]
= Z

[
Θ0Z

T Θ1Z
T
]

= Z (Ω � Z)T
(14)

H(3) =

[
vec(H0)

H

vec(H1)
T

]
=

[
vec(Θ0)

T (Z ⊗ Z)T

vec(Θ1)
T (Z ⊗ Z)T

]

= Ω(Z � Z)T
(15)

where

Ω =

[
σ2

1ei(ω1−φ1) σ2
2ei(ω2−φ2) . . . σ2

Mei(ωM−φM )

σ2
1ei(ω1+φ1) σ2

2ei(ω2+φ2) . . . σ2
Mei(ωM +φM )

]
2×M

(16)

and vec(X) is the vector formed by concatenating all the columns of
X , � (resp. ⊗) stands for the Khatri-Rao product (resp. Kronecker
product). Note that the first and the second modes are equal since the
first and the second sizes of the tensors are also equal (= L).

4.2. Extraction of the model parameters

We can extract the model parameters by using the ALS-PARAFAC
algorithm [7]. According to expressions (10) and (11), we can see
that the m-th bearing and the m-th range are obtained simultaneously,
ie., if matrix Z is column-permuted then the diagonal matrices Θ0

or Θ1 are accordingly column-permuted. This structural property ex-
plains why the paring operation is automatic. Now, suppose that the
resulting matrices of the ALS-PARAFAC analysis are denoted by
Z0, Z1 and Ω̄. These matrices are known up to a scaling of each
of their columns. This corresponds to the indeterminacies in expres-
sions (10) and (11) since there exists two invertible diagonal matrices
D0 and D1 according to

H∗
0 = Z0 (D−1

0 D0) Θ0 (D0D
−1
0 ) ZT

0 (17)

H1 = Z1 (D−1
1 D1) Θ1 (D1D

−1
1 ) ZT

1 . (18)

But, we know that the (L + 1)-th term of matrices Z0, Z1 must
be one (cf. matrix Z) so the scaling operation is characterized by

Ẑ = Z0D
−1
0 , Ẑ = Z1D

−1
1 (19)

where

D0 =

⎡
⎢⎢⎣

[Z0] L
2 +1,1 0

. . .

0 [Z0] L
2 +1,M

⎤
⎥⎥⎦ , (20)

D1 =

⎡
⎢⎢⎣

[Z1] L
2 +1,1 0

. . .

0 [Z1] L
2 +1,M

⎤
⎥⎥⎦ (21)

in which [Q]ij means the (i, j)-th entry of matrix Q. From expres-
sions (14), (15), (17) and (18), we deduce

Ω̂ = Ω̄D0D1. (22)

Finally, based on matrices defined in (19) and (22), the model
parameter {ωm, φm}m=1,...,M are estimated according to

(ω̂m, φ̂m) =

⎛
⎜⎝ �

(
[Ω̂]1,m

[Ω̂∗]2,m

)
2

,
1

L

L−1∑
n=1

�

(
[Ẑ]n+1,m

[Ẑ]n,m

)⎞
⎟⎠ (23)
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Fig. 1. Example 1 : RMSE of bearing and range estimates vs. SNR
for one source with θ1 = 5˚, r1 = 0.1λ, 10 snapshots

where � (.) is the angle argument. Using (2) and (3), the bearing a
range parameters can be easily estimated from ωm and φm.

Note that as the first and the second modes are identical, we can
use a symmetric ALS-PARAFAC model to decrease the complexity
burden. In this case, the ALS-PARAFAC algorithm needs only to
two pseudo-inverses per iteration instead of three.

5. SIMULATION RESULTS

In this simulations we consider an array of N = 17 sensors with
a spacing of Delta = λ/4. In order to compare the results with the
HOS-ESPRIT method [2], the source signal is not gaussian and is
given by ejξ where ξ is uniformly distributed in [0, 2π].

The covariance sequences r−1(p) and r1(p) defined in expres-
sion (4) are estimated using the sample covariance estimate :

r̂−1(p) =
1

T

T∑
t=1

xp−1(t)xp(t)∗ (24)

r̂1(p) =
1

T

T∑
t=1

xp+1(t)xp(t)∗ (25)
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Fig. 2. Example 2 : RMSE of bearing and range estimates vs. SNR
for two sources with θ = [5˚, 40˚], r = [0.1λ, 0.4λ], 10 snapshots

where T is the number of snapshot.

5.1. One source

In this example, we consider a single source with unit power,
bearing is fixed to θ1 = 5˚ and range is r1 = 0.1λ. The number of
snapshots used to estimate the covariance sequence is 10. The SNR
is varying from −10 dB to 30 dB.

On Fig. 1, the Root Mean Square Error (RMSE) of the bearing
and range estimate is plotted versus the SNR. Performances of the
proposed method (markers ∗) are compared with those of the HOS
ESPRIT (markers ◦). In addition, the Cramér-Rao Bound (CRB) is
also plotted in dashed line. Expression of CRB can be easily derived
for the near-field joint bearing and range estimator (see for instance
[8]).
Performances plotted in Fig. 1 show that the RMSE of the proposed
method is lower than which of the HOS-ESPRIT method, in particu-
lar for the range estimate. Notice also that in this case, the RMSE of
the tensor-based method approaches the CRB.
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Fig. 3. Example 3 : RMSE of bearing and range estimates vs. the
number of snapshots for two sources with θ = [5˚, 40˚], r =
[0.1λ, 0.4λ], SNR = 10 dB

5.2. Two sources

In this example, we consider two sources both with unit power,
bearing is fixed to θ1 = 5˚ and θ2 = 40˚, range is r1 = 0.4λ and
r2 = 0.1λ. The number of snapshots is 10 and the SNR is varying
from −10 dB to 30 dB.

The RMSE plotted in figure 2 show that even if the CRB is not
reached, the proposed method achieves an accuracy which is enough
for practical applications. Notice that in this case the HOS-ESPRIT
method is unable to estimate the bearing and range parameters.

5.3. Performance with respect to the number of snapshot

In this example, we consider the same two sources of the pre-
vious example, but the SNR is fixed to 10 dB and the number of
snapshots is varying from 5 to 100.

The RMSE is plotted on figure 3, these simulations show that
the interest of the proposed method is mainly for a small or moderate
number of snapshots. In this case the HOS methods are known to fail

because of the difficulties to estimate cumulant with a small number
of snapshots.

All these simulations have shown the advantages of the proposed
approach with respect to the HOS-ESPRIT, in particular for small
number of snapshots and for low SNR. Notice that these conditions
correspond to the situation of interest in practical use of source loca-
lization algorithm.

6. CONCLUSION

In the context of localization of near-field sources. We propose
a new method which exploits a tensor-based scheme of the cova-
riance sequence in order to provide directly an estimation of the pair
of bearing and range for each source without an additional pairing
operation. Since it is based on the SOS properties of the model, the
method is more accurate than the HOS-ESPRIT for small/moderate
number of snapshots and in noisy environment. Numerical simula-
tions and comparison with HOS-ESPRIT have demonstrated that the
proposed tensor-based algorithm is well suited for a practical appli-
cation to source localization in near-fields.
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