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Abstract

This paper investigates the situation where a group of terminals can be simul-
taneously connected to several base stations using distinct technologies on non-
overlapping frequency bands. We introduce and solve the problem of optimal power
allocation (in the sense of the ergodic sum-rate) for the terminals in the uplink,
using three types of receivers: the optimum receiver, minimum mean square error
and matched filters. Key results from random matrix theory allow us to solve the
corresponding optimization problems. Simulations validate our approach and illus-
trate the performance gain obtained by using several technologies simultaneously
instead of one at a time.

Key words: Heterogeneous networks, cross-system diversity, soft handover, power
allocation, random matrix theory, multiple access channel, CDMA, MIMO,
OFDM.

1 Introduction

As the number of wireless systems has increased over the last two decades, the
idea of system convergence has been introduced (see e.g. [19,28]) in order to
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enable mobile terminals to operate with different standards. This convergence
idea was one of the driving forces behind the design of reconfigurable termi-
nals, also known as software defined radio, flexible radio [18] or cognitive radio
in the context of intelligent terminals [10]. Mobile phones currently available
on the market are multi-mode, which means that they can work with differ-
ent standards. In Europe for example, mobile phones typically have both the
GSM, GPRS and/or UMTS-FDD standards implemented and sometimes even
the 802.11a/b/g standards via the unlicensed mobile access (UMA) technology
(see e.g. [12]). In addition, there are many other situations where a terminal
can have access to several signals that are in different, non-overlapping fre-
quency bands. Here are a few examples: a GSM mobile station is able to listen
to several GSM base stations; a UMTS user equipment can listen to WCDMA
base stations but also possibly TD-CDMA base stations; a DVB-H mobile
terminal can operate in the 3G or the DVB standard. In all these examples
the terminal operates with only one standard at a time, depending on the user
location and/or the type of service (Internet, TV, voice,...) requested by the
user.

Although the present work is clearly based on an information-theoretic ap-
proach, it still provides elements to understand the aforementioned situations
and give some ideas of what could be done to optimize the overall uplink
network throughput, by using all the systems simultaneously [17] instead of
sequentially (hard handover or best base station selection) as it is the case in
existing systems or contributions [9,32]. This will provide an additional form of
diversity at the terminals, which could be named cross-system diversity. More
specifically, we consider several mobile users and base stations, each of the lat-
ter using a particular frequency band and radio access technology. We assume
that the base stations are connected through perfect communication links. For
instance, in UMTS networks, the base stations are connected through a radio
network controller and very reliable wired connection (e.g. optic fiber), which
is not far from a perfect communication link. Users have wireless links towards
the different base stations and we want to derive the optimal power and rate
allocations, given a fixed power constraint for each user. The uplink power
allocation (PA) scheme is optimized in order to maximize the sum-rate (over
the users and systems) of the overall network.

There exist many works on how to optimally allocate the transmit power to
the different sub-channels. To our knowledge, reference [16] is the closest work
to the one presented here. The authors address the problem of jointly allo-
cating power and sub-carriers in the context of orthogonal frequency division
multiple access (OFDMA) systems. Our work differs from theirs on several
points: we consider a more general channel model (fading channels instead of
Gaussian channels), a very different context (heterogeneous networks), all the
sub-channels are used whereas in [16], only a subset of them is used by each
transmitter and also the optimization problem of [16] is not convex, in contrast
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with the PA problem for the optimum receiver investigated in this paper. In
addition, our main goal is to optimize a global performance criterion under
local power constraints. Finally, our information theoretic approach exploits
asymptotic random matrix theory [11,29] in order to provide tractable expres-
sions for the optimization problems under investigation. Hence, we will assume
the dimensions of the systems as well as the number of users large enough, in
order to benefit from the self-averaging properties of the matrices under con-
sideration. In particular, an interesting feature of these self-averaging proper-
ties shows that only the parameters of interest to the problem (system load,
signal to noise ratio,...) are kept whereas all irrelevant parameters disappear
[25,20,26,13]. This provides a neat analysis framework for multi-dimensional
problems. Moreover, although the results are proved in the asymptotic regime,
it turns out (due to fast convergence properties) that they are accurate even
for rather small systems (see e.g. [2,6,7,23]).

This paper is structured as follows. Sec. 2 provides the signal model used to
study the cross-system problem under investigation. In Sec. 3, we consider the
case where the receiver is equipped with the information theoretic optimum
decoder 1 . In order to gain insight into the overall sum-capacity maximization
problem we start by studying the simplest scenario (Sec. 3): one single user,
two one-dimensional base stations with equal bandwidths and the different
links assumed to be static. In Sec. 4, the sum-capacity achieving power allo-
cation policy is provided in a general framework: arbitrary numbers of users,
base station dimensions, systems bandwidths and fading channels with trans-
mit and receive correlations. As a second step we investigate more realistic
receiver structures in terms of complexity, namely the minimum mean square
error (MMSE) receiver and the matched filter (MF), optimizing the overall
system sum-rate achieved when the base stations use these receivers. Simu-
lations are provided in Sec. 5 to assess the gain provided by the proposed
approach and possible extensions of this work are given in Sec. 6.

Notations: in this paper, the notations s, v, M stand for scalar, vector and ma-
trix respectively. Capital letters are used to denote index upper bounds. The
superscripts (.)T and (.)H denote transpose and transpose conjugate, respec-
tively. The trace of the matrix M is denoted by Tr(M). The mathematical
expectation operator is denoted by E(.). The notation N (v,M) stands for
the complex multi-dimensional Gaussian random variable with mean v and
covariance M. Finally, the notation (.)+ denotes the function max (0, .).

1 The optimum receiver would be implemented by a maximum likelihood (ML)
decoder. However, in order to prove coding theorems, joint typicality-based decoders
are generally assumed, because they can be shown to be optimum for infinite sizes
of codeword.
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2 System Model

Fig. 1. Cross-System scenario

The global system under investigation is represented in Fig. 1. It consists of K
mobile terminals and S base stations using non-overlapping frequency bands
(in Fig. 1, S = 3). Each mobile terminal has one single antenna, while the
base station can possibly have multiple antennas depending on the radio tech-
nology. The number of dimensions associated with base station s ∈ {1, ..., S}
is denoted by Ns. For example, if a CDMA system is used, Ns represents
the spreading factor; on the other hand, if the base station is equipped with
multiple antennas, Ns represents the number of receive antennas. Assuming
time selective but frequency non-selective channels 2 , the equivalent baseband
signals received by the base stations can be written as







y
1
(τ) =

√
ρ1

K∑

ℓ=1

hℓ,1(τ)xℓ,1(τ) + z1(τ)

y
2
(τ) =

√
ρ2

K∑

ℓ=1

hℓ,2(τ)xℓ,2(τ) + z2(τ)

...

y
S
(τ) =

√
ρ
S

K∑

ℓ=1

hℓ,S(τ)xℓ,S(τ) + zS(τ)

, (1)

where ∀k ∈ {1, ..., K}, ∀s ∈ {1, ..., S}, xk,s(τ) is the signal transmitted by

user k to base station s at time τ , satisfying
S∑

s=1

E|xk,s|2 ≤ 1, hk,s(τ) is the

Ns−dimensional stationary and zero-mean ergodic complex Gaussian channel
vector associated with user k for the system s, zs(τ) is an Ns-dimensional com-
plex white Gaussian noise distributed as N (0, n0BsI), where n0 is the receive

2 The present information theoretic analysis can be directly extended to multipath
channels (channels with memory). One can show that, provided that the maximum
channel memory is negligible w.r.t. the size of the codewords used, the only difference
is that one has to work in the frequency domain [15].
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noise power spectral density, Bs the bandwidth of system s, ρs is the signal-
to-noise ratio (SNR) in system s, defined as ρs = P

n0Bs
, and P is the transmit

power available at a given terminal. For simplicity and clarity, we henceforth
implicitly assume that the mobile terminals have the same transmit power,
which is a reasonable assumption (see e.g. [27] for more information). Other-
wise, the case with distinct transmit powers could be easily taken into account.
For simplicity we will omit the time index τ from our notations. In our anal-
ysis the flat fading channel vectors of the different links can possibly vary
from symbol vector (or space-time codeword) to symbol vector (or space-time
codeword). We assume that the receivers (base stations) know their channel
matrices (coherent communication assumption) and send the channel distribu-
tion information (CDI) through reliable links to a central controller. Knowing
the channels of all users, the central controller implements the algorithm and
indicates to each user how he has to share his transmit power between the
different links. The transmitters therefore do not need any knowledge on the
channels (neither channel state nor distribution information).

As we will consider the overall system sum-rate as the performance criterion,
and assume a large system in terms of both the number of users and dimensions
at the base stations (N1, ..., NS), it is convenient to rewrite the received signal
in matrix form: 





y
1

=
√
ρ1H1x1 + z1

y
2

=
√
ρ2H2x2 + z2

...

y
S

=
√
ρSHSxS + zS

, (2)

where ∀s ∈ {1, ..., S}, Hs = [h1,s . . . hK,s] and xs = (x1,s, . . . , xK,s)
T . We as-

sume that the channel matrix of a given system can be factorized, in the sense
of the Hadamard product, as a product of two matrices

Hs = Gs ⊙Ws, (3)

where Ws is the matrix of the instantaneous channel gains which are assumed
to be i.i.d zero-mean and unit variance, and Gs is the pattern mask specific to
a given technology, containing the arbitrary variances of the elements of Hs.
This model is broad enough to incorporate several radio access technologies.
Here are three typical examples:

• MIMO systems: Ns represents the number of antennas at the base station
s and K the number of users (each equipped with a single antenna). The
matrices Ws and Gs are respectively an i.i.d. zero mean Gaussian matrix
and a Nt×K correlation matrix. The Kronecker model [1,3,21] is very used
to model MIMO channels. It assumes that the channel transfer matrix can
be factorized as Hs = R

1
2
s ΘsT

1
2
s , where the matrices Ts and Rs respectively
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account for the possible correlation effects at the transmitter and receiver.

What is important to note is that in this context gs(i, j) =
√

d
(R)
i,s d

(T )
j,s , where

d
(R)
i,s are the eigenvalues of the correlation matrix Rs at the receiver and d

(T )
j,s

are the eigenvalues of the correlation/path loss matrix at the transmitter
Ts;

• Flat fading CDMA systems: Ns represents the spreading factor and K the
number of users. For a block fading channel, Ws and Gs are respectively
the code matrix, where each column represents the code of a given user, and
the channel gains matrix, where the columns are identical (due to the fact
that we consider flat fading models);

• OFDM systems: Ns represents the number of sub-carriers andK the number
of users. Assuming for simplicity an OFDMA system where each user uses
one subcarrier, Ws and Gs are respectively an i.i.d. zero mean Gaussian
matrix and the truncated identity matrix (as the channel matrices are not
necessarily square). Note that if K < Ns, some sub-carriers are not used.

3 Maximizing the Sum-Rate in the Simplest Scenario

Here, we consider the simplest scenario with 1 user and 1 dimension at each
of the 2 base stations. The two frequency bands used by each of the cells are
denoted by B1 and B2. For simplicity we assume that B1 = B2 = B

2
. The

scalar channels are assumed to be fixed here. This case is very simple but
captures some important features of the problem. The system of equations
associated with the received signals is:







y1 =
√
ρ1h1x1 + z1

y2 =
√
ρ2h2x2 + z2.

(4)

The power fractions allocated to bands 1 and 2 are respectively denoted by
P1 = α and P2 = (1−α), with α ∈ [0, 1]. We also introduce θ1 and θ2 defined

by: θ1 = |h1|2
σ2 and θ2 = |h2|2

σ2 , where σ2 = n0B
2

. The system sum-capacity can
then be written as:

C =
B

2
max
α∈[0,1]

{log2 (1 + θ1α) + log2 [1 + θ2(1 − α)]}

=
B

2
max
α∈[0,1]

log2

{

1 + θ2 + [θ1 − θ2 + θ1θ2]α− θ1θ2α
2
}

︸ ︷︷ ︸

R(α)

. (5)

The function α 7→ R(α) is strictly concave and its maximum is reached for:
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α∗ =
1

2
+

1

2

(
1

θ2
− 1

θ1

)

whenever it belongs to [0, 1]. (6)

The power fraction allocated to system 1 is merely linear in the difference
between the reciprocal of the receive signal-to-noise ratios associated with
each of the systems. Three operating regimes can be distinguished:

• when θ1 ≤ θ2
1+θ2

: α∗ = 0; as we did not impose the function R(α) to meet
the transmit power constraint, α∗ = 0 translates the water-filling solution,
when all the power has to be allocated to the dominant link (link 2 here),
into the well known hard handover or best base station selection strategy.
Symmetrically, when θ2 ≤ θ1

1+θ1
: α∗ = 1;

• when θ1 = θ2 then the optimal solution is the uniform power allocation.
• for the other (non-negative) values for the pairs (θ1, θ2) there generally exists

a strictly better power allocation policy than the uniform PA and hard
handover schemes.

4 Large Systems Scenario Analysis

In this section, we consider a much more realistic scenario for wireless com-
munications. The different links between transmitters and receivers are now
block fading and the numbers of users, systems and base station dimensions
can be arbitrarily selected. Additionally, the base stations can have different
bandwidths B1, ..., BS. The numbers of users and dimensions have to be large
enough in order to make our asymptotic analysis sufficiently accurate. More
precisely, we consider a scenario where K → +∞, ∀s ∈ {1, ..., S}, Ns → +∞
with lim

K→∞,Ns→∞

K

Ns

= cs and 0 < cs < +∞. However, it is now well-known

that many asymptotic results from random matrix theory under the large
system assumption apply for relatively small systems [2,6,7].

Under these assumptions our main objective is to derive the best power allo-
cation scheme in the sense of the sum-rate of the global system for different
types of receivers. One can notice that the selected performance criterion is
global whereas the power constraints are local, which is a key difference with
the conventional power sharing problem between different subchannels.

4.1 Optimum Receiver

When the optimum receiver is assumed at the base stations, maximizing the
sum-rate leads to the Shannon sum-capacity of the global system. Considering

7



the sum-rate point of the system, instead of an arbitrary operating point of
the capacity region, has the advantage of simplifying the technical problem. In
particular, considering the sum-rate as the performance criterion allows us to
exploit some results obtained for single-user fading MIMO (e.g. [26]). Note that
the considered system consists of several orthogonal multiple access channels
(MAC) with multi-dimensional receivers and single-dimensional transmitters,
under the assumption that CSIR but no CDIT (CDI at the transmitter) is
available. The sum-rate of each MAC is simply a special case of the general
case analyzed by [30,31] for Rayleigh MIMO multiple access channels with
input correlation with CSIR and CDIT (CDI at the transmitter). In our case
where the dimension of the signal transmitted by a terminal is one, the CDIT
assumption amounts for a user to knowing its transmit power. By considering
the system of (orthogonal) equations (2) the network ergodic sum-capacity
per user can be expressed as:

C = max
Q1,...,QS

E

[

1

K

(
S∑

s=1

Bs log2

∣
∣
∣I + ρsHsQsH

H
s

∣
∣
∣

)]

(7)

where ∀s ∈ {1, ..., S}, Qs = E(xsx
H
s ). As long as the signals transmitted

by the different users are independent, the matrices Qs are diagonal: Qs =
Diag (α1,s, . . . , αK,s), where αk,s denotes the fraction of its power user k em-
ploys in system s. As the mobile terminals have identical transmit power, we
have ∀k ∈ {1, ..., K}, ∑S

s=1 αk,s = 1.

So far, we have not assumed anything about the numbers of users and base
station dimensions. From now on, in order to simplify the optimization prob-
lem associated with equation (7) we will assume the asymptotic regime, as
defined in the beginning of this section. Interestingly, in that case, an ex-
plicit equivalent for the network sum-rate can be obtained (from [11], see also
[33]), whatever the pattern mask Gs, as long as its continuous power profile,
defined for (τ, τ ′) ∈ [0, 1]2 as pNs

(τ, τ ′) = gs(i, j) with i−1
Ns

≤ τ ≤ i
Ns

and
j−1
NsK

≤ τ ′ ≤ j

NsK
, converges uniformly to a bounded and piecewise continuous

function as Ns → ∞ [11], corollary 10.1.2 in [34] . However, if the pattern mask
is not structured at all, the expression of the large system equivalent can be
quite complicated and not always easy to exploit, whereas it is simpler for the
class of separable channels (e.g. CDMA and MIMO channels). This is why we
will mainly focus on this class of channels while having in mind that the pro-
posed framework can be extended to other technologies. Note that the OFDM
case needs a separate treatment since the power profile pNs

does not converge
uniformly. However, it is not difficult to see that one can obtain the same
capacity expression as in the separable case [24–26,20,13] with classical tech-
niques. Therefore, for at least the three aforementioned types of technologies
the constrained optimization under consideration can be simplified by find-
ing a certain approximation C̃ of C, which can be obtained by exploiting the
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original results of [11,29] which have been applied by [24–26,20,13] to fading
single-user vector channels. This is stated through the following proposition.

Proposition 4.1 (Equivalent of the network sum-rate) An equivalent of
(7) in the asymptotic regime, i.e. when K → +∞, ∀s ∈ {1, ..., S}, Ns → +∞
with lim

K→∞,Ns→∞

K

Ns

= cs and 0 < cs < +∞, is:

C̃ = max
α1,...,αK

1

K

[
S∑

s=1

K∑

ℓ=1

Bs log2 (1 + γℓ,sαℓ,srs) +
1

K

S∑

s=1

Ns∑

j=1

Bs log2(1 + βj,sqs)

−
S∑

s=1

Bsvsqsrs log2 e −
K∑

ℓ=1

λℓ

(
S∑

s=1

αℓ,s − 1

)]

(8)

where ∀ℓ ∈ {1, ..., K}, λℓ is the Lagrange multiplier associated with the power
constraint of user ℓ, guaranteeing that the sum of power fractions over the
different systems equals one. The expression of vs depends on the technology
used by system s: vs = Kρs if s denotes the index of a MIMO system; vs =
K
Ns
ρs if s denotes the index of a CDMA system. In both cases the parameters

{(qs, rs)}s∈{1,...,S} are determined as the unique solution of the following system
of equations:







rs =
1

Kvs

Ns∑

j=1

βj,s

1 + βj,sqs

qs =
1

Kvs

K∑

ℓ=1

γℓ,sαℓ,s

1 + γℓ,sαℓ,srs

, (9)

Hs = R
1
2
s ΘsT

1
2
s , Θs is a matrix with i.i.d entries with unit-variance, γℓ,s =

vsd
(T )
ℓ,s , d

(T )
ℓ,s is the ℓth eigenvalue of Ts, βj,s = vsd

(R)
j,s , d

(R)
j,s is the jth eigenvalue

of Rs. For the OFDM case, equation (8) holds with rs = ρs, qs = 0 and
γℓ,s = g2

s(ℓ, ℓ).

The proof directly follows from [25,26] since in our case the channels are also
separable. In order to better understand and interpret the provided result and
make this paper self contained, we provide a special case drawn from [24]: a sin-
gle MIMO system with SNR ρ, K inputs, N outputs and neither transmit nor
receive correlation. The approximate capacity per receive antenna can be writ-
ten in this case: C̃ = 1

N

∑K
i=1 log2 [1 + ρα(i)r] + log2

(
N
K
r
)

− N
K

(
N
K
− r

)

log2 e

where r is determined through the following fixed point equation







r = N
K

1
1+ρq

q = 1
K

∑K
i=1

α(i)
1+ρα(i)r

.
(10)

Therefore we see that the large system approximation roughly allows to trans-
form the exact capacity expression of the fast fading MIMO system into a sum
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of individual capacities similarly to a parallel set of Gaussian sub-channels.
Now let us go back to the general case. In order to find the optimum power
allocation scheme we need to derivate the argument of the maximum in equa-
tion (8), which we refer to as R̃(α1, ..., αK). Obviously for all s ∈ {1, ..., S},
rs and qs are functions of the parameters to be optimized i.e. α1,s, ..., αK,s.
It turns out that the partial derivative with respect to αk,s is the same as it
would be if rs and qs were assumed to be independent of this parameter, which
is the purpose of the following lemma.

Lemma 4.2 (Property of the equivalent of the network sum-rate)
For all (k, s) ∈ {1, ..., K} × {1, ..., S}, the derivative of the sum-rate approx-
imaton R̃(α1, ..., αK) with respect to αk,s is the same as that obtained when
assuming rs and qs to be independent of αk,s.

This key property is proved in Appendix A. This property of the large di-
mension equivalent of the sum-rate is instrumental in the determination of
the optimum PA policy because it considerably simplifies the optimization
procedure and allows us to cope with the convergence issue of rs and qs to-
wards strict constants as the numbers of users and dimensions grow. Based on
this argument, the fact that (α1, ..., αK) 7→ R̃(α1, ..., αK) is a strictly concave
function (its Hessian is strictly positive) and using the notation Bs = bs × B

(where B = B1 + ... + BS) in order to use dimensionless quantities, one can
show that the optimum power fractions are given by the following proposition.

Proposition 4.3 (Power allocation for the optimum receiver) In the
asymptotic regime, the optimum power fraction of user k in system s is:

α∗
k,s =






bs
∑

t∈S+
k
bt




1 +

∑

t∈S+
k

1

γk,trt




− 1

γk,srs






+

, (11)

where for each user k the set S+
k represents the systems/sub-channels which

receive a non-zero power; |S+
k | ≤ S by definition. User k will allocate power

to system s if and only if the quantity bs
λk ln 2

− 1
γk,srs

is strictly positive.

We see that, thanks to the large system assumption, the analysis of the general
system under consideration (with fading and arbitrary numbers of users and
base station dimensions) leads to a solution similar to that obtained for the
elementary system of eq. (6) where the channels were assumed to be static.
Indeed, we also have a water-filling equation for the optimum power allocation
scheme, which is due to the averaging effect induced by the large system
assumption. Let us give one special case of equation (11): the case where the
base stations have the same bandwidth (e.g. UMTS-FDD + UMTS-TDD base
stations):
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α∗
k,s =






1

|S+
k |

+
1

|S+
k |

∑

t∈S+
k

1

γk,trt
− 1

γk,srs






+

. (12)

Here can be seen even more clearly, in eq. (12), that the obtained result can be
linked to the water-filling power allocation derived for the elementary scenario
(eq. (6)): the optimum power fraction comprises a term corresponding to the
uniform PA (i.e. the term 1

|S+
k
|) plus a term that characterizes the difference

of quality between the system under consideration ( 1
γk,srs

) and the average of

all the systems ( 1
|S+

k
|
∑

t∈S+
k

1
γk,trt

).

The capacity of the system under consideration is achieved if and only if all the
water-filling equations (eq. 11) are verified simultaneously. This is obviously
the case by construction of the derivation of the water-filling equations and
the convexity of the optimization region. The main issue to be mentioned now
is the way of implementing the proposed power allocation scheme. We propose
an iterative algorithm to implement the optimal power allocation policy:

(1) Initialization: assume a uniform power allocation scheme i.e. ∀(k, s) ∈
{1, ..., K} × {1, ..., S}, αk,s = 1

S
.

(2) Compute the corresponding value for rs by using the fixed-point method:
the first equation of system (9) can be written in the form: rs = fs(rs).

(3) Iterate the procedure while the desired accuracy on the power fractions
is not reached.
• For users k ∈ {1, ..., K}:

· Update the power fractions by using the water-filling equation (11).
· Update the value of rs.

A similar algorithm has been recently used by [7,8] in order to derive the ca-
pacity of single-user Rician MIMO channels with antenna correlation. Based
on the results of [7][8] one is ensured that the approximated ergodic mu-
tual information is a strictly concave function of the transmit power fractions
{α1, ..., αK} and if the iterative power allocation algorithm converges, then it
converges towards the global maximum. At each step of the iterative proce-
dure, the total sum-rate of the system is therefore increasing and generally (all
the simulations performed in [7,8] and this paper confirmed this point) con-
verges to a limit. At the limit, all power fractions will verify the water-filling
equations. As already mentioned, the system sum-capacity would be achieved
by using a maximum likelihood receiver at all the base stations. More prag-
matically we now turn our attention to sub-optimum receiver structures, which
can be implemented more easily in real systems. One of the questions we want
to answer is whether the optimal PA, in terms of the network sum-rate, for
other types of receivers can also be expressed through a simple water-filling
equation.
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4.2 MMSE Receiver

The MMSE receiver is known to be the best linear multi-user receiver in terms
of signal-to-interference plus noise ratio (SINR). In our context, the MMSE
receiver at base station s ∈ {1, ..., S} for user k ∈ {1, ..., K} can be written
as:

wHk,s = hHk,s

(
K∑

ℓ=1

αℓ,shℓh
H
ℓ + σ2I

)−1

, (13)

and the SINR is given by:

η
(mmse)
k,s = αk,sh

H
k,s





K∑

ℓ=1,ℓ 6=k
αℓ,shℓh

H
ℓ + σ2I





−1

hk,s. (14)

In order to express the sum-rate achieved by the overall system when the
MMSE receiver is used at the base stations, one just needs to determine the
SINR at the input of each MMSE receiver. It turns out that each of these
SINRs converges to a limit and is especially easy to express in the large di-
mensions regime (see e.g. [4,23]). Let η̃

(mmse)
ℓ,s be the asymptotic SINR for

user ℓ in the output of the MMSE receiver at base station s. The achievable
approximate ergodic sum-rate is then given by:

R̃(mmse)
sum = E

[ S∑

s=1

K∑

ℓ=1

log2

(

1 + η̃
(mmse)
ℓ,s

)

︸ ︷︷ ︸

R̃
(mmse)
k,s

]

. (15)

The asymptotic SINR expression in the MMSE output can be shown to be
(see e.g. [22,23]):

∀ℓ ∈ {1, ..., K}, η̃(mmse)
ℓ,s =

αℓ,s

Ns

Ns∑

i=1

g2
s(i, ℓ)

σ2 + 1
Ns

∑K
j 6=ℓ

αj,sg2s(i,j)

1+η̃
(mmse)
j,s

. (16)

To find the amount of power user k has to allocate to system s one needs to
derivate the sum-rate (eq. (15)) w.r.t. αk,s. Unlike the asymptotic sum-rate
achieved by the optimum receiver, the asymptotic sum-rate achieved by us-
ing the MMSE receiver is not always a concave function of (α1, ..., αK). In
order to obtain an analytical solution (otherwise an exhaustive numerical op-
timization of the sum-rate can always be performed) and avoid using possibly
computationally demanding numerical optimization techniques, we propose to
approximate the asymptotic sum-rate by a concave function by introducing
the two approximations (given below). This leads to the following proposition.
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Proposition 4.4 (Optimum power allocation for the MMSE receiver)
Assume that

(1) η̃
(mmse)
k,s = a

(mmse)
k,s × αk,s with

∂ak,s

∂αk,s
= 0;

(2)

∣
∣
∣
∣
∣
∣

∂R̃
(mmse)
k,s

∂αk,s

∣
∣
∣
∣
∣
∣

>>

∣
∣
∣
∣
∣
∣

∑

ℓ 6=k

∂R̃
(mmse)
ℓ,s

∂αk,s

∣
∣
∣
∣
∣
∣

.

In the asymptotic regime, the optimum power fraction of user k in system s

is:

α
(mmse)
k,s =



ωk −
1

a
(mmse)
k,s





+

(17)

where ωk , 1
λk ln 2

is the water-level for user k and

a
(mmse)
k,s ,

1

Ns

Ns∑

i=1

g2
s(i, k)

σ2 + 1
Ns

∑K
j 6=k

αj,sg2s(i,j)

1+η̃
(mmse)
j,s

. (18)

Proof By setting the derivative of the constrained asymptotic sum-rate to
zero, one directly obtains that:

∂

∂αk,s

[

R̃(mmse)
sum −

K∑

ℓ=1

λℓ

(
S∑

s=1

αℓ,s − P

)]

= 0

⇔ 1

ln 2

∂η̃
(mmse)
k,s

∂αk,s

1 + η̃
(mmse)
k,s

− λk = 0.

(19)

The validity of assumptions (1) and (2) is discussed in Appendix B and will
also be commented in the simulation part. The first assumption is actually
exactly verified in the finite case and we would also like its large system equiv-
alent to have this property. The second assumption is motivated by the fact
that in a many user network the behavior of a single user should have al-
most no impact on the SINR of another user of this network. Mathematically,
as the proof above shows, the motivations for assuming (1) and (2) is that
the optimization problem becomes very similar to the one investigated for
the optimum receiver. Therefore, like the optimum receiver, the approximate
optimum power allocation policy is given by a simple water-filling equation.

4.3 Matched Filter

Now we go a step further in decreasing the receiver complexity. We assume a
matched filter at all the base stations. The MF for user k at base station s
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simply consists in multiplying the received signal y
s

by hHk,s. The signal at the
MF output is expressed as

hHk,sys = ||hk,s||2xk,s +
∑

ℓ 6=k
hHk,shℓ,sxℓ,s + hHk,szk,s, (20)

and the corresponding SINR follows:

η
(mf)
k,s =

||hk,s||4αk,s
σ2||hk,s||2 +

∑

ℓ 6=k αℓ,s|hHk,shℓ,s|2
. (21)

In the asymptotic regime the SINR becomes (see e.g. [22,23])

η̃
(mf)
k,s =

αk,s
(
∑Ns

i=1 g
2
s(i, k)

)2

σ2Ns

∑Ns

i=1 g
2
s(i, k) +

∑

ℓ 6=k αℓ,s
∑Ns

i=1 g
2
s(i, k)g

2
s(i, ℓ)

. (22)

The asymptotic system sum-rate achieved by using the MF at the reception
is:

R̃(mf)
sum = E

[
S∑

s=1

K∑

ℓ=1

log2

(

1 + η̃
(mf)
ℓ,s

)
]

. (23)

The optimum power allocation for the marched filter is then given by the
following proposition.

Proposition 4.5 (Optimum power allocation for the MF) Assume that
∣
∣
∣
∣
∣
∣

∂R̃
(mmse)
k,s

∂αk,s

∣
∣
∣
∣
∣
∣

>>

∣
∣
∣
∣
∣
∣

∑

ℓ 6=k

∂R̃
(mmse)
ℓ,s

∂αk,s

∣
∣
∣
∣
∣
∣

. In the asymptotic regime, the optimum power

fraction of user k in system s is:

α
(mf)
k,s =



ωk −
1

a
(mf)
k,s





+

, (24)

where

a
(mf)
k,s =

(
∑Ns

i=1 g
2
s(i, k)

)2

σ2Ns

∑Ns

i=1 g
2
s(i, k) +

∑

ℓ 6=k αℓ,s
∑Ns

i=1 g
2
s(i, k)g

2
s(i, ℓ)

, (25)

and ωk , 1
λk ln 2

is the water-level for user k.

Proof A quick look at the sum-rate expression shows that the situation is
similar to that encountered with the MMSE receiver. The only difference is
that one does not need to introduce assumption (1) since the SINR η

(mf)
k,s is

always proportional to αk,s, whatever the dimensions of the system. The stated
result follows.
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5 Simulation example

In all the simulations the following channel model will be assumed. The entries
of Ws will be chosen to be i.i.d. with zero-mean and variance 1. For the CDMA
case, the entries of G will be generated according to a Rayleigh distribution
with variance 1, with independent columns and all the elements in each of them
equal, corresponding to flat fading, and for MIMO a matrix of ones (no corre-
lation). First we assume the optimum receiver at the base stations. We want
to evaluate the performance gain brought by exploiting the available cross-
system diversity, in comparison with the standard power allocation scheme
(hard handover). For this, let us assume the following typical simulation setup
in a cellular system: 50 active users (K = 50) and 4 CDMA base stations
(S = 4) with different spreading factors ((N1, N2, N3, N4) = (4, 8, 16, 32)).
Fig. B.1 shows that for medium and high SNRs the performance loss induced
by using only one technology at a time can be very significant, greater than
4 dB typically, which means that the mobile transmit power could be divided
by a factor greater than 2 w.r.t. to the conventional strategy. On the other
hand, for low SNRs, the hard handover solution performs better than the uni-
form PA, which shows the potential interest in implementing the optimum
PA, which provides the best performance whatever the SNR. Also, in contrast
to single-user MIMO systems, it can be seen that the gap in performance be-
tween uniform and optimum PA schemes does not shrink as the SNR increases.
This observation has also been made in other simulation scenarios. Figure B.2
shows a scenario with the same parameters as the one just analyzed but now
both CDMA and MIMO systems are considered, obtaining relatively similar
results. In all the tested scenarios the convergence of the proposed iterative
power allocation algorithm was obtained after at most 10 iterations; note that
the algorithm is said to have converged if the optimum power fractions are
determined with an accuracy of 10−4.

Now we assume the simplest receiver at the base stations, namely the matched
filter. There are two base stations and two users. The BS are equipped with
multiple antennas: N1 = 2, N2 = 4. Fig. B.3 shows the network sum-rate
achieved by using the MF for four different PA schemes: the optimum PA
obtained by an exhaustive numerical search, the approximate PA obtained
by assuming the two hypotheses stated in Sec. 4.2 and 4.3, the uniform PA
scheme and the hard handover. First, the figure shows that the corresponding
approximation of the sum-rate is not very good but it still provides a per-
formance gain over the other PA schemes. Second, this simulation confirms
that the uniform PA becomes more and more suboptimal w.r.t. to the exact
optimum PA as the SNR increases. Third, we clearly see that handover based
PA suffers from a significant performance loss for medium and high SNRs. To
sum up, we can say that, as a rule of thumb, the uniform PA can always be
used and will provide significant gains with the advantage of being very simple
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to implement (no feedback mechanism required in particular).

The last figure, i.e. Fig. B.4 sums up the network performance for the three
receivers investigated in this paper in the typical scenario K = 20, S = 3,
(N1, N2, N3) = (4, 8, 32). It allows one to better evaluate the benefits from
using the optimum receiver over the MMSE receiver and MF. A typical in-
formation that can be drawn from this figure is as follows: by simply using
a MMSE receiver with uniform PA instead of the MF with hard handover
(as used in current networks) a huge performance gain could be obtained by
exploiting the available cross-system diversity. Of course, this comment holds
for medium and high SNRs. If the network is also likely to operate in the
low SNR regime, the optimum PA should be used or a SNR-based switching
mechanism between the hard handover and uniform PA could be introduced.

6 Conclusions

In this contribution, a cross-system power allocation algorithm has been pro-
vided in the context of MIMO, CDMA and OFDM technologies in order to
exploit the available cross-system diversity. Interestingly, in the asymptotic
regime, a radio access technology can be characterized, from the information-
theoretic point of view, by only a few parameters. Indeed, the solution for all
the receivers turns out to be dependent only on a limited number of parame-
ters: the dimensions of the system, number of users, channel gains, path loss,
noise variance and correlation at the transmitter and the receiver.

As a consequence, for the optimum receiver a simple cross-layer algorithm,
analogous to the water-filling algorithm, can be implemented at the central
controller to schedule the powers of all the users in order to maximize the net-
work capacity, and this can be done in a simple, iterative way, which generally
converges to the optimum.

For the MF and MMSE receivers a water-filling solution can still be obtained
by introducing two additional assumptions, which simplify the optimization
problem but at the price of a performance loss that has to be evaluated in the
situations of interest. For the typical scenarios considered in this paper, we
saw that they were reasonable. The potential performance gain of cross-system
diversity was shown to be important in several typical simulation setups. For
instance, by simply using MMSE receivers at the base stations and uniform
PA over the different systems, the mobile transmit power could be divided by
a factor greater than 10 with respect to a standard network using the MF and
hard handover PA scheme.

The proposed work could be extended by considering the outage probability
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in order to further analyze the benefits of cross-system diversity, which will
allow one to complete our comparisons between the hard handover, uniform
and optimum PA schemes. It would also be interesting to study a more het-
erogeneous network, for instance by introducing CDMA base stations with
multiple antennas and exploiting the results derived by [14]. As mentioned
in this paper, more technologies can be considered since the condition on the
patter mask matrices Gs are mild and the strong results of [11] can be directly
applied in the proposed framework.

To conclude this paper, the authors want to stress the fact that our approach
is (information) theoretical and aims at giving insights to researchers and
network designers on a quite difficult problem. Obviously, many issues would
need to be addressed to implement the proposed power allocation schemes.
The way of coordinating base stations using different technologies is just one
example of this kind of issues.
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A Proof of Lemma 4.2

We want to derivate the argument of the maximum in equation (8) with
respect to αk,s. First note from the system of equations (9) that rt and qt do
not depend on αk,s for all t 6= s. Based on this observation one just needs to
consider the following auxiliary function:

φ(αk,s) = log2







K∏

ℓ=1

[1 + γℓαℓ,sr(αk)] ×
N∏

j=1

(

1 + ρd2
jq(αk,s)

)

× e−Kρr(αk,s)q(αk,s)







(A.1)
where we dropped the system index s and receiver subscript (R) for sake of
clarity.

Define u ,

K∏

ℓ=1

[1 + γℓαℓ,sr(αk,s)] and v ,

N∏

j=1

(

1 + ρd2
jq(αk,s)

)

× e−Kρr(αk,s)q(αk,s).

With these notations:

∂φ(αk,s)

∂αk,s
=

1

ln 2

1

uv

∂uv

∂αk,s
. (A.2)

It turns out that
∂(uv)

∂αk
= uv × γkr

1 + γkαk,sr
. This is what we want to show.

We want to derivate the function u w.r.t. αk,s. As u is a product of functions

uℓ, i.e. u =
K∏

ℓ=1

uℓ, its derivative u′ can be written as u′ = u×
K∑

ℓ=1

u′ℓ
uℓ

where

u′ℓ =

∣
∣
∣
∣
∣
∣
∣

γℓαℓ,sr
′ if ℓ 6= k

γk(r + αk,sr
′) if ℓ = k.

(A.3)

Using a similar reasoning for v one can check that

v′ = v ×




N∑

j=1

ρd2
jq

′

1 + ρd2
jq

−Kρ(q′r + qr′)



 . (A.4)

Now using the relations proved in the previous steps we have that

∂(uv)

∂αk,s
= uv ×





K∑

ℓ=1

u′ℓ
1 + γℓαℓ,sr

+
N∑

j=1

ρd2
jq

′

1 + ρd2
jq

−Kρ(q′r + qr′)





︸ ︷︷ ︸

ψ

(A.5)

with ψ expanding as
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ψ=
∑

ℓ 6=k

γℓαℓ,sr
′

1 + γℓαℓ,sr
+
γk(r + αk,sr

′)

1 + γkαk,sr
+

N∑

j=1

ρd2
jq

′

1 + ρd2
jq

−Kρ(q′r + qr′). (A.6)

(A.7)

Now by observing that







∑

ℓ 6=k

γℓαℓ,sr
′

1 + γℓαℓ,sr
=

(

Kρq − γkαk

1 + γkαk,sr

)

r′

N∑

j=1

ρd2
jq

′

1 + ρd2
jq

= Kρq′r

(A.8)

we find that

ψ =
γkr

1 + γkαk,sr
, (A.9)

which concludes the proof.

B Approximating the asymptotic system sum-rate by a concave
function

B.1 The case of the MMSE receiver

For the user of interest (i.e. user k):

∂η̃
(mmse)
k,s

∂αk,s
=

1

Ns

Ns∑

i=1







g2
s(i, k)

σ2 + 1
Ns

∑K
j 6=k

αj,sg2s(i,j)

1+η̃
(mmse)
j,s

× (B.1)



σ2 +
1

Ns

K∑

j 6=k

αj,sg
2
s(i, j)

1 + η̃
(mmse)
j,s



1 + αk,s
∂η̃

(mmse)
j,s

∂αk,s

1

1 + η̃
(mmse)
j,s















For all ℓ 6= k,
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Let |η̃′M | and gM be the maxima of

∣
∣
∣
∣
∣

∂η̃
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∂αk,s

∣
∣
∣
∣
∣
and gs(i, ℓ) over all the triplets

(i, ℓ, s). By definition
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∣
∣
∣
∣

∂η̃
(mmse)
ℓ,s

∂αk,s

∣
∣
∣
∣
∣
≤ |η̃′M |. In fact, under reasonable assumptions,

one can tighten this bound, this is the purpose of what follows. The main point
is to assume that the entries gs(i, j) take finite values and do not vanish. Note
that for MIMO systems the entries of the mask matrix gs(i, j) are effectively
bounded and they do not scale with Ns. However, for CDMA and OFDM
systems this is not true since for both case they represent the realizations of the
channel impulse. As a Rayleigh distribution is assumed for the channel gains,
they are not bounded mathematically. However, many works applying random
matrix theory (see e.g. [5]) assume that the channel has a compact support. In
practice, for physical reasons, the channel gains do not strictly vanish and stay
effectively in a finite interval and therefore the proposed assumption makes
sense.

For all (k, s) in {1, ..., K} × {1, ..., S} one can easily check that
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≤
(
gM

σ

)4 K

N
|η̃′M |. (B.5)

Therefore we see that a sufficient condition for the MMSE output SINR of
user ℓ to be considered as independent of the power allocation of user k 6= ℓ is
that the ratio K

N
has to be small. Under this sufficient but not necessary con-

dition the approximate SINR η̃k,s can be considered to be proportional to αk,s
(Assumption (1)). For the second assumption to hold a sufficient but stronger
condition is that the quantity K2

N
is small. We therefore see that the validity

of the proposed assumptions depends on the scenario under consideration.

B.2 The case of the matched filter

First, note that Assumption (1) is exactly verified both in the finite and large
dimensions settings. So, here we focus on the validity of Assumption (2). In a
given system s, we have

∂R̃(mf)
s

∂αk,s
,

∂

∂αk,s

K∑

ℓ=1

log2

(

1 + η̃
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ln 2
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(mf)
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1

1 + η̃
(mf)
ℓ,s

(B.6)
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with
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Define g2
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≤ 1

ln 2

∑

ℓ 6=k

∣
∣
∣η̃

(mf)
l,s

∣
∣
∣

Nsg
4
M

σ2Ns

∑Ns

i=1 g
2
s(i, ℓ)

. (B.11)

At this point we have to distinguish between MIMO systems on the one hand
and CDMA and OFDM systems on the other hand. For MIMO systems we
know that

∑Ns

i=1 g
2
s(i, ℓ) ≥ Nsg

2
m where gm is finite and different from zero.

For CDMA and OFDM systems, as the channel realizations are into play,
we exploit the central limit theorem, which allows us to write

∑Ns

i=1 g
2
s(i, ℓ) =

Ns

(

µ+ o
(

1√
Ns

))

where µ is the average energy of the channel gain (assumed

to be normalized to one). In any case, the sum of interest can be bounded by
const.× K

Ns
, which gives us a sufficient condition in order for Assumption 2 to

hold for the matched filter.
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Fig. B.1. Optimal receiver. Performance gains brought by cross-system diversity
(CDMA systems).
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I. REVIEWER 1

R Now my concern with that paper is its complexity to read. I would appreciate if the

authors would present their main analytical results in Propositions or Theorems. Indeed,

re-reading the paper, the main results and contribution arenot easy to find. I therefore

suggest that a Proposition or Theorem be added to each subsection of Section 4, with a

rigorous formulation and followed by a physical interpretation.

A The new version of the paper follows this recommendation: the paper comprises 4 propositions

and 1 lemma. All the results are commented and interpreted either in the paper body or in the

appendices.

R “I also remarked two remaining typos: - Section 4: arbitrary selected⇒ arbitrarily

selected - Section 5: according a Rayleigh...⇒ according to a Rayleigh”.

A Done.

II. REVIEWER 2

R The paper is much better written now. Regarding my previous points the authors added 2

important references. However, I believe it is important toadd also the following, because,

in my view, half of the paper is based on the analysis of eqs. 8-9 in the setting of multiple

systems. These equations have been used in the MIMO literature extensively. I add here

a few more relevant ones that should be cited:

• A. L. Moustakas etc, ”MIMO capacity through correlated channels in the presence of

correlated interferers and noise: a (not so) large n analysis,” IEEE Trans. on Inform.

Theory, vol. 49, no. 10, p. 2545, Oct. 2003.
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• A. M. Tulino etc, ”Impact of antenna correlation on the capacity of multi-antenna

channels,” IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2491-2509, Jul. 2005.

• W. Hachem etc., ”A new approach for capacity analysis of large dimensional

multi-antenna channels,” IEEE Trans. Inf. Theory, submitted for publication,

arXiv:cs/0612076.

A The new version of the paper mentions these 3 references [13][20][26] in the Introduction and

in Sec. 4 between Eq. (7) and (8).

III. R EVIEWER 3

R I still think that the paper is significantly removed from rea lity. The authors make

numerous trivializing assumptions which do not reflect implementation of current wireless

networks. For instance, assuming that each base station uses a different frequency band,

base stations of different technologies are connected, etc. are far fetched assumptions. Since

the paper is information theoretic in its approach, I suppose this is acceptable. However,

the authors should tone down their claims about the applicability of their results to real

networks – significant work needs to be done in that direction.

A We now insist more on the fact that our approach is information theoretic and mention to the

reader that some work needs to be done towards implementation of analyze real networks. This

is done in all the “strategic places”:

• Abstract: although the severe space limitation we added theexpression “in the sense of

the ergodic sum-rate” in the sentence “We introduce and solve the problem of optimal

power allocation in the sense of the ergodic sum-rate)...”.This expression better explains

the chosen point of view.

• Introduction: we emphasized the expression -information-theoretic- in the sentence “Al-

though the present work is clearly based on aninformation-theoretic approach”, 2nd

paragraph of Sec 1. Later on, in the 3rd paragraph of Sec 1, we added the expression

-information theoretic- in the sentence “ Finally, our information theoretic approach...”.

• Conclusion: at the end, we added a small paragraph to better explain the way we tackled

the issues addressed in this paper: “To conclude this paper,the authors want to stress on the

fact that our approach is (information) theoretical and aims at giving insights to researchers

and network designers on a quite difficult problem. Obviously, many issues would need to

be addressed to implement the proposed power allocation schemes. The way of coordinating
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base stations using different technologies is just one example of this kind of issues.”

R The signal model is still not fully clear to me. Do the channelgainshk,s have unit variance?

Are you assuming equal received power for all users or equal transmit power? I don’t

think that equal transmit power for all users is a valid assumption, contrary to what the

authors claim. The reference you have provided to substantiate this claim is rather vague.

A In theory, the elements of G can have arbitrary entries, as long as in the asymptotic case the

continuous power profile converges uniformly to some limit.For the simulations, the elements of

G have been chosen with variance 1 in the CDMA case (identically 1 in the MIMO case), which

given that W has i.i.d elements of variance1/Ns implies that thehk,s have variance1/Ns. This

is typically the case for MIMO and CDMA systems and has been clarified in the paper “For

the CDMA case, the entries ofG will be generated according to a Rayleigh distribution with

variance1, with independent columns and all the elements in each of them equal, corresponding

to flat fading, and for MIMO a matrix of ones (no correlation).” This framework has already

been treated in a different setting by one of the authors in [33], using the results of Girko [11].

Regarding the equal transmit power assumption for all the mobiles, in practice, due to

elecromagnetic compatibility regulations, they are actually the same for the same technology.

However, path loss can be taken into account through the variance of the pattern mask G.

R The α⋆ computed in (6) is not linear in the difference of SNR’s...itis linear in the difference

of the inverse of SNRs.

A Eq. (6) has been modified accordingly. We have also modified the corresponding comment.

R Is the result on page 8 (where you assume uniform convergenceof the power profile) your

result, or is it borrowed from somewhere? The explanation inthat part of the paper is

not very clear.

A The assumption of uniform convergence of the power profile is due to Girko in [11]. It can

also be found in [34] as corollary 10.1.2. We have clearly added the reference of the corollary

in the paper.

R Are you assuming CSIR or CDIT or both? Please make your assumptions precise. The

MAC capacity with CSIR (no CDIT is known) when the base station has a single antenna.

Is it known when there are multiple antennas at the receiver?

A This point is now much clearer.

• In Sec 2: “We assume that the receivers (base stations) know their channel matrices (coherent

June 12, 2008 DRAFT
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communication assumption) and send the channel distribution information (CDI) through

reliable links to a central controller. Knowing the channels of all users, the central controller

implements the algorithm and indicates to each user how he has to share its transmit power

between the different links. The transmitters therefore donot need any knowledge on the

channels (neither channel state nor distribution information).”

• In Sec 4.1: “Note that the considered system consists of several orthogonal multiple access

channels (MAC) with multi-dimensional receivers and single-dimensional transmitters,

under the assumption that CSIR but no CDIT (CDI at the transmitter) is available. The

sum-rate of each MAC is simply a special case of the general case analyzed by [30], [31]

for Rayleigh MIMO multiple access channels with input correlation with CSIR and CDIT

(CDI at the transmitter). In our case, where the dimension ofthe signal transmitted by a

terminal is one, the CDIT assumption amounts to each user knowing its transmit power.”

R Is your iterative procedure to compute r and alpha guaranteed to converge? How many

iterations are typically needed for convergence?

A This point was already mentioned in the paper in Sec 4.1: “Based on the results of [7][8] one is

ensured that the approximated ergodic mutual information is a strictly concave function of the

transmit power fractions{α1, ..., αK} and if the iterative power allocation algorithm converges,

then it converges towards the global maximum. At each step ofthe iterative procedure, the total

sum-rate of the system is therefore increasing and generally (all the simulations performed in

[7], [8] and this paper confirmed this point) converges to a limit.”

In the Simulation section, Sec 5, we also added the sentence:“In all the tested scenarios the

convergence of the proposed iterative power allocation algorithm was obtained after at most 10

iterations; note that the algorithm is said to have converged if the optimum power fractions are

determined with an accuracy of10−4.”

R In Fig B.4, MF + uniform PA outperforms MF + proposed PA. This seems to contradict

the results in Fig. B.3. Explain.

A This results from the fact that in Fig. B.3, where only 2 users are assumed, we look at

a special case: for many channel realizations the best scheme will consist in assigning to

each user a different base station (even for high SNR), thus obtaining an interference-free

scenario. The objective of this simulation setup was to be able to obtain the optimal power

allocation numerically, which would not be possible for complexity reasons otherwise, and
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compared it with the proposed one. Figure B.4 considers a more realistic scenario, in which the

aforementioned situation can not happen anymore, and the uniform power allocation can perform

better at high SNR as the neglected terms become more important. Therefore the observed result

is due to the approximation made.

R Does the iterative PA algorithm converge to uniform PA as thenumber of base stations

increases? I am just curious.

A When more base stations are added to the system, the water-level of the waterfilling algorithm

increases, since some of the new available channels are better (statistically) than some of those

for which some power were allocated. As a result, in general,there would be no convergence

to the uniform PA.

R “I am going to point out some of the typos/grammatical errors.I urge you to carefully

review your manuscript and perhaps get it proofread by a native English speaker before

resubmission. * Page 2: having a fixed power constraint→ given a fixed power constraint

* Page 5, line 1: verifying → satisfying * Title of section 3: most simple→ simplest *

Page 8: to simplify → of simplifying * Page 9, line 4: approximate → approximation *

Page 12: simply writes as→ can simply be written as * Page 13: verified→ simplified *

Page 15:N1 = 2, Ns = 4 → N1 = 2, N2 = 4”

A Done.
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