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In this paper, we study the performance of point-topoint communication in self-organized networks. An informationtheoretic framework is considered to determine the optimum transmission power enabling reliable communication between neighboring nodes at a certain user requested rate. Realistic channel models taking into account path-loss and fading are also considered. Optimal power allocation strategies are investigated. For this purpose, we use the ergodic capacity as a criterion for information-theoretic analysis. In the first case, the transmit power is the same for all pairs. In a more opportunistic case, different transmit pairs use different transmit powers according to their channel realizations. Then, for a given rate requirement C, we derive the optimal close-talker distance that meets the requirement for a given power P . Numerical results are finally presented giving insights into the design of power adaptation schemes for point-to-point communications.

I. INTRODUCTION

Recently, self-organized networks have been drawing a lot of interest [START_REF] Saad | A Distributed Merge and Split Algorithm for Fair Cooperation in Wireless Networks[END_REF] and [START_REF] Ozgur | Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks[END_REF]- [START_REF] Berez | Cooperation and routing in multi-hop networks[END_REF]. Given that these networks are self-configured, without any dependence on a central controller (as currently done in cellular systems), they offer high flexibility of deployment and maintenance. Several inherent issues pertain to self-organized networks. The notions of cooperation and coalition [START_REF] Saad | A Distributed Merge and Split Algorithm for Fair Cooperation in Wireless Networks[END_REF] have been addressed where users cooperate by forming coalitions to improve their individual utilities. The issue of cooperation has also been studied in [START_REF] Ozgur | Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks[END_REF] where intelligent nodes cooperate using distributed Multiple-Input-Multiple-Output (MIMO) techniques.

The general problem of addressing how the network throughput scales as a function of the number of sourcedestination (S-D) pairs has been subject to intensive research. In their seminal paper, Gupta and Kumar [START_REF] Gupta | The capacity of wireless networks[END_REF] have shown that the fundamental performance limitation comes from the fact that long-range direct communication between user pairs is infeasible due to the excessive interference coming from other nodes. As a result, most communications have to occur between neighbors, at a distance of order 1 √ N (N is the number of users) and the throughput scales as O( N/logN ). In [START_REF] Franceschetti | Closing the gap in the capacity of wireless networks via percolation theory[END_REF], percolation theory arguments were used to determine the capacity of the network. Finally, only recently, the tradeoff between throughput and delay incurred by point-to-point communication has been investigated in [START_REF] Gamal | Throughput-Delay Trade-off in Wireless Networks[END_REF].

The issue of point-to-point communication has been subject to intensive research, where most of the literature has focused on throughput scaling laws as a function of the number of mobile pairs for both static and mobile cases. Besides, other papers have mainly focused on networking issues. For instance, in [START_REF] Michael | Combined Cellular/Direct Method of Inter-Vehicle Communication[END_REF], vehicles that are close to each other use direct communication using industrial, scientific and medical (ISM) radio band modems mounted on the vehicles. When they are far away or there is an obstacle such as trucks, a cellular mode can be used instead. In [START_REF] Adachi | Capacity Analysis for a Hybrid indoor mobile communication system using a cellular and ad-hoc modes[END_REF], cellular ad-hoc united communication is proposed enabling direct terminal to terminal communication. Finally, the study of a hybrid system was used in [START_REF] Hsieh | Persistent bidirectional peer traffic in fix networks augmented broadband wireless access[END_REF]- [START_REF] Wu | Integrated Cellular and ad-hoc relay systems: iCAR[END_REF].

In the first part of this contribution, a useful informationtheoretic framework is provided to determine the optimum transmission power enabling reliable communication. The ergodic capacity is used as a relevant performance and to show that there is a bound on the achievable requested rate. In the opportunistic approach where nodes access channel state information (CSI), we apply the well-known results of waterfilling [START_REF] Goldsmith | Capacity of Fading Channels with Side In-formation[END_REF] to the ergodic capacity. Finally, we introduce the notion of close-talker where users can estimate the closest mobile within a certain distance.

The paper is organized as follows. In Section II, the system model is introduced. Different power allocation strategies are investigated in Section III. Finally, numerical results are shown in Section IV and conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a two-dimensional (2-D) network with average density of users d and radius R (where R → ∞). The users are randomly distributed in the plane. The network contains therefore N = πR 2 d mobiles. We suppose that time is slotted by a universal clock that every mobile is aware of, and that in each timeslot, N 2 communication pairs form at random between neighboring nodes, with N 2 transmitters and N 2 receivers. Each link between a communication pair experiences path-loss (depending on the distance between two mobiles) and flat fading. In addition, it is assumed that each transmitter is able to adjust its transmission power. The received signal y j at mobile j of the communication pair (i,j) has the form:

y j = h ji r α/2 ji P i s i + k =i h jk r α/2 jk P k s k + n ji (1) 
In which s i is the useful signal, transmitted with power P i to mobile j by mobile i, and affected by path-loss 1

r α/2 ji
(where r ji is the distance between mobiles i and j, and α is the path-loss exponent usually between 2 and 6). h ji is the fading component. The sum in the second term is taken over all N 2 -1 transmitters for k = i. Each term in the sum represents the contribution to the interference of transmitter k. Finally, n ji is the Additive White Gaussian Noise (AWGN). We make the assumption that the signals sent by users are encoded in a Gaussian codebook. All channel coefficients h lm and noise n lm are supposed to be independent Gaussian variables, with zero mean and variance 1 and N 0 , respectively.

III. OPTIMAL POWER ALLOCATION STRATEGIES

In this section, we investigate different power allocation strategies for point-to-point communication. We derive the optimum transmit power for a high number of interferers. In the first case, the transmit power is assumed to be equal for all mobile pairs. The notion of close-talker is also presented. In the other case, different communication pairs will use different transmission powers according to their channel realizations (opportunistic approach).

A. Uniform Power Analysis

We would like to determine the optimal power allocation assuming that each transmitter only knows the statistics of its channel (i.e., each communication pair (i,j) knows the distribution of r ji , and the variances ζ ij = and N 0 ) so that the user's requested rate C is satisfied. By symmetry, each communication pair will use the same power P in this setting. Given the random nature of the channel, the ergodic capacity can be approached using an appropriate coding scheme. In our setting, it can be expressed as:

C(i, j) = E h,r log 2 1 + P |h ij | 2 r -α ij P k =i |h jk | 2 r -α jk + N 0 (2)
We want to ensure that C(i, j) > C for all users. For this purpose, we have to find an estimate of the interference sum:

k =i |h jk | 2 r -α jk (3) 
which runs over all transmitting nodes except node i.

B. No Interference Case

In order to have an element of comparison, we first investigate the case when there is no interference. If only one node transmits, the expression of the ergodic capacity reduces to:

C(1, 2) = E h,r log 2 1 + P |h| 2 r -α 12 N 0 (4) 
According to [START_REF] Stephens | Distance Distribution for Randomly Distributed Data[END_REF], the probability distribution of r in (4) can be modeled as:

f 1 (r) = 2r ρ 2 e - r 2 
ρ 2 with ρ = 2d π (5) 
Where d = E(r) is the average mobile separation. Thus, we can obtain the value of the ergodic capacity for a given power P . In this case, the minimum power P within which the requested rate C can be satisfied, is given by the equation:

E h,r log 2 1 + P |h| 2 r -α N 0 = C (6) 
The left-hand side of ( 6) is an increasing function of P that does not saturate (i.e., it tends to infinity as P → ∞).

In this case, with a sufficient transmit power, any capacity requirement can be fulfilled.

Figure 1 shows the ergodic capacity as a function of the transmission power, in the case of no interference. Capacity is logarithmically increasing without bound along with the power. Hence, without interference, any capacity requirements can be met if the power is sufficiently increased

C. General Case

Let us now investigate the case N > 2. In this case, the communication pairs impose interference on each other given by the sum (3). In our setting, the number of interferers tends to infinity, therefore we can use asymptotic results. The sum given by [START_REF] Ozgur | Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks[END_REF] will be approximated by its expectation, which is simply

k =i E[ h 2 jk * r -α jk ] = k =i E[ h 2 jk ] * E[r -α jk ] = k =i E r r -α
jk since the random variables r and h are independent and E hij |h jk | 2 = 1 for all k.

According to [START_REF] Stephens | Distance Distribution for Randomly Distributed Data[END_REF], the probability distribution of the distance between mobile j and its kth closest mobile can be modeled by:

f k (r jk ) = 2r 2k-1 jk (k -1)!ρ 2k e - r 2 jk ρ 2 with ρ = 2d π (7) 
A mobile has probability 1 2 to be transmitting. Thus, using [START_REF] Luo | UCAN: A unified cellular and ad-hoc network architecture[END_REF], the expectation of (3) becomes: The integrals in (8) are well-defined for all k if α < 4 1 . In this case 2 , since for all N ≥ 2,

k =i E r r -α jk = 1 2 +∞ k=2 +∞ 0 2u 2k-1-α (k -1)!ρ 2k e -u 2 ρ 2 du. (8) 
N k=2 2u 2k-1-α (k -1)!ρ 2k e -u 2 ρ 2 ≤ 2u 1-α ρ 2 1 -e -u 2 ρ 2 ,
Lebesgue's dominated convergence theorem [START_REF] Browder | Mathematical Analysis: An Introduction[END_REF] allows us to intervert sum and integral, and finally obtain:

I = k =i E r r -α jk = 1 2 +∞ 0 2u 1-α ρ 2 1 -e -u 2 ρ 2 du. (9) 
Using this result, we can deduce the transmission power corresponding to the requested rate C thanks to the equation:

E h,r log 2 1 + P |h| 2 r -α P I + N 0 = C. (10) 
In this case, the ergodic capacity is an increasing function of P that has an horizontal asymptote for some capacity C 0 , given by:

C 0 = E h,r log 2 1 + |h| 2 r -α I . (11) 
All capacity requirement strictly below C 0 can be met; but capacity requirements above C 0 will lead to users increasing their transmission power without bound and will not be attained. The value C 0 for α = 3 is around 1.457 (b/s/Hz). Fig. 2 shows the ergodic capacity as a function of the transmission range. In this case, the capacity obtained with a given power is much lower, and there exists a maximum capacity C 0 , given by [START_REF] Francheschetti | Closing the gap in the capacity of random wireless networks via percolation theory[END_REF]. If mobiles try to meet capacity requirements above C 0 , they will increase their power without bound, without reaching those requirements. Hence, since not all the values can be met, we need to define a communication range where any rate C can be satisfied. This is developed in the next section and is referred to the close-talker case. 1 1 + α -2k < 0 2 The probability that n mobiles are within r is: 

1-e -r 2 ρ 2 n-1 k=0 1 k! ( r 2 ρ 2 ) k

D. Close-Talker Case

Let us suppose that mobiles can estimate whether the closest mobile to them is within a distance a. Then, a communication pair forms between two mobiles only if their distance is smaller than a. This pertains to the notion of clusters. According to [START_REF] Ozgur | Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks[END_REF] and [START_REF] Gupta | The capacity of wireless networks[END_REF], the optimal strategy is to confine to nearest neighbor communication and maximize the number of simultaneous transmissions, through spatial reuse.

In this case, the probability distribution of the distance to the closest mobile changes to:

f a 1 (r) =    0 if r > a, f1 (r) 
1-e

-a 2 ρ 2 if r ≤ a. (12) 
The interference sum (3) has to be multiplied by 1 -e -a 2 /ρ 2 , that is the probability that the closest mobile is indeed at distance at most a of the receiving mobile in the communication pair. Under this setting:

I = 1 -e -a 2 ρ 2 +∞ 0 u 1-α ρ 2 1 -e -u 2 ρ 2 du. ( 13 
)
We can deduce the transmission power corresponding to the requested rate C thanks to the equation:

E h,r log 2 1 + P |h| 2 r -α P I + N 0 = C. ( 14 
)
This case is similar to the one in subsection III-C. Hence, the attainable capacity is bounded by:

C a 0 = E h,r log 2 1 + |h| 2 r -α I . (15) 
For a given C, the optimum communication range a is given by:

a 0 E h log 2 1 + P |h| 2 r -α P I + N 0 = C. (16) 
In Fig. 3, the ergodic capacity is plotted for a = 1. The shape of the curve is the same as in the general case of Subsection III-C, but the capacity obtained with a given power is higher. This is due to the fact that the capacity is higher within the communication range a. There is also a maximum capacity C a 0 , that depends on the value of a as shown in Fig. 4. As a decreases, the maximum attainable capacity C a 0 given by ( 15) increases.

Even though any rate can be satisfied, one has to notice that a delay is incurred by this scheme depending on the mobility pattern [START_REF] Gamal | Throughput-Delay Trade-off in Wireless Networks[END_REF].

E. Different Mobile Pairs Transmit Power (Opportunistic Approach)

In this section, we suppose that the communication pairs have perfect channel state information, i.e. communication pair (i, j) knows the exact value of h ji . In this case, different communication pairs will use different transmission powers, according to the realization of their channel. Moreover, we assume the close-talker case as discussed before.

We can readily apply the power adaptation described in [START_REF] Goldsmith | Capacity of Fading Channels with Side In-formation[END_REF] and allow the power P (t) to vary with t = h 2 following a Rayleigh distribution. Thus, we have a time waterfilling where the average power will be:

P = a 0 +∞ 0 P (t, r)e -t f a 1 (r)dtdr. (17) 
Given an average power constraint P , the capacity of the pair (i, j) is given by:

C(i, j) = max P E h,r log 2 1 + P ij |h ij | 2 r -α ij P I + N 0 ( 18 
)
where the interfering term is given by:

I = 1 -e -a 2 ρ 2 +∞ 0 u 1-α ρ 2 1 -e -u 2 ρ 2 du.
Note that the average power defined in [START_REF] Mathur | Coalitional games in cooperative radio networks[END_REF] uses waterfilling on a channel that is independent of the channel h jk where k = i. The power adaptation which maximizes ( 18) is:

P (t, r) P I + N 0 = 1 t0 -1 tr -α if t ≥ t 0 r α 0 if t < t 0 r α for some "cutoff" value t 0 that satisfies a 0 +∞ t0r α ( 1 t 0 - 1 t.r -α )e -t f a 1 (r)dtdr = P P I + N 0 . (19) 
Is is worth mentioning that in contrast to [START_REF] Goldsmith | Capacity of Fading Channels with Side In-formation[END_REF], this waterfilling approach takes the path-loss α and interference into account. These parameters are necessary in order to compute the cutoff value t 0 . Finally, the capacity is given by:

C(i, j) = a 0 +∞ t0.r α log 2 1 + t t 0 -r α r -α e -t f a 1 (r)dtdr. (20 
) Figure 5 shows a comparison between the ergodic capacity for both the opportunistic and non-opportunistic approach.

In particular, we focus on the close-talker approach where nodes communicate within a distance a. Clearly, the capacity is higher (46% increase) in the opportunistic approach where mobile terminals have knowledge of their channels.

F. Frequency Reuse for Point-to-Point Communication

Here, we seek the impact of frequency reuse on the ergodic capacity of point-to-point communication. We suppose one frequency band B = f ru × W of width W and f ru is the frequency reuse. R is the radius of the considered area. We further assume concentric circles centered in the origin as illustrated in Figure 6. Equation (9) rewrites as: The capacity is defined as:

I = k =i E r r -α jk = R k=1 a(fruk-fru+1) afru(k-1) u 1-α ρ 2 1 -e -u 2 ρ 2 du (21) 
C = B f ru × E h,r log 2 1 + P |h| 2 r -α P I + N 0 . (22) 
Finally, Figure 7 depicts the impact of frequency reuse on the ergodic capacity. Frequency reuse one yields a higher capacity (75% increase) with respect to frequency reuse 2. Moreover, the capacity decreases with increasing frequency reuse.

IV. CONCLUSION

In this paper, we investigated different power allocation strategies for point-to-point communication. We showed that neighboring nodes can communicate reliably at a requested rate by adjusting their power, if the requested rate is below a certain bound. The bound on the requested rate can be increased only if neighboring nodes that are close to each other are allowed to communicate. Additionally, for a given rate requirement C, we derived the optimal close-talker distance that meets the requirement for a given power P .

In an opportunistic approach, we derived the expression of the ergodic capacity under the assumption that nodes know the realization of their channel by applying the waterfilling principle. Finally, the impact of frequency reuse was also studied where frequency reuse one yields higher capacity.
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