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ABSTRACT
In dynamic contrast-enhanced magnetic resonance imag-

ing (DCE-MRI), segmentation of internal kidney structures
like cortex, medulla and pelvo-caliceal cavities is necessary
for functional assessment. Manual segmentation by a radiol-
ogist is fairly delicate because images are blurred and highly
noisy. Moreover the different compartments cannot be delin-
eated on a single image because they are not visible during
the same perfusion phase for physiological reasons. Nev-
ertheless the differences between temporal evolution of con-
trast in each anatomical region can be used to perform func-
tional segmentation. We propose to test a semi-automated
split and merge method based on time-intensity curves of re-
nal pixels. Its first step requires a variant of the classical
Growing Neural Gas algorithm. In the absence of ground
truth for results assessment, a manual anatomical segmenta-
tion by a radiologist is considered as a reference. Some dis-
crepancy criteria are computed between this segmentation
and the functional one. As a comparison, the same crite-
ria are evaluated between the reference and another manual
segmentation.

1. INTRODUCTION

Among the different MRI techniques aiming at renal func-
tion study, DCE-MRI with gadolinium chelates injection is
the most widely used [1]. Several parameters can be non-
invasively computed from perfusion curves of different re-
gions of interest (ROI). So segmentation of internal anatom-
ical kidney structures like cortex, medulla and pelvo-caliceal
cavities is crucial for functional assessment. Manual seg-
mentation by a radiologist is fairly delicate because images
are blurred and highly noisy. Moreover the different com-
partments are not visible during the same perfusion phase
because of contrast changes; consequently they cannot be
delineated on a single image. Radiologists have to exam-
ine the whole sequence in order to choose the two most
suitable frames: the operation is time-consuming and func-
tional analysis can vary greatly in case of misregistration or
through-plane motion. Some semi-automated methods us-
ing thresholding, boundary or region-based techniques are
often used in the medical field but few of them have been
tested on renal DCE-MRI sequences (see [2] for a review).
As the contrast temporal evolution is different in every com-
partment for physiological reasons, pixels can be classified
according to their time-intensity curves. Nevertheless a func-
tional segmentation using some unsupervised classification
method and resulting in only three ROIs corresponding to
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Figure 1: Examples of frames from a DCE-MRI sequence
during arterial peak (left), filtration (middle) and late phase
(right)

cortex, medulla and cavities can hardly be obtained directly.
This is mainly due to considerable contrast dissimilarities be-
tween pixels in a same compartiment despite some common
characteristics [3].

We propose to test a semi-automated split (2.1) and
merge method (2.2) for renal functional segmentation. The
kidney pixels are first classified in several clusters according
to their contrast evolution using a vector quantization algo-
rithm. These clusters are then merged thanks to some charac-
teristic criteria of their prototype functional curves to get the
three final anatomical compartments. Operator intervention
consists only in a coarse tuning of two independent thresh-
olds for merging, and is thus easy and quick to perform. The
method is also relatively robust because the whole sequence
is used instead of only two frames for manual segmentation.
In the absence of ground truth for results assessment, a man-
ual anatomical segmentation by a radiologist is considered
as a reference. Some discrepancy criteria are computed be-
tween this segmentation and functional ones. As a compar-
ison, the same criteria are evaluated between the reference
and another manual segmentation.

2. METHOD FOR FUNCTIONAL SEGMENTATION

2.1 Vector quantization of time-intensity curves
The temporal evolution of contrast for each of the N pixels
of a kidney results from a DCE-MRI registered sequence:
examples of three frames for different perfusion phases can
be seen in figure 1.

In order to have similar dynamic for any kidney, all in-
tensities I are normalized, being replaced by I−IB

IL−IB
, where IB
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Figure 2: Results of a GNG procedure: small dots represent
samples of the distribution, large dots are the resulting nodes
linked with edges.

is the mean value for baseline and IL the mean value during
late phase for the time-intensity curve of entire kidney. Let
ξi = (ξi1, . . . ,ξiNT ) be the NT -components normalized vector
associated with each pixel, where ξip is the contrast at time p
for the pixel xi.

The N vectors ξi are considered as samples of an un-
known probability distribution over a NT dimensional space
X with a density of probability p(ξ ). The aim is to find
a set {w j}1≤ j≤K ⊂ X of prototypes (or nodes) that maps
the distribution with a given distorsion. Let be w(ξ ) =
argminw j{‖ξ −w j‖2}. The Growing Neural Gas with target-
ing (GNG-T) [4], which is a variant of the classical Growing
Neural Gas algorithm [5], minimizes the cost function

E =
∫

X
‖w(ξ )−ξ‖2 p(ξ )dξ =

K

∑
j=1

E j (1)

where

E j =
∫

V j

‖w j −ξ‖2 p(ξ )dξ and Vj = {ξ ∈ X : w(ξ ) = w j}

(2)
The results consist in both:
• a set {w j}1≤ j≤K of prototypes,
• a graph structure defining a topological neighborhood re-

lation in the parameter space, so that two prototypes with
similar behaviour are linked with an edge.

The number K of prototypes is iteratively determined to
reach a given average node distortion T . Let us note that
the aim of the algorithm is not to classify pixels but to per-
form vector quantization, that is why it tends to give a fairly
large K value. As an example, the quantization results for
a two-dimensional Gaussian mixture distribution is given in
figure 2. For this ideal density every class corresponds to
a connected nodes set but this is seldom true for real cases
because of noise and because the distributions are not obvi-
ously separable. Most of the time a single connected network
is obtained. So a merging step is indispensable to obtain the
final segmentation in three anatomical compartments.

Figure 3: Typical time-intensity curves for cortex, medulla
and cavities

2.2 Merging

Each node has then to be attributed to one of the three
anatomical compartments. Typical time-intensity curves
with the main perfusion phases (baseline, arterial peak, fil-
tration, equilibrium and late phase) are shown in figure 3.

Nevertheless, for a given kidney, noticeable differences
can be observed in figure 4 inside each compartment. The
Euclidean distance between curves is not a criterion signif-
icant and robust enough to regroup nodes. Indeed distance
between two prototypes of two distinct ROIs may often be
smaller than disparity within a given compartment. This is
true even if distance is evaluated only for points of filtration,
during which contrast evolutions should be the most differ-
ent. That is why some physiology related characteristics of
the contrast evolution have to be used to carry out the merg-
ing step.

We proceed as follows:
• First, as cavities should be the brighter structure in the

late phase, nodes whose average intensity during this
stage is greater than a given threshold t1 and that are di-
rectly connected to each other in the GNG graph are con-
sidered as cavities.

• In a second step, filtration phase is used to separate cortex
and medulla. Filtration rate depends on the tissu nature.
So the slope of time-intensity curves during filtration is
evaluated using standard linear regression for all remain-
ing prototypes: a node is attributed to the cortex if the
corresponding slope is less than a given threshold t2, else
it is assigned to the medulla.

The two thresholds t1 and t2 are initialized so that cortex rep-
resents approximately 50% and cavities about 20% of kidney
area and are adjusted by an observer. This is the only man-
ual intervention of the whole operation. As the algorithm is
very fast, the tuning step can be done in real time. Let us
stress that the second criterion would not be sufficient to dis-
tinguish cavities from cortex and medulla because of a theo-
retically unexpected but fairly high arterial peak that can be
observed in figure 4(c): this peak is induced by the great vas-
cularization of the whole kidney and may appear in all ROIs.
Furthermore the use of topological edges for cavities deter-
mination avoids to classify in this compartment some nodes
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(a) Cortex prototypes
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(b) Medulla prototypes
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(c) Cavities prototypes

Figure 4: Some examples of time-intensity curves for pro-
totypes attributed to cortex, medulla and cavities of a given
kidney

that have a similar contrast in late phase but whose behaviour
differs sufficiently in other filtration phases.

3. EXPERIMENT

3.1 Materials
Eight two-dimensional low resolution DCE-MRI sequences
of normal kidney perfusion with 256 images were used (ac-
quisition duration: about 12 minutes, temporal resolution:
about 3 s). The examinations were performed on a whole-
body 1.5T MR-scanner (General Electric Healthcare). A 3D
ultrafast gradient echo LAVA sequence was used with the fol-

lowing parameters: 15◦ flip angle, TR/TE 2.3 ms/1.1 ms.
The slice that contained the largest surface of renal tissue
was then selected. The initial matrix size was 256×256 with
pixel size between 1.172 mm and 1.875 mm (slice thick-
ness: 10 mm). A rectangular area containing kidney was
delineated (size between 47× 35 and 84× 59). In-plane
movements due to respiration were corrected by a rigid reg-
istration algorithm including translations and rotation. Be-
cause of rapid and high contrast changes during perfusion
mutual information was chosen as a similarity criterion [6].
Anyway through-plane motions remained and frames were
highly noisy. An example of frames for three different per-
fusion phases is shown in figure 1.

3.2 Manual segmentations by radiologists
The different sequences were presented to two experienced
radiologists (OP1 and OP2) after automatic registration.
They had to delineate three ROIs, namely the cortex, the
medulla and the pelvo-caliceal cavities as well as a global
kidney mask. To do so, the following procedure was set up:
1. visualization of the complete sequence,
2. selection of a late phase frame were cavities contrast is

maximum and manual segmentation of the cavities,
3. identification of the frame corresponding to the cortical

enhancement peak and manual segmentation of the cor-
tex

4. segmentation of medulla by difference with cortex and
cavities already segmented.

A global mask was then extracted as the common area of the
two manual segmentations, including the three ROIs delin-
eated by the two radiologists. This mask was subsequently
used for functional segmentation. Two examples of manual
segmentations can be seen in figure 5.

3.3 Discrepancy criteria for segmentation comparison
For each of the eight cases a manual segmentation is consid-
ered as a reference. The functional segmentation obtained
thanks to the proposed method or another manual one will
both be compared to this reference.

Each segmentation can be considered as a binary map,
with label 1 inside the ROI and label 0 outside. Let be R the
reference segmentation and T the tested one. Four types of
pixels can then be defined, according to their labels in R and
T:

Pixel type Label in R Label in T
True Positive (TP) 1 1

False Negative (FN) 1 0
False Positive (FP) 0 1
True Negative (TN) 0 0

Four discrepancy measures between R and T are evalu-
ated for each ROI:
• percentage overlap PO = 100×T P/(T P+FN), i.e. per-

centage of pixels of the reference ROI that are in the test
ROI too,

• percentage extra PE = 100× FP/(T P + FN), i.e. the
number of pixels that are in the test ROI while they are
out of reference ROI, divided by the number of pixels in
the reference ROI,

• similarity index SI = (2×T P)/(T P + FN + FP). SI is
sensitive to both differences in size and location [7]. For



Segmentation by OP2 GNG-T
Well classified pixels (%) 69.8 83.7

Overlap (%) 71.8 83.2
Extra pixels(%) 9.2 21.9
Similarity index 0.79 0.81

Mean distance to reference contour 0.6 0.8
(a) Cortex

Segmentation by OP2 GNG-T
Well classified pixels (%) 84.8 73.0

Overlap (%) 84.0 73.0
Extra pixels(%) 56.6 33.7
Similarity index 0.70 0.71

Mean distance to reference contour 1.0 0.8
(b) Medulla

Segmentation by OP2 GNG-T
Well classified pixels (%) 74.9 68.7

Overlap (%) 73.9 69.8
Extra pixels(%) 16.1 11.1
Similarity index 0.77 0.77

Mean distance to reference contour 0.8 0.7
(c) Cavities

Segmentation by OP2 GNG-T
Well classified pixels (%) 74.9 77.6

(d) Global kidney

Table 1: Discrepancy measures for segmentations of the
three ROIs, where OP1 is considered as a reference

instance two equally sized ROIs that share half of their
pixels would yield SI = 1/2. A ROI covering another
that is twice as little would give SI = 2/3. For a perfect
segmentation the SI value would be 1.

• mean distance (in pixel) between contours of test and ref-
erence segmentation.
SI is the only selected criterion that is independent of the

chosen reference, however its values appear twice in the ta-
bles in order to facilitate comparisons.

4. RESULTS

Examples of two manual segmentations and of a functional
semi-automated one can be seen in figure 5. For this case,
size of ROIs varies between 532 and 700 pixels for cortex,
375 and 559 for medulla, 161 and 217 for cavities. The de-
lineated contours are superimposed on MR images of the re-
nal pixels (region out of the global kidney mask is black).
Frames correspond to perfusion phases during which each
compartment is visible at best:
• arterial peak for cortex and medulla
• late phase for cavities.

For almost all the tested kidneys, a very good visual quali-
tative consistency between these frames and functional seg-
mentation is obtained.

In table 2, on the other hand, the reference is OP2. The
percentage of well classified pixels for a given compartment
is the sum of TP pixels over the eight cases divided by the
total number of pixels for this type of ROI. For global kidney
it is the sum of TP pixels for all ROIs over the eight cases

Segmentation by OP1 GNG-T
Well classified pixels (%) 89.7 85.8

Overlap (%) 89.0 85.7
Extra pixels(%) 36.1 34.8
Similarity index 0.79 0.78

Mean distance to reference contour 0.7 0.9
(a) Cortex

Segmentation by OP1 GNG-T
Well classified pixels (%) 60.3 69.7

Overlap (%) 60.5 69.9
Extra pixels(%) 11.8 16.3
Similarity index 0.70 0.75

Mean distance to reference contour 1.0 0.9
(b) Medulla

Segmentation by OP1 GNG-T
Well classified pixels (%) 81.8 74.9

Overlap (%) 82.2 76.4
Extra pixels(%) 32.4 12.6
Similarity index 0.77 0.80

Mean distance to reference contour 0.9 0.5
(c) Cavities

Segmentation by OP1 GNG-T
Well classified pixels (%) 74.9 76.7

(d) Global kidney

Table 2: Discrepancy measures for segmentations of the
three ROIs, where OP2 is considered as a reference

divided by the total number of pixels of all kidney global
masks. Results for small kidneys have less influence on this
percentage than on mean overlap.

Similarity measures between functional segmentation
and any manual segmentation are very similar to those com-
puted between the two manual ones. A better score for over-
lap is always compensated by an increase of extra pixels. The
percentage of globally well classified pixels is even higher
for functional segmentation, and the similarity index and the
mean distance between contours are most of the time bet-
ter. This was not the case for k-means clustering of the
time-intensity curves, where scores were almost less good
for functional segmentations [3]: for instance an increase of
3 to 6% in the percentage of globally well classified pixels
can be noted for the new method. Furthermore results do not
depend significantly on the type of ROI. The quality of func-
tional segmentation does not change with the region size:
cavities that are much smaller than the two other ROIs are
recovered as well as them. Moreover this technique is fast
and user-friendly. The size of the prototype set stemming
from GNG-T varies between 10 and 30 nodes: it depends
essentially on temporal comportment complexity induced in
particular by vascularization artifacts and highly noisy ac-
quisition but little on kidney size. Nevertheless operator has
only to adjust two thresholds: the first allows to extract cavi-
ties by adding or taking off the most relevant nodes, whereas
the second is used in the same way to set relative areas of
cortex and medulla. The splitting step with GNG-T allows
to consider first the global time-intensity evolution and to re-
duce noise effect; the threshold adjustment is then easier be-



cause at each tuning level a relatively numerous set of pixels
with homogenous temporal evolution is added.

5. CONCLUSIONS AND PERSPECTIVES

A semi-automated method for functional segmentation of
internal kidney structures using DCE-MRI sequences was
tested and compared with manual segmentations by radiol-
ogists. Good qualitative consistency between the two types
of segmentation is observed. Similarity measures between a
manual segmentation and a functional one are similar and of-
ten better than the same criteria evaluated between two man-
ual segmentations. Let us note that the derived time-intensity
curves of each compartment are almost identical for func-
tional or manual segmentation. Thus the method is suitable
for renal segmentation from DCE-MRI. Moreover this tech-
nique is user friendly because the only manual intervention
during the whole segmentation process consists in the coarse
real-time tuning of two independent thresholds. It is also
greatly faster than manual segmentation: the latter requires
12 to 15 minutes for one sequence, versus about 30 seconds
for the former, including threshold adjustment.
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(a) Anatomical manual segmentation (OP1)

10 20 30

10

20

30

40

50

60

10 20 30

10

20

30

40

50

60

10 20 30

10

20

30

40

50

60

(b) Anatomical manual segmentation (OP2)
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(c) Functional semi-automated segmentation

Figure 5: Example of cortex (left), medulla (middle) and cav-
ities (right) segmentations


