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Non-Atomic Games for Multi-User Systems
Nicolas Bonneau, Mérouane Debbah, Eitan Altman, and Are Hjørungnes

Abstract—In this contribution, the performance of a multi-
user system is analyzed in the context of frequency selective
fading channels. Using game theoretic tools, a useful framework
is provided in order to determine the optimal power alloca-
tion when users know only their own channel (while perfect
channel state information is assumed at the base station). This
scenario illustrates the case of decentralized schemes, where
limited information on the network is available at the terminal.
Various receivers are considered, namely the matched filter, the
MMSE filter and the optimum filter. The goal of this paper
is to extend previous work, and to derive simple expressions
for the non-cooperative Nash equilibrium as the number of
mobiles becomes large and the spreading length increases. To
that end two asymptotic methodologies are combined. The first
is asymptotic random matrix theory which allows us to obtain
explicit expressions of the impact of all other mobiles on any given
tagged mobile. The second is the theory of non-atomic games
which computes good approximations of the Nash equilibrium
as the number of mobiles grows.

Index Terms—

I. INTRODUCTION

RESOURCE allocation is of major interest in the context
of multi-user systems. In uplink multi-user systems, it

is important for users to transmit with enough power to
achieve their requested quality of service, but also to minimize
the amount of interference caused to other users. Thus, an
efficient power allocation mechanism prevents an excessive
consumption of the limited ressources of the users.
The most straightforward way to design a power allocation

(PA) mechanism is as a centralized procedure, with the base
station receiving training sequences from the users and sig-
naling back the optimal power allocation for each user. Power
control schemes in cellular systems were first introduced for
TDMA/FDMA [1], [2]; more recently, an optimal scheme was
derived for Code Division Multiple Access (CDMA) [3]. In
order to achieve the optimal capacity, the users may also be
sorted according to some rule of precedence [4]. However,
this involves a non negligible overhead and numerous non
informational transmissions. In addition, the complexity of
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centralized schemes increases drastically with the number of
users. As discussed in [5], centralized algorithms generally do
not have a practical use for real systems, but provide useful
bounds on the performance that can be attained by distributed
algorithms.

A way to avoid the constraints of a centralized procedure is
to implement a decentralized one where each user calculates
its estimation of the optimal transmission power according to
its local knowledge of the system. This is, for example, the
case in ad-hoc networks applications. Most of the time, a dis-
tributed algorithm means an iterative version of a centralized
one. Mobiles update their power allocation according to some
rule based on the limited information they retrieve from the
system. Supposing that an optimal power allocation exists, a
distributed iterative algorithm is derived from a differential
equation in [6] and its convergence is proven analytically.
A distributed version of the algorithm of [2] is presented
in [7]. Building on these results, a general framework for
power control in cellular systems is given in [8]. A review of
different methods of centralized and distributed power control
in CDMA systems is given in [5].

In this context, a natural framework is game theory, which
studies competition (as well as cooperation) between indepen-
dent actors. Tools of game theory have already been frequently
used as a central framework for modeling competition and
cooperation in networking, see for example [9] and references
therein. Building on the framework of [8], a game theoretic
approach was introduced in [10], [11]. Numerous works on
power allocation games have followed since, a selection of
which we present in Sec. II. In particular, this contribution
can be considered as an extension of previous work such as
[12], as detailed in Sec. II.

Game theory can be used to treat the case of any number
of players. However, as the size of the system increases, the
number of parameters increases drastically and it is difficult
to gain insight on the expressions obtained.

In order to obtain expressions depending only on few
parameters, we consider the system in an asymptotic setting,
letting both the number of users and the spreading factor
tend to infinity with a fixed ratio. We use tools of random
matrix theory [13] to analyze the system in this limit. Random
matrix theory is a field of mathematical physics that has
been recently applied to wireless communications to analyze
various measures of interest such as capacity or Signal to
Interference plus Noise Ratio (SINR). Interestingly, it enables
to single out the main parameters of interest that determine the
performance in numerous models of communication systems
with more or less involved models of attenuation [14], [15],
[16], [17]. In addition, these asymptotic results provide good
approximations for the practical finite size case, as shown by
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simulations.
In the asymptotic regime, the non-cooperative game be-

comes a non-atomic one, in which the impact (through in-
terference) of any single mobile on the performance of other
mobiles is negligible. In the networking game context, the
related solution concept is often called Wardrop equilibrium
[18]; it is often much easier to compute than the original
Nash equilibrium [9], and yet, the former equilibrium is a
good approximation for the latter, see details in [19]. In this
work, we derive the non-atomic equilibrium, which generally
corresponds to a non-uniform PA.
The non-atomic Nash equilibrium is studied in this paper

for several linear receivers, namely the matched filter and
the MMSE filter, as well as non-linear filters, such as the
successive interference cancellation (SIC) [20] version of
those filters. However, in order to perform SIC, the users need
to know their decoding order, in order to adjust their rates. In
this paper, we introduce ways of obtaining an ordering of the
users in a distributed manner. The ordering can be determined
simply in a distributed manner under weak hypotheses. This
gives rise to a different kind of PA, that depends explicitly on
the order in which the users are decoded.
Moreover, we quantify the gain of the non-uniform PA with

respect to uniform PA, according to the number of paths. The
originality of the paper lies in the fact that we show that
as the number of paths increases, the optimal PA becomes
more and more uniform due to the ergodic behavior of all the
CDMA channels. This is reminiscent of an effect (“channel
hardening”) already revealed in MIMO [21]. The highest gain
(in terms of utility) is obtained in the case of flat fading (which
also favors dis-uniform power allocation between the users).
The layout of this paper is the following. First, a detailed

account of related works is made in Sec. II. A short presenta-
tion of the model is given in Sec. III. Asymptotic SINR and
capacity expressions are given in Sec. IV. The particular game
played between users is introduced in Sec. V, along with the
existence of a Nash equilibrium. Theoretical results for the
power allocation are derived in Sec. VI for unordered users
and Sec. VII when there is an ordering of the users. Analytical
results are matched with simulations in Sec. VIII. Conclusions
are provided in Sec. IX.

II. RELATED WORK

This section is dedicated to present some of the works
that use game theory for power control. We remind that a
Nash equilibrium is a stable solution, where no player has an
incentive to deviate unilaterally, while a Pareto equilibrium is
a cooperative dominating solution, where there is no way to
improve the performance of a player without harming another
one. Generally, both concepts do not coincide. Following the
general presentation of power allocation games in [10], [11],
an abundance of works can be found on the subject.
In particular, the utility generally considered in those arti-

cles is justified in [22] where the author describes a widely
applicable model “from first principles”. Conditions under
which the utility will allow to obtain non-trivial Nash equilib-
ria (i.e., users actually transmit at the equilibrium) are derived.
The utility consisting of throughput-to-power ratio (detailed

in Sec. V) is shown to satisfy these conditions. In addition,
it possesses a propriety of reliability in the sense that the
transmission occurs at non-negligible rates at the equilibrium.
This kind of utility function had been introduced in previous
works, with an economic leaning [23], [24], [25].
Unfortunately, Nash equilibria often lead to inefficient allo-

cations, in the sense that higher rates (Pareto equilibria) could
be obtained for all mobiles if they cooperated. To alleviate
this problem, in addition to the non-cooperative game setting,
[24] introduces a pricing strategy to force users to transmit at
a socially optimal rate. They obtain communication at Pareto
equilibrium.
Another pricing mechanism is investigated in [25]. It leads

to the design of update algorithms depending only on a few
system parameters available to the users. Their convergence is
also proven and shown by simulations. The paper is limited to
the matched filter, and fading values are known and constant.
Selective fading and other filters are not considered.
In this contribution, we consider a different kind of utility,

that does not involve pricing. In [12], defining the utility
as advised in [22] as the ratio of the throughput to the
transmission power, the authors obtain results of existence
and unicity of a Nash equilibrium for a CDMA system. They
extend this work to the case of multiple carriers in [26]. In
particular, it is shown that users will select and only transmit
over their best carrier. As far as the attenuation is concerned,
the consideration is restricted to flat fading in [12] and in [26]
(each carrier being flat fading in the latter). However, wireless
transmissions generally suffer from the effect of multiple
paths, thus becoming frequency-selective. The goal of this
paper is to determine the influence of the number of paths
(or the selectivity of the channel) on the performance of PA.
This work is an extension of [12] in the case of frequency-

selective fading, in the framework of multi-user systems. We
do not consider multiple carriers, as in [26], and the results are
very different to those obtained in that work. The extension is
not trivial and involves advanced results on random matrices
with non-equal variances due to Girko [27] whereas classical
results rely on the work of Silverstein [28]. A part of this
work was previously published as a conference paper [29].
Moreover, in addition to the linear filters studied in [12],
we study the enhancements provided by the optimum and
successive interference cancellation filters.

III. MODEL

We consider a single uplink CDMA multi-user system cell,
i.e., inter-cell interference free case. The spreading length is
denoted N . The number of users in the cell is K . The load
is α = K/N . We make the hypothesis that the users employ
Gaussian i.i.d. codes with zero mean and variance 1/N [30].
This hypothesis enables us to state simply our results, however
almost all of the results are valid for any distribution of the
codes as long as it has mean zero and variance 1/N [17].
Similarly to [30], the received signal y of size N × 1 at the
base station is given by

y =
K∑

k=1

Hkwk

√
Pksk + n =

(
H
√

P � W
)
s + n. (1)
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In (1), H is the frequency selective fading matrix, of size
N ×K .

√
P is the root square of the diagonal power control

matrix, of size K × K . The diagonal elements of
√

P are
the square roots of the transmitted powers of the users. W
is an N × K random spreading matrix. sk is a K × 1 vector
containing the signals of the users, with covariance matrix IK .
n is an N×1 Additive White Gaussian Noise (AWGN) vector
with covariance matrix σ2IN .
We assume that the reader is familiar with random matrix

theory concepts, which can be found in [13]. In the following,
we will assume that the frequency selective fading matrix H
behaves ergodically. The two-dimensional channel profile of
H
√

P is denoted ρ(f, x) = P (x) |h(f, x)|2 , f ∈ [0, 1], x ∈
[0, α]. f is the frequency index and x is the user index. This
enables us to use Th. 2.1 in [17] in order to obtain expressions
for the SINR. It is also assumed that the power of all users
is upper bounded by Pmax, i.e., the square of all diagonal
elements of

√
P is upper bounded by Pmax, and the square

norm of the fading, on all paths, for all users, is upper bounded
by hmax.

IV. ASYMPTOTIC SINR EXPRESSIONS

Let hk be the k-th column of H, and H(−k) be H with
hk removed. Similarly, let wk be the k-th column of W, and
W(−k) beW with wk removed. Let

√
P(−k) be

√
P with the

k-th column and line removed. LetG(−k) = H(−k)

√
P(−k)�

W(−k).

A. Matched Filter

The Matched filter is the simplest linear filter. Supposing
perfect SIC at the receiver, the matched filter for the k-th user
is given by the N×1 vector gk =

√
Pk (hk � wk). This leads

to the following expression for the SINR of user k

SINRk =

∣∣gH
k gk

∣∣2
σ2gH

k gk + gH
k

(
G(−k)GH

(−k)

)
gk

.

Proposition 1: [17] As N, K → ∞ with K/N → α, the
SINR of user k at the output of the matched filter is given by

SINRk = βMF
(

k

N

)

where βMF : [0, α] → R is given by

βMF(x) = P (x)·
(H(x))2

σ2H(x) +
∫ α

0

∫ 1

0
P (y) |h(f, y)|2 |h(f, x)|2 dfdy

(2)

and H(x) =
∫ 1

0
|h(f, x)|2 df .

Denoting SINRk = βMFk , Prop. 1 enables us to extract an
approximation of the value of the SINR of user k in the finite
size case

βMFk =

Pk

(
1
N

∑N
n=1 |hnk|2

)2

σ2

N

∑N
n=1 |hnk|2 + 1

N2

∑
j �=k

∑N
n=1 Pj |hnj |2 |hnk|2

. (3)

We observe that Pk
∂βMFk

∂Pk
= βMFk .

B. MMSE Filter

The MMSE filter is the filter that maximizes the SINR over
all linear filters. Supposing perfect SIC at the receiver, the
MMSE filter for the k-th user is given by gMMSEk = R−1gk,

where R =
(
H
√

P� W
)(

H
√

P � W
)H

+ σ2IN . This
leads to the following expression for the SINR of user k [15]

SINRk = gH
k

(
G(−k)GH

(−k) + σ2IN

)−1

gk. (4)

Proposition 2: [17] As N, K → ∞ with K/N → α, the
SINR of user k at the output of the MMSE receiver is given
by:

SINRk = βMMSE
(

k

N

)

where βMMSE : [0, α] → R is a function defined by the implicit
equation

βMMSE(x) = P (x)
∫ 1

0

|h(f, x)|2 df

σ2 +
∫ α

0
P (y)|h(f,y)|2dy

1+βMMSE(y)

. (5)

Denoting SINRk = βMMSEk , Prop. 2 enables us to extract
an approximation of the value of the SINR of user k in the
finite size case

βMMSEk = Pk
1
N

N∑
n=1

|hnk|2 1

σ2 + 1
N

∑
j �=k

Pj |hnj |2
1 + βMMSEj

. (6)

From (4), we observe that Pk
∂βMMSEk

∂Pk
= βMMSEk .

From Prop. 2, the capacity of user k is CMMSE
k =

1
N log2

(
1 + βMMSEk

)
and the global capacity of the system

is

CMMSE =
∫ α

0

log2

(
1 + βMMSE(x)

)
dx. (7)

C. Optimal Filter

The term optimal filter designates a filter capable of de-
coding the received signal at the bound given by Shannon’s
capacity. Hence, it is difficult to define an SINR associated
to it. However, results of random matrix theory can still be
applied. Let Y = H

√
P � W. The definition of Shannon’s

capacity per dimension for our system is

COPT
(N) =

1
N

log2 det
(
IN +

1
σ2

YYH

)
. (8)

As N, K → ∞ with K/N → α,

COPT
(N) →

∫
log2

(
1 +

1
σ2

t

)
ν(dt) (9)

where ν is the empirical eigenvalue distribution of YYH . If
we differentiate the asymptotic value COPT of (9) with respect
to σ2, we obtain (after some derivations)

∂COPT

∂σ2
= log2(e)

(
mν(−σ2) − 1

σ2

)
(10)
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where mν(·) is the Stieltjes transform of the empirical eigen-
value distribution of YYH . From Th. 2.1 in [17], mν(·) is
given by mν(z) =

∫ 1

0 u(f, z)df where u(f, z) is given by

u(f, z) =
1∫ α

0
ρH

√
P(f,x)dx

1+
R 1
0 ρH

√
P(f ′,x)u(f ′,z)df ′ − z

. (11)

with ρH
√

P(f, x) = ρ(f, x) = P (x) |h(f, x)|2. Given that if
σ2 = +∞, COPT = 0, it is immediate to obtain COPT from
(10) as

COPT = log2(e)
∫ +∞

σ2
mν(−z) − 1

z
dz. (12)

Proposition 3: COPT and CMMSE are related through the
following equality

COPT = CMMSE − log2(e)
∫ α

0

βMMSE(x)
1 + βMMSE(x)

dx

+
∫ 1

0

log2

(
1 +

1
σ2

∫ α

0

ρ(f, x)
1 + βMMSE(x)

dx

)
df. (13)

Proof: See Appendix A.
The additional term in the right-hand side of (13) corre-

sponds to the non-linear processing gain. It quantifies the gain
in terms of capacity that can be achieved between pure linear
MMSE and non-linear filtering.
Assuming perfect cancellation of decoded users, successive

interference cancellation with MMSE filter achieves the opti-
mum capacity [31]. Hence the following proposition.
Proposition 4: [17] As N, K → ∞ with K/N → α, the

optimal capacity is given by:

COPT =
∫ α

0

log2

(
1 + βSIC(x)

)
dx

where βSIC : [0, α] → R is a function defined by the implicit
equation

βSIC(x) = P (x)
∫ 1

0

|h(f, x)|2 df

σ2 +
∫ x

0
P (y)|h(f,y)|2dy

1+βSIC(y)

. (14)

Prop. 4 enables us to extract an expression that is analog to
the SINR for the optimal filter. Similarly to the case of βMMSE

in Sec. IV-B, this expression obeys the property Pk
∂βSICk

∂Pk
=

βSICk . From now on, we denote SINRk = βk, whichever filter
is actually used.

V. GAMES AND EQUILIBRIA

A. Power Allocation Game

A game with a unique strategy set for all users is defined
by a triple {S, P, (uk)k∈S} where S is the set of players, P is
the set of strategies, and (uk)k∈S is the set of utility functions,
uk : P|S| → R.
In our setting, the players are simply the users, indexed

by the set S(K) = {1, . . . , K}. The strategy for a mobile is
its power allocation Pk, which we will assume belongs to a
compact interval P = [0, Pmax] ⊆ R. The utility measures the
gain of a user as a result of the strategy this user plays. In
[22], the author derives what he calls Throughput to Power

Ratio (TPR) under minimal requirements. The utility of user
k is expressed as [22]

uk =
γk

Pk
. (15)

We denote γk = γ(βk), where γ(·) is the same function for all
users. In (15), γ is a relevant performance measure function,
which is at least C2 and should satisfy conditions detailed in
[22] in order to obtain an “interesting” equilibrium, i.e., for
which the equilibrium power allocation is not 0 for all users.
As a performance measure, we consider the goodput γ (βk),

which is proportional to
(
1 − e−βk

)M
whereM is the number

of bits transmitted in a CDMA packet. Remark that the usual
definition of goodput would rather be considered proportional
to q(βk) = (1 − BERk)M , where BER is the bit error rate.
However, this quantity is not zero when the transmitted power
is zero. Using this function in the utility would lead to the
unsatisfying conclusion that mobiles should not transmit at
all, since the (improbable) event of a correct guess gives
them infinite utility [10]. Therefore, an adapted version of the
goodput is adopted, where a factor 2 is added before the BER.
The performance measure considered is hence proportional to
q2(βk) = (1 − 2BERk)M , leading to the expression above.
This function has the desirable property q2(0) = 0 and its
shape follows closely the shape of the original goodput q(·).
This is a relevant performance measure, as each mobile wants
to use its (limited) battery power to transmit the maximum
possible amount of information.
This utility is expressed in bits per joule. In the non-

cooperative game setting, each user wants to selfishly max-
imize its utility. A Nash equilibrium is obtained when no user
can benefit by unilaterally deviating from its strategy.
To obtain the maximum utility achievable by user k, we

differentiate uk with respect to the power Pk and equate to 0.
We obtain

Pk
∂βk

∂Pk
γ′(βk) − γ(βk) = 0. (16)

For all filters under consideration, Pk
∂βk

∂Pk
= βk, thus, (16)

reduces to an equation on βk

βkγ′(βk) − γ(βk) = 0. (17)

Eq. (17) is particularly interesting in the case when there
exists a unique solution β�.
The existence of a solution to (17) is guaranteed as long

as the function γ(·) is a quasiconcave function of the SINR,
i.e., there exists a point below which the function is non-
decreasing, and above which the function is non-increasing
[24], [22]. In addition, we assume that the function γ(·) takes
value γ(0) = 0, so that users cannot achieve an infinite utility
by not transmitting. This occurs for several functions γ(·) of
interest, in particular the goodput [12], which we will use for
simulations. Unfortunately, the capacity cannot be used as a
function γ(·), since it leads to the trivial result β� = 0 for this
utility function. The uniqueness of the solution β� to (17) is
due to fact that the SINR of each user is a strictly increasing
function of its transmit power. Given the target SINR β�, we
obtain the strategy of users in the next section.
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VI. POWER ALLOCATION IN THE NASH EQUILIBRIUM

A. Flat Fading

In this subsection, we show that the results of [12] for
matched and MMSE filters are a special case of our setting
when L = 1 (flat fading case). In addition, we derive the power
allocation for the optimum filter. When there is only one path,
for each user k, denoted by its index k

N = x ∈ [0, α], h(f, x)
does not depend on f . Given the target SINR β�, we have
explicit expressions of the power with which user k transmits
for the various receivers.
In Appendix B, we show that the influence of the strategy

of a player on the payoffs of other players is (asymptotically)
“small”. It justifies the fact that we can obtain an equilibrium
in the asymptotic setting, without the need for players to pos-
sess all the information on the system. Their local information
is sufficient. In the asymptotic limit, we obtain results similar
to Wardrop equilibrium: the strategy used by each user does
not influence the strategy of other users.
1) Matched filter: From Prop. 1,

Pk =
β�
(
σ2 + 1

N

∑K
j=1,j �=k Pj |hj|2

)
|hk|2

. (18)

Summing (18) over k = 1, . . . , K , we obtain a closed
form expression for the minimum power with which user k
transmits when using the matched filter

Pk =
1

|hk|2
σ2β�

1 − αβ�
for α <

1
β�

. (19)

2) MMSE filter: From Prop. 2,

Pk =
β�
(
σ2 + 1

1+β�
1
N

∑K
j=1,j �=k Pj |hj |2

)
|hk|2

. (20)

Summing (20) over k = 1, . . . , K , we obtain a closed
form expression for the minimum power with which user k
transmits when using the MMSE filter

Pk =
1

|hk|2
σ2β�

1 − α β�

1+β�

for α < 1 +
1
β�

. (21)

Both (19) and (21) are the same results as in [12].
3) Optimum filter: Each user maximizes its utility for a

SINR equal to β�. However, in the case of the optimum filter,
the SINR is not defined directly. It is nevertheless possible
to extract an equivalent quantity from the expression of the
capacity, since the value of the capacity of user k at the
equilibrium is given by C� = 1

N log2 (1 + β�).
Proposition 5: The power allocation is given by

Pk =
1

|hk|2
σ2β+

1 − α β+

1+β+

for α < 1 +
1

β+
(22)

where β+ is the solution to

α log2

(
1 + β+

)− α log2(e)
β+

1 + β+

+ log2

(
1 +

1
1 + β+

αβ+

1 − α β+

1+β+

)

= α log2 (1 + β�) . (23)

Proof: See Appendix C.

B. Frequency Selective Fading

In the context of frequency selective fading, for each user
k, denoted by its index k

N = x ∈ [0, α], there are L > 1
paths with respective attenuations h	(x), 	 = 1, . . . , L, which
are i.i.d. random variables with some known distribution. We
suppose that h	(x) has mean zero, and the distributions of
the real part and imaginary part of h	(x) are even func-
tions, as for example the Gaussian distribution, which we
consider in the simulations. h(f, x) depends on f through
h(f, x) =

∑L
	=1 h	(x)e−2πıf(	−1), where ı2 = −1. Given

the target SINR β�, the Nash equilibrium power allocation is
determined by implicit equations for the various receivers.
1) Matched filter: Denoting hnk = h

(
n−1
N , k

N

)
,

Pk = β�·
σ2

N

∑N
n=1 |hnk|2 + 1

N

∑N
n=1 |hnk|2 1

N

∑K
j �=k Pj |hnj |2(

1
N

∑N
n=1 |hnk|2

)2 .

(24)

In this expression, the power allocation of user k seems
to depend on the power allocation and fading realization of
all the other users. However, when the number of users tends
to infinity, the strategy of any single user does not have any
influence on the payoff of user k, as shown in Appendix B.
Hence, the appropriate framework is non-atomic games. The
expression 1

N

∑K
j=1 Pj |hnj |2 is asymptotically a constant (not

depending on n), denoted Ω.

Ω =
αβ�σ2 1

K

∑K
j=1

|hnj|2
Ej

1 − αβ� 1
K

∑K
j=1

|hnj|2
Ej

, (25)

where Ej = 1
N

∑N
m=1 |hmj |2. As K → ∞, we apply

the Central Limit Theorem to the sum of random variables
1
K

∑K
j=1

|hnj |2
Ej

. It tends to its expectation, which is 1 (see
Appendix D).
It follows that asymptotically Ω = αβ�σ2

1−αβ� (and simulations
in Sec. VIII prove that this approximation is valid for moderate
finite values of N ). From (24), we obtain a formula similar to
(19)

Pk =
1

Ek

σ2β�

1 − αβ�
for α <

1
β�

. (26)

2) MMSE filter: The power allocation is

Pk =
β�

1
N

∑N
n=1

|hnk|2
σ2+ 1

1+β�
1
N

P
K
j=1,j �=k Pj |hnj |2

. (27)

As previously, when the number of users tends to infinity,
1
N

∑K
j=1 Pj |hnj|2 is asymptotically a constant. We obtain a

formula similar to (21)

Pk =
1

Ek

σ2β�

1 − α β�

1+β�

for α < 1 +
1
β�

. (28)

3) Optimum filter: Each user maximizes its utility for a
SINR equal to β�. However, in the case of the optimum filter,
the SINR is not defined directly. It is nevertheless possible
to extract an equivalent quantity from the expression of the
capacity, since the value of the capacity of user k at the
equilibrium is given by C� = 1

N log2 (1 + β�).
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Proposition 6: Asymptotically, as N, K → ∞, the power
allocation is given by

Pk =
1

Ek

σ2β+

1 − α β+

1+β+

for α < 1 +
1

β+
, (29)

where β+ is the solution to

α log2

(
1 + β+

)− α log2(e)
β+

1 + β+

+ log2

(
1 +

1
1 + β+

αβ+

1 − α β+

1+β+

)

= α log2 (1 + β�) . (30)

Proof: The proof is similar to the proof of Prop. 5.
We observe that for all filters considered, the optimal PA

is a constant times the inverse of the total energy of the
channel Ej . Via Parseval’s Theorem, Ej =

∑L
	=1

∣∣h	

(
j
N

)∣∣2.
It is a sum of i.i.d. random variables. As the number of paths
increases, the optimal PA tends to a uniform PA. This is an
effect similar to “channel hardening” [21]: as the number of
paths increases, the variance of the distribution of the channel
energy decreases and the Nash equilibrium PA becomes more
and more uniform for all users.

VII. SUCCESSIVE INTERFERENCE CANCELLATION

The optimal filter gives a bound on the performance that can
be achieved through (non-linear) filtering at the base station. In
order to improve the performance of the system, we introduce
Successive Interference Cancellation (SIC) [20] at the base sta-
tion. Under the assumption of perfect decoding, SIC improves
immensely the performance of linear filters (Matched Filter
or MMSE Filter). The MMSE SIC filter actually achieves
the optimum filter bound, under the assumption of perfect
decoding. The principle of SIC receivers is quite simple:
users are ordered and are decoded successively. At each step,
supposing that the user has been encoded at the appropriate
decoding rate, the signal is decoded and its contribution to the
interference is then perfectly subtracted. This removes some of
the inter-user interference and, therefore, increases the SINR
of the following decoded users.
The challenge is that the users must transmit at the appro-

priate rate to avoid the catastrophic occurrence of imperfect
decoding. Usually, the ordering of users is done in a central-
ized way, at the base station, which advertises it to the users.
However, for the protocol to remain distributed, users should
be able to decide, based on their local information, at which
rate to transmit.
At equilibrium, the rate is determined by the SINR β�, and

it is the transmission power of the user that is determined
according to its rank of decoding. The equilibrium PA can be
determined in a simple manner when the number of multipaths
is finite (L < ∞) and the number of users is very high (K →
∞). In Sec. VII-A, we make use of the fact that the whole law
of Ej is realized in this case, so that users automatically know
their rank of decoding. Another manner to give a (random)
ordering of decoding is to introduce an additional degree of
liberty in the system. In Sec. VII-B, we develop a coordination
mechanism that enables users to learn their rank of decoding

in a simple way. In the following, we assume that each user
has a unique has a unique i.d. number j ranging between 1 to
K .

A. Ordering when K → ∞
If the number of usersK → ∞, with L fixed, the whole law

of the total channel energy will be realized. Assume the base
station advertises to the users that they will be decoded by
decreasing total channel energy. Each user knows, according
to the realization of its fading, its rank in the decoding order
given by K times 1 minus the cumulative distribution function
D(·) of the total channel energy Ej :

rankj = K(1 − D(Ej)).

In case that the base station advertises to the users that they
will be decoded by increasing total channel energy, user j will
have rank rankj = KD(Ej).

B. Coordination Mechanisms

We wish to introduce a simple mechanism that enables
players to coordinate and to know in which order they will
be decoded. We are inspired by the notion of correlated
equilibrium introduced by R. Aumann in [32] and further
studied in [33], [34], [35]. Correlated equilibrium represents a
generalization of Nash equilibrium. The important feature of
[32] is the presence of an arbitrator. An arbitrator needs not
have any intelligence or knowledge of the game, it needs only
to send random (private or public) signals to the players that
are independent of all other data in the game. In the context
of non-cooperative games, each player has the possibility not
to consider the signal(s) it receives. Coordination between
players turns out to be useful also in the case of cooperative
optimization. The signals enable joint randomization between
the strategies of the players, possibly resulting in equilibria
with higher payoffs. The concept of correlated equilibrium was
recently introduced in a networking context in [36], where the
authors consider a simple ALOHA setting.
The simplest and most intuitive coordination mechanism

is given by a common signal which users as well as the base
station overhear before each transmission. There are K! possi-
ble permutations of K users. Hence, the arbitrator broadcasts
a signal to the users belonging to the set {0, . . . , K! − 1}.
Each of these numbers corresponds to a permutation π of
{1, . . . , K} that gives the (random) ordering of decoding as
rankj = π(j). The users can then adjust their transmit power
according to this ordering. In terms of size of the message,
this is equivalent to the case when the base station decides
the decoding order and broadcasts it to the users, or sends K
individual messages of ln(K) bits containing the rank, since
ln(K!) = K ln(K) + o(K ln(K)). However, there is no need
of either any knowledge of the system or computations at the
base station with this coordination mechanism.

C. SIC Power Allocations

In both cases, once the users know their order, they can
calculate their transmit power according to the filter that is
used. The equilibrium still occurs when all users reach the



BONNEAU et al.: NON-ATOMIC GAMES FOR MULTI-USER SYSTEMS 7

SINR β�. A single user will not benefit by deviating, since it
would decrease its utility. From now on, index k denotes the
rank of decoding.
In the case of the matched filter with SIC, the SINR of the

user decoded at rank k is

βMFk =

Pk

(
1
N

∑N
n=1 |hnk|2

)2

σ2

N

∑N
n=1 |hnk|2 + 1

N2

∑
j>k

∑N
n=1 Pj |hnj |2 |hnk|2

. (31)

From (31), we get the equilibrium PA of user k as

Pk = β�·
σ2

N

∑N
n=1 |hnk|2 + 1

N2

∑
j>k

∑N
n=1 Pj |hnj |2 |hnk|2(

1
N

∑N
n=1 |hnk|2

)2 . (32)

In the case of the MMSE filter with SIC, the SINR of the user
decoded at rank k is

βMMSEk = Pk
1
N

N∑
n=1

|hnk|2 1

σ2 + 1
N

∑
j>k

Pj |hnj |2
1+βMMSEj

. (33)

From (33), we get the equilibrium PA of user k as

Pk =
β�

1
N

∑N
n=1

|hnk|2
σ2+ 1

1+β�
1
N

P
K
j>k Pj |hnj|2

. (34)

For flat fading, a simple recursion gives the equilibrium PA
(see Appendix E).

PMF
k =

σ2β�

|hk|2
(

1 +
1
N

β�

)K−k

, (35)

PMMSE
k =

σ2β�

|hk|2
(

1 +
1
N

β�

1 + β�

)K−k

. (36)

As far as frequency-selective fading is concerned, this gives
us the form of the asymptotic expressions. Asymptotically, the
power allocation of one user will not depend on the PA of the
other users, as shown in Appendix B. With a similar reasoning
as in Sec. VI, the expressions mimic (35) and (36) with the
total channel energy Ek replacing |hk|2, i.e.,

PMF
k =

σ2β�

Ek

(
1 +

1
N

β�

)K−k

, (37)

PMMSE
k =

σ2β�

Ek

(
1 +

1
N

β�

1 + β�

)K−k

. (38)

These expressions are also validated by simulations.
Since MMSE SIC with perfect decoding is equivalent to the

optimum filter, we thus obtain a second possible equilibrium
PA for the optimum filter. In Sec. VIII, we investigate which
is the PA which minimizes total amount of power needed
to transmit at equilibrium SINR. In the case of automatic
ordering of the users, one question is whether it is best to
order the users by increasing or decreasing total fading energy.
The answer is the following: it is always best to decode the
users by decreasing total channel energy E1 < · · · < Ek (see
Appendix F).
An interesting feature of equilibrium PA (37) and (38) is

that there is no limitation on the number of users than can

be accomodated by the system, contrary to the previous case
of (26), (28), and (29). The limitation is only imposed by
the increasing power needed for each new user decoded last,
which grows without bound as an exponential.

VIII. NUMERICAL RESULTS

In the following, we consider that Pmax is chosen sufficiently
high so that users can actually transmit at the equilibrium
PA values. For the simulations, we consider the usual case
of Rayleigh fading. Although Rayleigh distribution is not
bounded from above, simulations show that the results still
hold.
We consider a CDMA system with K = 32 users and a

spreading factor N = 256. The noise variance is σ2 = 10−10.
For a number of bits in a CDMA packet M = 100, the
goodput is γ(β) =

(
1 − e−β

)100
(see [12]), and β� = 6.48.

The capacity achieved at the Nash Equilibrium is C =
α log2 (1 + β�) = 0.39 bits/s. Unfortunately, the capacity
itself cannot be used as a relevant performance measure in
the definition of the utility, because, in this case, the maximal
utility is obtained when not sending.
We have performed simulations over 10000 realizations.

Fig. 1 shows the good fit of theoretic values calculated directly
from (26), (28), and (29) with those simulations. The values of
the utility do not depend on the number of multipaths. We see
that optimum filter requires the minimal power, and matched
filter the maximal power to achieve the required goodput.
In Fig. 2, we have plotted the average utility versus the

number of multipaths L. Multipaths are supposed to be i.i.d.
Rayleigh distributed with variance 1/L, in order for the
channels to have the same energy. Two cases are considered:
the utility obtained in the Nash equilibrium, according to the
PA given by (24) and (27), and the utility in the case where all
nodes transmit at the same power. For comparison purposes,
the sum of the uniform powers is equal to the sum of the
powers used in the Nash equilibrium. In addition, simulations
(not reproduced here) show that this value gives the higher
average utility for a uniform PA. The utility does not vary
with L in the Nash equilibrium: the Central Limit Theorem
applies to the utility, which is a constant times the random
variable Ek in the Nash equilibrium. The utility with uniform
powers is always inferior to the utility in the Nash equilibrium.
However, as L increases, the gap decreases, as the variance
of Ek decreases, and the equilibrium PA becomes uniform.
In Fig. 3, we have plotted the average of the inverse

power of the users in the Nash equilibrium for each of
the investigated schemes. We plot the average inverse power
because of the direct relation to the utility for the users.
The higher this average, the higher the utility for the user.
The SIC filters are always more efficient than their linear
counterparts. However, for a load α < 0.12 and optimum
filter,1 it is better to use the first variation of PA (29) than use
MMSE SIC (38). This relation is reversed when α > 0.12.
In addition to the theoretical curves, Monte-Carlo simulations
were performed both with random ordering (circles) and

1The value of α is obtained as solution of the equation αβ� β�

1+β� (1 −
α β+

1+β+ ) = β+(1 − exp(−α β�

1+β� )).
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Fig. 1. Comparison of theoretic values and simulations for utilities in the
Nash equilibrium.
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Fig. 2. Simulation of utilities in the Nash equilibrium and constant power
allocations versus L. Curves with a ‘w’ suffix correspond to the uniform PA
case.

ordering by decreasing total channel energy (crosses), for
L = 8 multipaths. Simulations show that the optimal ordering
improves the power efficiency of the successive interference
cancellation filters.

In Fig. 4, we investigate the amelioration provided by
optimal ordering as a function of the number of multipaths.
The simulations are done for K = 128 users, in order to be in
the “interesting” zone α > 0.12. As expected, as the number
of paths increases, the total channel energy is more and more
the same for each channel and the gain provided by ordering
the users decreases. However, when the number of users is
very large and they benefit from automatic ordering, we see
that the utility with the MMSE SIC equilibrium PA is the
maximal utility that can be obtained in the non-cooperative
setting.
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Fig. 3. Average inverse power used by the different filters. Monte-Carlo
simulations were performed both with random ordering (◦) and ordering by
decreasing total channel energy (×).
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Fig. 4. Simulation of utilities in the Nash equilibrium with SIC filter with
and without optimal ordering, versus L.

IX. CONCLUSIONS

Using tools of random matrices, we have derived the
equilibrium power allocation in a game-theoretic frame-
work applied to asymptotic CDMA with cyclic prefix, under
frequency-selective fading. Three receivers are considered:
matched filter, MMSE, and optimum filter (given by Shan-
non’s capacity). In addition, distributed ordering mechanisms
are introduced and the successive interference cancellation
variants of the linear filters are studied. For each user, this
power allocation depends only on the total energy of the
channel of the user under consideration. For a frequency-flat
channel, the power allocation among users is non-uniform,
whereas when the number of multipaths increases, the power
allocation tends more and more to a uniform one.
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APPENDIX A
PROOF OF PROP. 3

Notice that when σ2 → ∞, COPT = 0, CMMSE = 0, and
βMMSE(x) = β(x) = 0. Thus, we only have to prove that the
derivatives of either side of (13) are equal.
Using ρ(f, x) = P (x) |h(f, x)|2, (5) can be rewritten

β(x) =
∫ 1

0

ρ(f, x)df

σ2 +
∫ α

0
ρ(f,y)dy
1+β(y)

. (39)

From (11),
∫ 1

0 ρ(f, x)u(f,−σ2)df satisfies the same im-
plicit equation (39) as β(x) and, thus,

u(f,−σ2) =
1∫ α

0
ρ(f,y)dy
1+β(y) + σ2

. (40)

Using (39) and (40), we can rewrite∫ 1

0

u(f,−σ2)df − 1
σ2

=
∫ 1

0

1∫ α

0
ρ(f,y)dy
1+β(y) + σ2

df −
∫ 1

0

1
σ2

df

=
∫ 1

0

− ∫ α

0
ρ(f,x)
1+β(x)dx

σ2
(∫ α

0
ρ(f,y)dy
1+β(y) + σ2

)df

=
∫ α

0

−1
(1+β(x))

σ2

∫ 1

0

ρ(f, x)df∫ α

0
ρ(f,y)dy
1+β(y) + σ2

dx

= −
∫ α

0

β(x)
σ2 (1 + β(x))

dx.

Thus, from (10)

∂COPT

∂σ2
= − log2(e)

∫ α

0

β(x)
σ2 (1 + β(x))

dx. (41)

Differentiating (7) with respect to σ2, we obtain

∂CMMSE

∂σ2
= log2(e)

∫ α

0

1
1 + β(x)

∂β

∂σ2
(x)dx. (42)

Let π(x) = 1
σ2(1+β(x)) . From (41) and (42), we obtain

∂COPT

∂σ2
− ∂CMMSE

∂σ2

= − log2(e)
∫ α

0

(
β(x) + σ2 ∂β

∂σ2
(x)
)

π(x)dx. (43)

From (5), we have∫ α

0

σ2β(x)
∂π

∂σ2
(x)dx

=
∫ α

0

∫ 1

0

σ2ρ(f, x)df
σ2 +

∫ α

0 σ2ρ(f, y)π(y)dy

∂π

∂σ2
(x)dx

=
∫ 1

0

∫ α

0
ρ(f, x) ∂π

∂σ2 (x)dx

1 +
∫ α

0 ρ(f, y)π(y)dy
df

=
1

log2(e)
∂

∂σ2

∫ 1

0

log2

(
1 +

∫ α

0

ρ(f, y)π(y)dy

)
df.

Observing that∫ α

0

(
β(x) + σ2 ∂β

∂σ2
(x)
)

π(x) + σ2β(x)
∂π

∂σ2
(x)dx

=
∂

∂σ2

∫ α

0

σ2β(x)π(x)dx,

we obtain (13) from Prop. 3.

APPENDIX B
INFLUENCE OF OTHER PLAYERS’ STRATEGIES

We want to prove that asymptotically, in the game
{S(K), P, (uk)k∈S(K)}, the strategy of a single player does not
have any influence on the payoff of the other players. In other
words, for all k �= i ∈ S(K), for all p = (P1, . . . , PK) ∈ P

K ,
for all P ′

i ∈ P,∣∣uk(p) − uk(P ′
i ,p(−i))

∣∣→ 0, as N → ∞.

Remember that uk = γ(βk)
Pk

, and γ is at least C2. Let
(β1, . . . , βK) be the SINRs associated with the power alloca-
tion p and (β′

1, . . . , β
′
K) the SINRs associated with the power

allocation (P ′
i ,p(−i)). Then a simple Taylor expansion of γ

in β′
k gives

γ(β′
k) = γ(βk) + (β′

k − βk)
∂γ

∂β
(βk) + o(β′

k − βk). (44)

According to (44), it is sufficient to show that∣∣∣∣β′
k − βk

Pk

∣∣∣∣→ 0, as N → ∞. (45)

a) Matched Filter: For the matched filter, the inequality
is obtained directly from (3). The denominator of (3) is always
greater than σ2

N

∑N
n=1 |hnk|2. Hence,∣∣∣∣β′

k − βk

Pk

∣∣∣∣ ≤
∣∣∣∣∣Pk

1
N (P ′

i − Pi) 1
N

∑N
n=1 |hni|2 |hnk|2

Pkσ4

∣∣∣∣∣
≤ Pmaxh

2
max

σ4N
.

b) MMSE Filter: For the MMSE filter, the inequality is
obtained from (4), Lemma 1 from [30] and Lemma 2.1 from
[37], which we both reproduce below for convenience.
Lemma 1: [30] Let C be a N × N complex matrix with

uniformly bounded spectral radius for all N : supN (|C|) < ∞.
Let w = 1√

N
[w1, . . . , wN ]T where {wi}i=1...N are i.i.d. com-

plex random variables with zero mean, unit variance and finite
eighth moment. Then:

E

[∣∣∣∣wHCw − 1
N

trC
∣∣∣∣
4
]
≤ C

N2

where C is a constant that does not depend on N or C.
Lemma 2: [37] Let σ2 > 0, A and B N × N with B

Hermitian nonnegative definite, and q ∈ CN . Then

tr
((

(B + σ2I)−1 − (B + qqH + σ2I)−1
)
A
) ≤ ‖A‖

σ2
.

In Lemma 2, ‖A‖ is the spectral norm of A, i.e., the square
root of the largest singular value of A.
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From (4), we can write

βk = Pkwk
HHH

k

(
G(−k)GH

(−k) + σ2IN

)−1

Hkwk,

β′
k = Pkwk

HHH
k

(
G(−k)

′GH
(−k)

′
+ σ2IN

)−1

Hkwk

where G(−k)
′GH

(−k)

′ = G(−k)GH
(−k) + (P ′

i − Pi)(hi �
wi)(hi � wi)H .
A corollary of Lemma 1 is that for either matrix

C = HH
k

(
G(−k)GH

(−k) + σ2IN

)−1

Hk or matrix C =

HH
k

(
G(−k)

′GH
(−k)

′ + σ2IN

)−1

Hk, we obtain [30]∣∣∣∣wk
HCwk − 1

N
trC

∣∣∣∣→ 0, as N → ∞.

MatrixB = G(−k)GH
(−k) is Hermitian nonnegative definite,

as for all w ∈ CN , wHG(−k)GH
(−k)w =

∥∥G(−k)w
∥∥2 ≥ 0.

Diagonal matrix A = HkHH
k has spectral norm

∥∥HkHH
k

∥∥ ≤
h2
max. Using Lemmas 1 and 2, as N → ∞, we obtain∣∣∣∣β′

k − βk

Pk

∣∣∣∣→ 0, as N → ∞.

c) Optimum and SIC Filters: The analog of the SINR
derived for the optimum filter stems from the MMSE filter
with SIC. The SINR for SIC filters have similar expressions
with less interfering users appearing in the denominator.
Hence, the result is immediate.

APPENDIX C
PROOF OF PROP. 5

Given C�, we can use (13) to obtain a Nash equilibrium
power allocation in the following way. We rewrite (13) assum-
ing that the target SINR for the MMSE filter is β+.

α log2

(
1 + β+

)− α log2(e)
β+

1 + β+

+ log2

(
1 +

1
σ2 (1 + β+)

∫ α

0

P (y) |h(y)|2 dy

)
= α log2 (1 + β�) . (46)

In the left-hand side of (46), P (y) is given by a MMSE
power allocation similar to the one given by (21). Hence,
the term

∫ α

0
P (y) |h(y)|2 dy in (46) does not depend on the

actual realizations of the channels. Replacing β� by β+ in
(20), we obtain that

∫ α

0 P (y) |h(y)|2 dy = ασ2β+

1−α β+

1+β+

, which

gives us (23). Replacing β� by β+ in (21), we obtain the
power allocation (22).

APPENDIX D
EXPECTATION OF THE RANDOM VARIABLE

Under the hypotheses on hnj of Sec. VI-B, we show that

the expectation of the random variable 1
K

∑K
j=1

|hnj|2
Ej

is equal
to 1. By expanding the expression of hnj , this is equivalent

to showing that the expectation of
h�( j

N )h�′
“

j′
N

”

Ej
is equal to

0. Denoting by p(·) the distribution of h	 = h	

(
j
N

)
, this

expectation is equal to the L-dimensional integral of

h	h	′

|h	|2 + |h	′ |2 +
∑

k �=	,	′ |hk|2
p (h	) p (h	′)

∏
k �=	,	′

p (hk)

which is an odd function of h	. Its integral is therefore 0,
which proves the desired result.

APPENDIX E
PROOF OF (35) AND (36)

Denote mk = PK−k |hK−k|. From (32), with flat fading,
the sequence {mk}k∈S(K) satisfies m0 = β�σ2 and mk+1 =
β�σ2 + β�

N

∑k
j=0 mj . Using the fact that

∑k
i=j

(
i
j

)
=
(
k+1
j+1

)
,

it is immediate to prove by recurrence that

mk = β�σ2
k∑

j=0

(
k

j

)
1

N j
β�j = β�σ2

(
1 +

1
N

β�

)k

.

Hence formula (35). The demonstration is exactly similar for
(36) from the recursion m0 = β�σ2 and mk+1 = β�σ2 +

β�

(1+β�)N

∑k
j=0 mj .

APPENDIX F
OPTIMAL ORDERING OF USERS

We determine the ordering that makes use of the least total
power for equilibrium PA (35) (the case is similar for (36),
(37), and (38)). Let the ordering of the users be such as |h1|2 <
· · · < |hK |2. Let π be any permutation of {1, . . . , K}. Let
aij =

(
1 + 1

N β�
)K−i − (1 + 1

N β�
)K−j

.
Then showing that the optimal ordering is such as |h1|2 <

· · · < |hK |2 is equivalent to showing that for any π

K∑
k=1

1
|hk|2

akπ(k) > 0. (47)

Consider first a cyclic permutation. By the definition of aij ,
the sum of the akπ(k) is equal to zero:

∑K
k=1 akπ(k) = 0.

The first coefficient a1π(1) is positive. It is affected coefficient
1

|h1|2 , which is the greatest coefficient in the sum in (47).
Hence, the sum in (47) is positive.
Permutation π can be decomposed as a product of disjoint

permutation cycles. Each cycle determines a subset of indexes
k, these subsets form a partition of {1, . . . , K}. With a similar
reasoning as precedently, replacing index 1 with the smallest
index in the cycle, the sum over the indexes k pertaining to a
cycle of 1

|hk|2 akπ(k) is positive. Hence the global sum of (47)
is also positive.
It can be proven in a similar way that the same ordering

maximizes the sum of inverse powers of the users.
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