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Opportunistic Power Allocation for Point-to-Point
Communication in Self-Organized Networks

Mehdi Bennis" and Merouane Debbéh
TCentre for Wireless Communications, University of Oulupl&nd
fSUPELEC, Gif-sur-Yvette, France

Abstract— In this paper, we study the performance of point-to- other papers have mainly focused on networking issues. For
point communication in self-organized networks. An information-  instance, in [1], vehicles that are close to each other use
theoretic framework is considered to determine the optimum irect communication using industrial, scientific and needli

transmission power enabling reliable communication betwen . .
neighboring nodes at a certain user requested rate. Realist (ISM) radio band modems mounted on the vehicles. When

channel models taking into account path-loss and fading aralso  they are far away or there is an obstacle such as trucks, a
considered. Optimal power allocation strategies are inveigated. cellular mode can be used instead. In [2], cellular ad-hoc

For this purpose, we use theergodic capacity as a criterion ynited communication is proposed enabling direct termioal

for information-theoretic analy_sis. In the first case, the_ t{:\nsmit terminal communication. Finally, the study of a hybrid syst
power is the same for all pairs. In a more opportunistic case, .
was used in [4]-[6].

different transmit pairs use different transmit powers according . . L . .
to their channel realizations. Then, for a given rate requiement [N the first part of this contribution, a useful information-

C, we derive the optimal close-talker distance that meets the theoretic framework is provided to determine the optimum
requirement for a given power P. Numerical results are finally transmission power enabling reliable communication. The
presented giving insights into the design of power adaptain  ogogic capacity is used as a relevant performance and to
schemes for point-to-point communications. . .
show that there is a bound on the achievable requested rate.
I. INTRODUCTION In the_ opportt_mistic approach where nodes access channel
) ) state information (CSl), we apply the well-known results of
Recently, self-organized networks have been drawing a |pkterfilling [8] to the ergodic capacity. Finally, we introce
of interest [9] and [11]-{18]. Given that these networks arge notion ofclose-talker where users can estimate the closest
self-configured, without any dependence on a central chetro y,gpile within a certain distance.
(as currently done in cellular systems), they offer highiflex The paper is organized as follows. In Section I, the system
bility of deployment and maintenance. Several inherentéss e is introduced. Different power allocation strategiee
pertain to self-organized networks. The notionsadperation  jnyestigated in Section 111 Finally, numerical resulte ahown

and coalition [9] have been addressed where users cooperg{esection 1V and conclusions are drawn in Section V.
by forming coalitions to improve their individual utilitsee The

issue of cooperation has also been studied in [11] where Il. SYSTEM MODEL
intelligent nodes cooperate using distributed Multipheut- We consider a two-dimensional-0) network with average
Multiple-Output (MIMO) techniques. density of usersd and radiusR (where R — o0). The

The general problem of addressing how the networsers are randomly distributed in the plane. The network
throughput scales as a function of the number of souraesntains thereforéV = 7R2d mobiles. We suppose that time
destination (S-D) pairs has been subject to intensive relseais slotted by a universal clock that every mobile is aware
In their seminal paper, Gupta and Kumar [12] have showof, and that in each timeslot%’ communication pairs form
that the fundamental performance limitation comes from tte random between neighboring nodes, wi;htransmitters
fact that long-range direct communication between usespaand % receivers. Each link between a communication pair
is infeasible due to the excessive interference coming froemperiences path-loss (depending on the distance between
other nodes. As a result, most communications have to octwo mobiles) and flat fading. In addition, it is assumed that
between neighbors, at a distance of orei% (N is the each transmitter is able to adjust its transmission powee T

number of users) and the throughput scale®ag/N/logN). eceived signal; at mobile; of the communication pairi{j)
In [19], percolation theory arguments were used to deteemiRas the form:

the capacity of the network. Finally, only recently, theda hyj; hjk
; . . ;= v/ P;s; —=\/P i 1
off between throughput and delay incurred by point-to-poin Yi ro/? $i+ g; T.ka/Q kSk 1 (1)
Ji ]

communication has been investigated in [16]. ) ) ) ) )

The issue of point-to-point communication has been subjeBtWhich s; is the useful signal, transmitted with powgr to
to intensive research, where most of the literature hassketu Mobile j by mobiled, and affected by path-loss:; (where
on throughput scaling laws as a function of the numbey; is the distance between mobilésand j, and « is the
of mobile pairs for both static and mobile cases. Besidgsath-loss exponent usually betweand6). h;; is the fading



component. The sum in the second term is taken ovéglalll
transmitters fork # . Each term in the sum represents the
contribution to the interference of transmitter Finally, n;

is the Additive White Gaussian Noise (AWGN). We make the
assumption that the signals sent by users are encoded in ¢
Gaussian codebook. All channel coefficieits, and noise
ny, are supposed to be independent Gaussian variables, witk
zero mean and variandeand Ny, respectively.

8.5

ergodic capacity C (b/s/Hz)

I11. OPTIMAL POWERALLOCATION STRATEGIES

In this section, we investigate different power allocation
strategies for point-to-point communication. We derive th ‘
optimum transmit power for a high number of interferers. In 10° G 10°
the first case, the transmit power is assumed to be equallfor al powerinlse varance Pl (2
mobile pairs. Th(? notion of Close_ta!ker IS_ also_ presentad. Fig. 1. No Interference Case, Same transmit power for allilagairs (case
the other case, different communication pairs will useedéht  — 2).
transmission powers according to their channel realinatio
(opportunistic approach).

_ . P. In this case, the minimum poweP within which the
A. Uniform Power Analysis requested rat€’ can be satisfied, is given by the equation:

We would like to determine the optimal power allocation P|h|2 i
assuming that each transmitter only knows the statistics of Ep - |log, <1 + 7>
its channel (i.e., each communication pairj knows the No
distribution ofr;;, and the variances;; = ¢ and No) SO that e |eft-hand side of (6) is an increasing function Bf
the user's requested rat is satisfied. By symmetry, €achynq; goes not saturate (i.e., it tends to infinity As— o).
communication pair will use the same powein this setting. |, i case, with a sufficient transmit power, any capacity
Given the random nature of the channel, #ngodic capacity requirement can be fulfilled.

can be approached using an appropriate coding scheme. In 04y e 1 shows the ergodic capacity as a function of the

setting, it can be expressed as: transmission power, in the case of no interference. Capacit
P|h,-j|2 o is logarithmically increasing without bound along with the
log, <1 + 5 Zia )] power. Hence, without interference, any capacity requénets
szsﬁi [ji] ik +No can be met if the power is sufficiently increased

=C (6)

C(Zvj) = Eh,r

(2)
We want to ensure that'(i,j) > C for all users. For this C. General Case

purpose, we have to find an estimate of the interference SUM! o+ Us now investigate the casé > 2. In this case, the

Z |hjk|2 e 3) communication pairs impose interference on each othengive
hzi I by the sum (3). In our setting, the number of interferers send
to infinity, therefore we can usasymptotic results. The sum
which runs over all transmitting nodes except nade given by (11) will be approximated by its expectation, which
B. No Interference Case 'S simply Zk#iE[‘h?k ] = Zk#"'E[‘h?k [ Bl

_ —al g ;
In order to have an element of comparison, we first invesf 2k Er |7k } since the random variables and 7 are

gate the case when there is no interference. If @nly node independent andy,,, ||h;|*| = 1 for all k.
transmits, the expression of tieegodic capacity reduces to:  According to [10], the probability distribution of the dis-

P|h|2 a tance between mobilg and its kth closest mobile can be
C(1,2) =Ky, llogQ (1 + N”? )] (4) modeled by:
0
| o 2 e 2d
According to [10], the probability distribution of in (4) can Je(rin) = T with p = — (7)

be modeled as:
op 2 50 A mobile has probability to be transmitting. Thus, using (7),
filr) = —26__2 with p =4/ — (5) the expectation of (3) becomes:
p ™

+oo 2u2k—1—a 2

mefﬁdu. (8)

+oo
Whered = E(r) is the average mobile separation. Thus, we ZET [r;f} — lz/
can obtain the value of the ergodic capacity for a given power ! 2 o0
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Fig. 2. Interference case, same Power= 3. Fig. 3. Same Power, Maximum Distanee= 1, oo = 3.

The integrals in (8) are well-defined for allif a < 4. In D. Close-Talker Case

this casé, since for allV > 2, Let us suppose that mobiles can estimate whether the closest
N o 2k-1-a , gy l— , mobile to them is within a distance. Then, a communica-
Z g P e (1 — eﬁ?) , tion pair forms between two mobiles only if their distance
k=2 (k —1)lp** P’ is smaller thana. This pertains to the notion of clusters.

Lebesgue’s dominated convergence theorem [20] allows usﬁgcorqu{ to _[1&]3 and [12], th_e <t)_pt|mal dstrate_gy_ IS i?] confmbe
intervert sum and integral, and finally obtain: 0 nearest neighbor communication and maximize the number
of simultaneous transmissions, through spatial reuse.
7 ZE [rj_ka} _ _/ U ! (1 . pz) du. (9) In this case, t_he probab|I|ty.d|str|but|on of the distanoe t
oy 2 Jo p the closest mobile changes to:

Using this result, we can deduce the transmission power Fo(r) = Of ) ?f r>a, (12)
corresponding to the requested ratehanks to the equation: W= 2 ifr <a.

1—e o2
P|h|? r—e
By, , |1 14T
h [°g2< D

=C. (10) The interference sum (3) has to be multiplied by
(1 — e‘“z/f)z), that is the probability that the closest mobile

In this case, the ergodic capacity is an increasing funaifof is indeed at distance at mastof the receiving mobile in the

that has an horizontal asymptote for some capaGifygiven ComMmunication pair. Under this setting:

by: a2 +0 11—« 42
Y B2 o I<1e >/ - <le n2)du. (13)
Co=En, [ng <1 + 7” ) 0 7

1 We can deduce the transmission power corresponding to the
All capacity requirement strictly below’; can be met; but requested rat€” thanks to the equation:
capacity requirements above, will lead to users increasing P |h|2 oo
their transmission power without bound and will not be En.r | logs 1+W
attained. The valu€’y for o = 3 is around1.457 (b/s/Hz).
Fig. 2 shows the ergodic capacity as a function of thEhis case is similar to the one in subsection IlI-C. Hence, th
transmission range. In this case, the capacity obtained wéttainable capacity is bounded by:
a given power is much lower, and there exists a maximum |h|2r*a
C§ =Ep» llogQ <1 + )]

=C. (14)

capacity Cy, given by (15). If mobiles try to meet capacity
requirements abov€), they will increase their power without I

bound, without reaching those requirements. Hence, siote for a givenC, the optimum communication rangeis given
all the values can be met, we need to define a communicatign
| - Ph|? r—e
o i L
&2 PI+ N,

range where any rat€' can be satisfied. This is developed in a
the next section and is referred to the close-talker case. / Ep
0
B In Fig. 3, the ergodic capacity is plotted far= 1. The
-r_ 2 . .
2The probability that, mobiles are within- is: 1—e #Z 3773 %(;—Q)k shape of the curve is the same as in the general case of

(15)

=C. (16)

H4+a—-2k<0
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Fig. 5. Comparison of the ergodic capacity for the oppostimicase (with

. . . . . close-talker) versus the close-talker approach,afer 1 anda = 3.
Subsection I1I-C, but the capacity obtained with a given gow

is higher. This is due to the fact that the capacity is higher

within the communication range. There is also a maximum . £ i. The power adaptation which maximizes (18) is:
capacityC§, that depends on the value @fas shown in Fig.

4. As a decreases, the maximum attainable capacjtygiven P(t,r) % — trl,a if t>tor®
by (15) increases. PI+Ny |0if t <tor®

Even though any rate can be satisfied, one has to notice that
a delay is incurred by this scheme depending on the mobilfigr some “cutoff” valuet, that satisfies
pattern [16].

a +oo 1 1 B
| - | N [ G- e i = 52 @19)
E. Different Mobile Pairs Transmit Power (Opportunistic Ap- 0 Jtore 0 T + No
proach) Is is worth mentioning that in contrast to [8], this water-

In this section, we suppose that the communication paffding approach takes the path-loss and interference into
have perfect channel state information, i.e. communiogir - account. These parameters are necessary in order to compute
(i,7) knows the exact value of;;. In this case, different the cutoff valuet,. Finally, the capacity is given by:
communication pairs will use different transmission pasyer a oo '
according to the realization of their channel. Moreover, We (%, j) :/ / log, (1 + (— — 7“"‘) r“")e‘tff(r)dtdr.
assume the close-talker case as discussed before. 0t to (20)

We can readily apply the power gdaptatiOQn described in [B]gre 5 shows a comparison between the ergodic capacity
and allow the power(t) to vary with ¢ = || following @ o yoth the opportunistic and non-opportunistic approach
Rayleigh dlstrlbutlon._'l'hus,we have a time waterfilling whe || particular, we focus on the close-talker approach where
the average power will be: nodes communicate within a distaneeClearly, the capacity

- a ptoo is higher ¢6% increase) in the opportunistic approach where
P = / / P(t,r)e " f{(r)dtdr. (17) mobile terminals have knowledge of their channels.
0 0

0.7%

Given an average power constraiff the capacity of the pair - Frequency Reuse for Point-to-Point Communication

(¢,7) is given by: Here, we seek the impact of frequency reuse on the ergodic
2 o capacity of point-to-point communication. We suppose one
Pij [hij Tij )] (18

A frequency bandB = f,., x W of width W and f,, is the
PI + Ny

frequency reuseR is the radius of the considered area. We
further assume concentric circles centered in the origin as
illustrated in Figures. Equation (9) rewrites as:

C(i,7) = maxEy , llogQ <1 +
P

where the interfering term is given by:

_ a2 Foo yl-a _u? —a
=) [ e 1= S |13 @)
0 = ZR fa(f"”"kif"'u‘Fl) U17(¥ 1 - e_p_§ du
Note that the average power defined in (17) uses waterfilling k=1Jafru(k=1) p?

on a channel that is independent of the channgl where



In an opportunistic approach, we derived the expression of
the ergodic capacity under the assumption that nodes know
the realization of their channel by applying the waterfglin
principle. Finally, the impact of frequency reuse was also

studied where frequency reusae yields higher capacity.
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