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Abstract—This paper addresses the problem of transmission
loss allocation in a power system where the generators, the
demands and the system operator are independent. We suppose
that the transmission losses are exclusively charged to the
generators, which are willing to adopt a perfectly competitive
behavior. In this context, their offers must reflect their production
costs and their transmission loss costs, the latter being unknown
beforehand and having to be predicted. We assume in this
paper that the generators predict their loss costs from the past
observations by using a weighted average of their past allocated
costs. Under those assumptions, we simulate the market dynamics
for different types of transmission loss allocation methods. The
results show that the transmission loss allocation scheme can lead
to a poorly efficient market in terms of social welfare.

I. I NTRODUCTION

I N power systems where generation and transmission are
unbundled, the transmission operational costs (e.g. trans-

mission losses or congestion costs) are generally supported by
the System Operator (SO), which charges the generators and
the demands for those costs. Consequently, the transmission
costs are allocatedex post, when the generation and demand
dispatch is known [1]. In this context, allocating transmission
losses has become necessary in order to define locational eco-
nomic incentives towards a more rational use of ressources [2].
A possible solution could be to allocate active power losses
to the market participants depending on the amount of trans-
mission losses resulting from their injection. However, since
active power losses are a non-separable nonlinear functionof
the bus power injections, there is no unique solution to assess
each market participant’s contribution in the transmission
losses [3]. As emphasized in [1] and [4], alternative strategies
have therefore been proposed to design Transmission Loss
Allocation (TLA) methods leading to appropriate economic
signals.

Generally speaking, the efficiency of those economic sig-
nals depends on the competition strategies of the market
participants [5], [6]. The most common types of strategies
considered to analyze electricity markets are those related

to the competition models derived from game theory [7]
such as, for example, the Cournot, Bertrand or Stackelberg
models. Besides game theory, agent-based approaches are
also used to analyze electricity markets. Those approaches
model the market as a dynamic system of interacting agents.
An agent refers in this context to a bundle of data and
behaviorial methods representing an entity constituting part
of the simulated market [8]. With respect to the models cited
above (Cournot, Stackelberg), such approaches can providea
detailed modeling of the market, able to highlight phenomena
that Nash-equilibria types of techniques can not. As way of
example, they are advocated to study the dynamics of the
market before the participants eventually settle to a Nash-
equilibrium.

The goal of this paper is mainly to study the influence
that TLA methods may have on electricity markets where
the generators are assumed to have a perfectly competitive
behavior. An agent-based approach is chosen to carry out
the study. Each generator is actually modeled as an agent
which formulates offers that reflect its generation cost and
its transmission loss cost. Since individual lost costs arenot
known beforehand, each generator must predict those costs.
The prediction of the loss costs may be a difficult task as the
final allocation depends on the predictions of the others. While
utilities could rely on sophisticated approaches to predict the
loss costs, the predictions are assumed, in this paper, to be
carried out by computing a weighted average of the past
allocated loss costs.

The simulation process is summarized in Figure 1. First,
the generators predict their loss costs based on the past
allocation results. Then, their offers are computed by summing
their production costs and their predicted transmission loss
costs. After computing the merit order using those offers, the
different transmission loss costs are sent to the generators and
the overall process repeats. The results of the simulationsare
analyzed to determine the efficiency of three TLA methods
(namely the pro-rata, proportional sharing and equivalent
bilateral exchange methods), which is associated here to the
social welfare of the system. This study is carried out on a



Bids/offers

Generation/demand dispatch

Loss costs

Estimated loss costs

Loss cost estimation

Bid/offer formulation

Market clearing

Loss allocation

Fig. 1. Simulation scheme for the analysis of the interaction between the
TLA mechanism and the generators’ decisions.

2-bus system where, in order to simplify the approach, the
demand is fixed and the losses are exclusively allocated to the
generators.

The paper is organized as follows. In Section II, the ex-
perimental market design is detailed and a review of some
common TLA approaches is provided. Then, Section III
describes the prediction algorithm. Some criteria to evaluate
the efficiency of TLA methods are presented in Section IV.
Section V presents the results for different TLA methods anda
discussion of their relative performance. And, finally, Section
V concludes.

II. M ARKET DESIGN WITH TLA

In this paper, we focus on a specific market design, which
is appropriate to implement different types of TLA methods.
While losses could be considered in the merit order using
locational marginal prices [9], this market design is based
on a lossless economic dispatch. That means that the offers
are selected on their price regardless of their location in the
transmission grid.

In order to ease the approach, we have chosen to allocate
transmission losses exclusively to the generators, which are
usually considered as being the market participants with the
highest price responsiveness. In addition, we consider that the
demands are non-responsive to price changes, i.e. the amount
of power demand is fixed.

In this context, we use a pool-based market, with no bilateral
exchange contract. The inherent physical and economic flows
are represented in Figure 2. Active demands (PD) and losses
(PL) are paid at the Market Clearing Price (MCP) and the
SO charges the generators for the transmission loss costs.
We suppose that other transmission costs (such as investment
costs, for example) are supported by the demands only, and
that they are considered in the demand curve.

A. Offer formulation

We suppose that theNG generators are willing to adopt
a perfectly competitive strategy. This assumption means that
the generators bid at their expected marginal cost. In the
context of transmission loss allocation, the expected marginal
cost encompasses the production cost and the expected loss
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Fig. 2. Power (dashed arrows) and economic flows (continuous arrows) in
the power system.
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Fig. 3. Offer curve and marginal production costs of a generator i as a
function of its active power generationPGi
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cost. Every generatori is supposed to know perfectly well
its production costCP

Gi
(PGi

) and, in addition, it estimates
its loss costĈL

Gi
(PGi

), which is to be integrated in its offer
ĈO

Gi
(PGi

) = CP
Gi

(PGi
) + ĈL

Gi
(PGi

). Figure 3 plots a typical
offer curve of a generatori.

B. Merit order

The process of merit order determines the generation dis-
patchPGi

, . . . , PGNG
and the market clearing price (MCP )

based on the offerŝCO
G1

(PG1
), . . . , ĈO

GNG
(PGNG

). It is com-
puted using an optimal power flow formulation as detailed
below.

min
PG1

,...,PGNG

MCP (ĈO
G1

(PG1
), . . . , ĈO

GNG
(PGNG

)) (1)

subject to:
NG∑

i=1

PGi
= PL +

ND∑

j=1

PDj
(2)

and the other classical load-flow equations [10].
Equation (2) and the load-flow equations introduce the

amount of losses in the generation dispatch. This definition
of the merit order replaces the balancing mechanism, which
is indeed used to compensate for the mismatch of losses in



a lossless merit order. This particular type of optimal power
flow problem is solved using AMPL [11].

C. Transmission loss allocation methods

Based on the generation dispatchPG1
, . . . , PGNG

, the
amount of lossesPL

Gi
allocated to generatori is assessed

using a TLA method. We study three methods, namely the
“Pro-Rata”, the “Proportional Sharing” and the “Equivalent
Bilateral Exchange” methods, which are detailed hereafter.

1) Pro-Rata (PR): The PR method has been used for
decades in many power systems. Losses are allocated pro-
portionally to the active power injection of every generator
regardless of its location [12]. This TLA method is used for
instance in France, England and Wales [13].

2) Proportional Sharing (PS):The PS method has been
introduced by J. Bialek in [14]. This method is based on power
flow tracing and relies on the assumption that a network node
is a perfect mixer of incoming flows. For each node, every
outcoming active power flow is proportionally composed of
the incoming flows. For each line, the losses are proportionally
allocated to the incoming flows into this line. This method
has been vastly commented and has influenced the design of
many closely related TLA schemes (see, e.g., [15]). No real-
life application has yet been reported.

3) Equivalent Bilateral Exchange (EBE):The EBE method
has been proposed by Galianaet al. in [16]. The equivalent
bilateral exchanges are deduced from the application of thePS
principle to the whole network reduced to one node. Losses
are then allocated to those equivalent bilateral exchanges
using incremental transmission loss factors. It is actually
independent of choice of the slack bus [4]. This method has
not yet been implemented.

III. T RANSMISSION LOSS COST PREDICTION

In the heart of our agent-based approach to evaluate the
performances of TLA methods when assuming that the gen-
erators are willing to adopt a perfectly competitive behavior,
there is a module that determines how each agent is going to
predict its loss cost. The design adopted for this module is
described on Figure 4. In a few words, with such a choice, a
generator estimates its transmission loss cost (per generated
MWh) by computing a weighted average of its past loss
allocations (per generatedMWh). It is clear that, in real-
life, power system utilities may rely on other approaches to
estimate accurately those costs. In particular, they may rely on
more sophisticated algorithms or use some specific expertise to
predict those costs. In this respect and by assuming that there
are persons or a group of persons in charge of those prediction
tasks for the utilities, one strategy to design better agents could
have been to analyze their predictions using various types of
data-mining techniques. Agents would then better reflect the
real-life behavior of the utilities.

Since it is very likely that obtaining such prediction data
is going to be difficult (and even sometimes impossible, since
they can not exist for TLA schemes that have not yet been
implemented), another strategy would have been to rely on

experimental economics [17] to generate those data. It consists
of laboratory experiments, where the humans (here playing the
role of people in charge of predicting the loss costs for the
utilities) are repeatedly asked to make decisions in face of
a feedback signal (here the past allocations) related to their
decisions. However, experimental economics is also limited
since there is an obvious bias between the decisions taken
in the laboratory and in real-life due to, for example, the
prior-knowledge a market participant interacting with thereal
environment may have on the relevance of its decisions.

IV. PERFORMANCE EVALUATION OFTLA METHODS

By simulating the influence of TLA methods on an electric-
ity market, we aim to measure the efficiency of the economic
signal they intend to provide.

The market efficiencyindex adopted in this paper is the so-
cial welfare of the system which is the sum of the generators’
surplus and the demands’ surplus [18]. The generator surplus
SPG is defined by:

SPG = MCP ×

ND∑

j=1

PDj
−

NG∑

i=1

GCGi
(PGi

) (3)

whereGCGi
(PGi

) is generatori’s total generation costs. As
the demand is fixed, the demand surplusSPD is defined as
follows:

SPD = −MCP ×

ND∑

j=1

PDj
(4)

Consequently, the social welfare of the system can be written:

SP = −

NG∑

i=1

GCGi
(PGi

) (5)

The system social welfare will be compared with its optimal
value SP ∗, which is computed by minimizing the total pro-
duction costs of the system.

V. SIMULATION RESULTS

After describing the simulation benchmark, this section
reports and analyzes the simulation results.

A. Benchmark

Simulations are run on the 2-bus system that is depicted in
Figure 5. The numerical values of the different parameters of
the system are given in Table I.

When the generators submit an offer equal to their marginal
production cost, one can observe that a large amount of power
is transmitted from bus1 to bus2 with a loss rate close to
15%.

The transmission line is modeled by a resistanceR1−2 and
an inductanceX1−2. The voltage at each bus is regulated by
its associated generator at1.0 per unit.

The generation cost supported by generatori can be written
as:

GCGi
(PGi

) = aGi
× PGi

2 + bGi
× PGi

+ cGi
(6)



Input: The loss cost prediction for timet: ĈL,t
Gi

, the quantity of losses allocated to generatori at time t: TLAt
Gi

, its active
power injection at timet: P t

Gi
and the market price at timet: MCP t.

Parameter: A memory factorβ (β ∈ [0, 1]) that weights the actual loss cost at timet−k by a factorβt−k in the average-based
predictions.
Output: The loss cost prediction for timet + 1: ĈL,t+1

Gi
.

Algorithm:

• Step 1: Generatori computes the average transmission loss cost perMWh at time t: CL,t
Gi

=
TLAGi

×MCP

PGi

.

• Step 2: Generatori computes the predicted loss costs for timet + 1 as follows:ĈL,t+1
Gi

=
t×β×Ĉ

L,t

Gi
+(t×(1−β)+1)CL,t

Gi

t+1 .

Fig. 4. The procedure a generatori uses at timet to predict its transmission loss cost per generatedMW at time t + 1 (ĈL,t+1

Gi
). At time t = 0, no data

for the past loss cost allocations are available and,ĈL,0

Gi
andCL,0

Gi
are chosen equal to 0.
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Fig. 5. 2-bus system.

Symbol Unit Value

PD1
MW 300

PD2
MW 1200

QD1
MV ar 100

QDA
MV ar 100

R1−2 p.u. 0.0002
X1−2 p.u. 0.0005

aG1
=C/MWh2 0.0147

bG1
=C/MWh 20

cG1
=C 0

aG2
=C/MWh2 0.0588

bG2
=C/MWh 20

cG2
=C 0

TABLE I
NUMERICAL DATA FOR THE 2-BUS SYSTEM.

This leads to an optimal system welfareSP ∗ equal to
−66959=C.

At time t = 0, generators’ estimated loss costs are set to
0=C/MW . In our simulations, a memory factorβ has been
chosen equal to0.5. We have observed that this parameter
does not significantly impact the results, except for the speed
of convergence.

B. Numerical results

1) Market efficiency:Results in terms of system welfare
are represented in Figure 6. One can observe that the pro-rata
allocation induces no change in the generation dispatch. The
system welfare remains equal to−70425=C in this case. As
emphasized in [19], the pro-rata method is poorly efficient in
the context of an asymmetrical system with high losses, as it

is the case here.
On the other hand, EBE and PS methods provide an

economic signal which motivates a change in the generation
dispatch, leading to a greater welfare. After a few iterations
(four to six), the system welfare reaches−68192=C and
−68685=C for the PS and EBE methods, respectively.

When compared toSP ∗, the TLA methods under consid-
eration may however appear to be inefficient. The lack of
performance might be caused by structural defaults of the
methods themselves (as for the pro-rata method, for example).
It also shows that further research may be needed to design
more efficient allocation schemes. While allocating an amount
of losses larger than the physical lossesPL is controversial
[4], one could also think of defining negative allocations for
generators that help decreasing the amount of transmission
losses when they inject more power into the grid. However,
this may potentially lead to volatile markets where predictions
could be less accurate and, therefore, discourage generators to
adopt a perfectly competitive behavior since they may prefer
to cover themselves for the risk of underestimating their loss
costs.

2) Market price: Results in terms ofMCP are represented
in Figure 7. Four to six iterations are required before the
market price and the system welfare can be assumed to have
converged. Moreover, simulations run with an initial valueof
the predicted loss costsCL,0

Gi
set to20.0=C/MW rather than

0.0=C/MW have shown convergence to the same equilibrium
point.

As one can observe, with the agents chosen to model the
generators, the market clearing price grows with the loss cost
predictions. Except for the first iteration, theMCP is always
larger than the marginal production costs of the generators.
This was expected since, even if the generators adopt a
perfectly competitive behavior, they submit an higher offer
than their marginal production cost to cover the transmission
loss cost they are expecting to be charged for.

3) Discrepancy between the predicted and the actual loss
costs: We have observed that the transmission loss costs
tended to be underestimated by the different generators. This is
mainly due to the fact that the initial estimation of those costs
is set equal to0. We note however that this under estimation
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vanishes with the iterations.

VI. CONCLUSION

We have analyzed in this paper the performance of three
transmission loss allocation methods, namely the pro-rata, pro-
portional sharing and equivalent bilateral exchange methods,
for a market in which the power generation companies are
willing to adopt a perfectly competitive behavior. To perform
this analysis, we have relied on an agent-based approach.

As main finding of our analysis, we noted that the three
allocation methods under consideration were leading to a
social welfare which was smaller that the one that could
be obtained by considering an optimized vertically integrated
system. The pro-rata method offered the poorest performance
while the proportional Sharing and the equivalent bilateral
exchange were giving similar performance. While many sim-
plifying assumptions have been adopted in our simulations

(time-invariant system, simple loss cost prediction algorithms,
2-bus power system, etc), those results suggest that there is still
room for designing more efficient TLA methods. In particular,
we believe that new TLA methods should at least intrinsically
lead to a nearly optimal social welfare when the generators
are willing to adopt a perfectly competitive behavior.
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Li ège in 1998 and 2003, respectively. He is currently a Research Associate of
the FNRS (Belgian National Fund of Scientific Research) and he is affiliated
with the Systems and Modelling Research Unit of the University of Lige.
Damien Ernst spent the period 2003-2006 with the University of Lige as a
Postdoctoral Researcher of the FNRS and held during this period positions as
visiting researcher at CMU, MIT and ETH. He spent the academicyear 2006-
2007 working at SUPELEC (France) as professor. His main research interests
are in the field power system dynamics, optimal control, reinforcement
learning and design of dynamic treatment regimes.


