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Abstract—Gene expression profiling in toxicogenomics is
often used to find molecular signature of toxicants. The range
of doses chosen in toxicogenomics studies does not always
represent all the possible effects on gene expression: several
doses of toxicant can lead to the same observable effect on
the transcriptome. This makes the problem of dose expo-
sure prediction difficult to address. We propose a strategy
allowing to gather the doses with similar effects prior to the
computing of a molecular signature. The different gathering
of doses are compared with criteria based on likelihood or
Monte Carlo Cross Validation. The molecular signature is
then determined via a voting algorithm. Experimental results
point out that the obtained classifier has better prediction
performances than the classifier computed according to the
original labeling.

Index Terms—Classification likelihood, Classification,
Monte Carlo Cross Validation, Molecular signature, Microar-
rays

I. INTRODUCTION

Microarray gene-expression profiling is recognized
to bring valuable information as regards diagnosis or
prognosis (e.g. oncology, new drugs testing, etc.). Many
works now aim at applying this high-throughput tool
to toxicological studies [5], [10], for which the ultimate
purposes are to know whether an individual has been
intoxicated and if so, to identify the toxicant and possibly
to predict the exposure level. Because the clinical signs
are the same for a wide range of toxicants, a molecular
imprint yielded by gene expression, the so called molecu-
lar signature, of these toxicants would help the design of a
fast and efficient diagnostic tool. A typical toxicogenomic
study consists in administering a toxicant to a model
organism at different doses within a range, and getting
the corresponding gene expression data.

Some Machine Learning algorithms are dedicated to
finding the molecular signature from gene expression.
They have to be used cautiously to provide reliable
results. The genes of the signature are determined in a
cross-validation framework in order to limit the risk of
over learning bias, as recommended in recent works [2],
[12], [9].

In this work, we consider as mandatory to explore
the possibility that different doses may have the same
effect on the expression levels of genes. To perform
this task, we propose two methods to apply prior to
the determination of the molecular signature: one is a
likelihood-based method and the other, introduced here,
is based on the Monte Carlo Cross Validation (MCCV)
algorithm. Then, once the doses of toxicant with similar
effect are gathered, a machine learning algorithm is run,
aiming at determining a molecular signature and its
predictive power.

Our approach is applied to two toxicogenomic stud-
ies. The results obtained demonstrate the possibility to
gather similar doses, and the interest of this grouping in
order to estimate a corresponding classifier with better
prediction performances than the one related to the
original range of doses.

II. METHODS

We present here the notations adopted throughout this
paper.

• n is the number of observations
• g is the number of variables (genes), g� n
• N is the number of doses
• X is the n× g real matrix containing all the expres-

sion profiles
• x is a g× 1 observation (or individual)
• Porig = (1, ..., N) is the vector of the N administered

doses labels and is called the original partition.
• y is the n × 1 vector of the administered dose of

the toxicant for each observation. Each element of y
takes its value in Porig

• P = (P(1), ..., P(N)) is a new labeling of the doses,
consisting in a permutation with repetitions of the
N elements of Porig among its first K < N elements:
(P(i) ∈ {1, ..., K} with i = 1, ..., N). P(i) is the
new class label replacing the class label i in Porig.
Concretely, P(1) is the class label of the lowest dose



and P(N) the class label of the highest dose. P is
called a new partition

• z is the new vector of the observable doses, deduced
from a new partition P

• g f ilt is the number of genes kept after each filtering
step (see figure 1)

• gs is the number of genes kept in the molecular
signature

To clarify the notion of partition, let us consider
an example of a five dose exposure experiment. The
initial partition is Porig = (1, 2, 3, 4, 5) and y =
(1, 1, 2, 2, 3, 3, 4, 4, 5, 5) is the vector describing the class
of each observation (two observations per dose). If a par-
tition P consists in aggregating the weakest doses P(1)

orig

and P(2)
orig, it is noted P = (1, 1, 2, 3, 4); the new vector of

classes is z = (1, 1, 1, 1, 2, 2, 3, 3, 4, 4). It is worth noticing
that P could be indifferently noted P = (1, 1, 2, 4, 3), or
P = (2, 2, 1, 3, 4). Finally, the partition P1 = (1, 1, 2, 3, 4)
aggregates the weakest doses P(1)

orig and P(2)
orig, whereas the

partition P2 = (1, 2, 3, 4, 1) the weakest dose P(1)
orig with

the strongest dose P(5)
orig.

We present thereafter two different methods used to
estimate a partition P̂ which describes the observable
effects of the toxicant in the dataset X (see paragraphs
II-A and II-B1). Then, given P̂, we classically determine
a molecular signature and the test error rate (see
paragraph II-B2).

A. Determination of the best partition
Let observation x be drawn from a multivariate mix-

ture density:

f (x, Θ) =
K

∑
k=1

pk fk(x, θk) (1)

Θ = (pk; θk)k=1,...,K, pk is the probability for an ob-
servation to be in the class k and θk is the parameter
vector of fk. The choice of a mixture model allows to
derive a Classification Log-Likelihood (CLL), as already
proposed by [4]. Let P be the current partition. This leads
to a partition of the sample X = [x1; ...; xn] into K classes
Ck, k = 1, ..., K.

Lc(X, P, Θ) =
K

∑
k=1

∑
x∈Ck

log (pk fk(x|θk)) (2)

Equation (2) is commonly used within the Classification
Expectation-Maximization algorithm (CEM) [6]. We pro-
pose to use a Bayesian Information Criterion (BIC) based
on the CLL (equation (3)) which will characterize the
quality of P while taking into account the complexity of
the corresponding mixture model.

BIC = −2Lc + ν log(n) (3)

where ν = gK + 1 is a parameter depending on the
complexity of the model, assuming that the observations
follow a Gaussian mixture model.

The results of the BIC approach allow the selection of
a presumably optimal partition. Yet, two characteristics
of this criterion are debatable when considering the final
objective of molecular signature finding:
• the BIC value does not have any signification, espe-

cially if one wants to characterize the test error rate
associated to the partition P

• it depends strongly on the Gaussian mixture as-
sumption

In the next section, a prediction model and its cross-
validated error rate are computed for each partition. We
investigate whether the partitions proposed by the BIC
approach provide the smallest test error rates.

B. Classification
Some papers dealing with discrimination from

microarray data have been severely criticized in
recent works [2], [9], [12]. For instance, Michiels et al.
[12] emphasizes the fact that numerous papers use
methodology resulting in an overoptimistic estimation
of the error rate. The approach proposed in this
paper was designed to meet the quality requirements
suggested in [12] and advocates the use of validation
by repeated random sampling, leading to an accurate
methodology (cf. figure 1) to get both a molecular
signature and the discrimination model associated to a
test error rate.

1) Monte Carlo Cross-Validation (MCCV) testing of each
partition : To obtain a robust estimation of the test
error rate, the learning phase is embedded in a cross-
validation framework, presented by figure 1.

For each partition P, the test error rate evaluation is a
3-steps MCCV algorithm consisting in repeating B times:
(a) a split step: split randomly the dataset in a training

and a testing set, respecting a 2:1 ratio.
(b) a filtering step: select the g f ilt relevant variables from

the learning dataset via a K-sample F-test with a
Bayesian regularization [13].

(c) a classification step: compute a prediction function.
To deal with the g� n setting, linear Support Vector
Machines (SVM) [7] were used to build the classifier.
When a multiclass situation is encountered, a One
versus One strategy is applied [1]. The regularization
parameter of the classifier is determined on the
learning set by a Leave One Out Cross Validation
technique (not shown on figure I).

g f ilt is set to 200 for all P and MCCV iterations. Ad-
ditional runs (not depicted in this paper) showed that
g f ilt has no influence on the ranking of P, it was chosen
small enough with regard to g to significantly reduce the
number of variables. B is set to 50, allowing the estima-
tion of the mean test error rate. Each step of this MCCV
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Fig. 1. Algorithm of the MCCV estimation of the classification error
rate, P being fixed. This algorithm is run for each P.

algorithm respects the recommendations suggested in
[3].

To achieve the grouping of doses with same
observable effect, we choose the partition P̂ as a
trade-off between minimizing the BIC and the test
error rate. Knowing P̂, we can estimate a classifier to
discriminate between doses with observable effect.

2) Signature and classifier : In this section, P = P̂ is
known, and we compute a molecular signature of gs
genes. Between two MCCV iterations, the g f ilt genes
selected are not likely to be the same: it strongly depends
on the split step 1. Thus, the B lists of variables provided
by the MCCV are very heterogeneous and to obtain a
consensus list, a voting method is required.

We consider two voting techniques:
• “Unanimity”: the gs genes which are selected unan-

imously by all the B iterations of the MCCV proce-
dure

• “Quorum”: genes are sorted according to the num-
ber of occurrences in the B iterations. The first gs

TABLE I
DESCRIPTION OF THE DATASETS

Toxicant
Ricin (Tox1) Mustard Gas (Tox2)

Organism Mus musculus Rattus norvegicus
Biological tissue total blood lung
# of doses 5 4
# of samples per doses 10, 7, 7, 9, 7 20, 10, 10, 11
# of variables 24111 15923
# of partitions 43 14

genes of this sorting are selected.
Once the signature is determined, we finally build

the classifier from the whole dataset and test it on an
unseen set of observations, leading to an estimation of
the generalization error associated to the gs signature
genes.

III. RESULTS

A. Description of the datasets

We applied our approach to two toxicogenomic
datasets Tox1 and Tox2, described in table I. Tox1
corresponds to an in-house experiment (not yet
published data), and Tox2 includes data described in [8]
available on the GEO repository (GSE1888). The animals
have been sacrificed and messenger RNA (mRNA) has
been extracted from the appropriate biological tissue
according to usual protocols. The obtained samples
have been hybridized on microarrays. For both cases
the control sample consists in mRNA from animals
injected with the vehicle of the toxicant.

Following classical experimental plans, the two se-
lected experiments are designed as follows: among the
doses of toxicants injected to the animals, at least one has
known effects, for instance, the dose for which 50% of the
exposed animals die (Lethal Dose 50, LD50). Exposure
to all these doses can have very different effects on the
tissue under study, with possibly no visible phenotype.
As proposed earlier, the issue is then to cluster the doses
which have the same effects on gene expression.

Figure 2 and 3 depict the projection of the n observa-
tions onto the 2-dimensional space spanned by the two
first components of the Partial Least Squares regression
[14] of y on X. Symbols represent the class membership.

For Tox1, we point out a clear linear discrimination
between low and high doses. Samples corresponding to
doses 2 and 3 seems to be quite similar in a transcrip-
tomic point of view and can be considered as belonging
to the same class (say the low level exposure class). Sam-
ples associated with doses 1, 4 and 5 constitute the null,
medium and high level exposure classes respectively.
The corresponding partition is P = (1, 2, 2, 3, 4).

For Tox2, we conjecture that samples corresponding to
doses 2 and 3 are quite similar and can be considered
as belonging to the same class (say the medium level



exposure class) whereas samples associated with doses
1 and 4 constitute two other distinct classes, say the null
level exposure class and the high level exposure class.
The corresponding partition is P = (1, 2, 2, 3).

Those remarks illustrate the need to formalize a way to
characterize the “optimal” class structure by clustering
the doses with the same observable effect.
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Fig. 2. Projection of the observations on the two first components of
a Partial Least Squares Regression of y on X for Tox1.
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Fig. 3. Projection of the observations on the two first components of
a Partial Least Squares Regression of y on X for Tox2.

B. Choice of P̂

For each P, the BIC is estimated. Figures 4(a) and 5(a)
depict BIC as a function of P for each dataset. BIC de-
clared as optimal respectively the partitions (1, 1, 1, 1, 2)

TABLE II
GENERALIZATION ERROR RATES, AS A FUNCTION OF g f ilt AND gs AND

THE VOTING STRATEGY FOR Tox1 .

(a) Unanimity
Number of filtered genes g f ilt

25 50 100 150 200
Error rate 31% 23% 31% 31% 31%

gs 12 17 39 66 80

(b) Quorum
Number of filtered genes g f ilt

gs 25 50 100 150 200
5 54% 31% 23% 31% 31%

10 38% 23% 31% 38% 31%
15 15% 23% 31% 31% 31%
20 46% 62% 31% 31% 31%
25 23% 23% 23% 31% 31%
30 23% 23% 38% 38% 31%
40 23% 31% 23% 23% 38%

and (1, 1, 2, 2). The partitions suggested by figures 2 and
3 are ranked respectively 26th out of 43 and 9th out of
14 by BIC. We then compared the BIC and classification
results in figures 4(b) and 5(b). As expected, the test
error rates associated with the partitions top-ranked
by BIC are the smallest. The partitions corresponding
to the lowest test error rates are (1, 1, 1, 2, 3) for Tox1
and (1, 1, 1, 2) for Tox2. Moreover these partitions are
biologically interesting: from a range of 5 doses, we are
able to deduce a range of 3 observable effects as regards
gene expression for Tox1 and from a range of 4 doses, to
deduce a range of 2 observable effects for Tox2. In the
Tox1 case, this new partition is all the more interesting
because it keeps apart samples associated with the LD50
from the non lethal doses.

C. Classification knowing P̂

Finally, we give the generalization error rates, as a
function of g f ilt and gs, for P̂ in tables II(b) and III,
obtained from 13 unseen observations for Tox1 (resp. 50
for Tox2). We set g f ilt and gs to sufficiently small values
to significantly reduce the number of variables after the
filtering step and to allow the biological validation of
the signature. For both datasets, the original partitions
(1, 2, 3, 4, 5) and (1, 2, 3, 4) show poor performances ei-
ther according to their BIC ranking, to their ranking with
the MCCV procedure (see figures III-B III-B) and to the
generalization error rates associated to their respective
signatures (minimum of gnagna and 38% respectively,
data not shown).

It is worth pointing out that the number of genes kept
by the filtering step has a non negligible effect on the
determination of a consensus list of genes, although it
has no effect on the ranking of the partitions.

There is an optimal value (15%) when gs = 15 for
Tox1. These genes are present in each signature of length
greater than 15. The lowest generalization error rate for
Tox2 is 8% and is associated to a gs = 40 signature.
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(a) BIC as a function of P for Tox1.
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Fig. 4. Bayesian Information Criterion and test error rates for each partition for Tox1. On the x axis, partitions are ranked by increasing values
of BIC.
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Fig. 5. Bayesian Information Criterion and test error rates for each partition for Tox2. On the x axis, partitions are ranked by increasing values
of BIC.

Our method provided both a classifier able to predict
the dose exposure of a new observation and the best
subset of genes in terms of prediction.

IV. CONCLUSION

In the framework of toxicogenomics, studies aim at
determining the molecular signature of a given toxicant
from a tissue sample. We propose a two-fold methodol-
ogy to be applied to usual dose-range gene expression
experiments, consisting in: first, the discovery of sets of

doses with the same observable expression effect and
second, the determination of the molecular signature
using a MCCV approach. The results presented on two
datasets show the impact of the preliminary step on
the generalization error. The results presented on two
datasets show that gathering similar doses yields a clas-
sifier with better prediction performances than the one
related to the original range of doses.

Future work will focus on alternative methods to filter



TABLE III
GENERALIZATION ERROR RATES, AS A FUNCTION OF g f ilt AND gs AND

THE VOTING STRATEGY FOR Tox2 .

(a) Unanimity
Number of filtered genes g f ilt
25 50 100 150 200

Error rate 19% 15% 19%
gs 0 0 1 4 2

(b) Quorum
Number of filtered genes g f ilt

gs 25 50 100 150 200
5 23% 23% 15% 12% 23%
10 19% 19% 23% 23% 27%
15 23% 23% 19% 23% 15%
20 35% 23% 27% 23% 12%
25 15% 27% 31% 23% 15%
30 15% 19% 15% 23% 19%
40 23% 15% 8% 8% 19%

variables [11] and on the automatic selection of the best
partitions. A special care will be given to the use of
contingency tables rather than test and generalization
error rate in order to better account for multiclass dis-
crimination.
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for their constructive remarks.

REFERENCES

[1] E. L. Allwein, R. E. Schapire, and Y. Singer, Reducing multiclass to
binary: A unifying approach for margin classifiers, Journal of Machine
Learning Research 1 (2000), 113–141.

[2] C. Ambroise and G. J. McLachlan, Selection bias in gene extraction
on the basis of microarray gene-expression data, Proc Natl Acad Sci
U S A 99 (2002), no. 10, 6562–6566.

[3] A.-L. Boulesteix, C. Strobl, T. Augustin, and M. Daumer, Eval-
uating microarray-based classifiers: an overview, Technical Report,
Department of Statistics, University of Munich 5 (2007).

[4] P. G. Bryant, Large-sample results for optimization-based clustering
methods, Journal of Classification 8 (1991), no. 1, 31–44.

[5] P. R. Bushel, A. N. Heinloth, J. Li, L. Huang, J. W. Chou, G. A.
Boorman, D. E. Malarkey, C. D. Houle, S. M. Ward, R. E. Wilson,
R. D. Fannin, M. W. Russo, P. B. Watkins, R. W. Tennant, and R. S.
Paules, Blood gene expression signatures predict exposure levels, Proc
Natl Acad Sci U S A 104 (2007), no. 46, 18211–18216.

[6] G. Celeux and G. Govaert, A classification em algorithm for cluster-
ing and two stochastic versions, Computational statistics and data
analysis 14 (1992), 315–332.

[7] C. Cortes and V. Vapnik, Support-vector networks, Machine Learn-
ing 20 (1995), 273–297.

[8] J. F. Dillman, C. S. Phillips, L. M. Dorsch, M. D. Croxton, A. I.
Hege, A. J. Sylvester, T. S. Moran, and A. M. Sciuto, Genomic
analysis of rodent pulmonary tissue following bis-(2-chloroethyl) sulfide
exposure, Chem Res Toxicol 18 (2005), no. 1, 28–34.

[9] A. Dupuy and R. M Simon, Critical review of published microarray
studies for cancer outcome and guidelines on statistical analysis and
reporting, J Natl Cancer Inst 99 (2007), no. 2, 147–157.

[10] R. D. Fannin, J. T. Auman, M. E. Bruno, S. O. Sieber, S. M. Ward,
C. J. Tucker, B. A. Merrick, and R. S. Paules, Differential gene
expression profiling in whole blood during acute systemic inflammation
in lipopolysaccharide-treated rats, Physiol Genomics 21 (2005), no. 1,
92–104.

[11] B. Krishnapuram, L. Carin, and A. Hartemink, Gene expression
analysis: Joint feature selection and classifier design, ch. 14, pp. 299–
318, MIT press, 2004.

[12] S. Michiels, S. Koscielny, and C. Hill, Prediction of cancer outcome
with microarrays: a multiple random validation strategy, Lancet 365
(2005), no. 9458, 488–492.

[13] G. K. Smyth, Linear models and empirical bayes methods for assessing
differential expression in microarray experiments, Stat Appl Genet Mol
Biol 3 (2004), Article3.

[14] S. Wold, L. Martens, and H. Wold, The multivariate calibration prob-
lem in chemistry solved by the PLS method, Proceedings Conf. Matrix
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