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Abstract—In this paper, a new blind OFDM multicell detection
method is proposed to determine the number of base stations
in a cellular system. Using recent results of free deconvolution,
the algorithm enables the terminal to count the number of S3
surrounding base stations as well as the received power using
only a limited number of snapshots. This is in sharp contrast with s]
classical asymptotic blind techniques and a theoretical analysis B
is proposed to study the impact of frequency selectivity and the
number of receive/transmit antennas. Simulations are provided
to sustain the theoretical claims and comparisons are provided
with classical techniques.

I. INTRODUCTION Fig. 1. System Model

The ever increasing demand of high data rate has pushed

system designers to exploit the wireless channel medium 49 s the assumed maximum number of relevant cells in the
the smallest granularity. In this respect, OFDM (Orthogonﬁetwork, with no need for any prior knowledge on the input
Frequency Division Multiplexing) modulation has been @s gignal constellations (apart from their second order sttasi)

as the r_lext common standard for most wireless technologigsy using a limited number of received samples (compared to
(e.9. Wi-Max [3], LTE [2]). OFDM is known to convert a the FFT size). Interestingly, one can derive all &/ R;’s
frequency selective fading channel into a set of flat fading he ratiosP, /o2 and also count the numbe¥y < M
channels [12], providing therefore a high flexibility inmes  of effective surrounding cells. To the authors knowledge, n
of power and rate allocation. Due to this flat fading naturgyevious contribution has ever considered this OFDM migltip
OFDM suffers however from a lack of diversity and issNR detection setting. The work makes extensive usieeef
severely interfered in multi-cell systems. This requiré8e  geconvolution techniques. Those techniques were initially used
system level interference management (with proper melti-c;, [5] to derive the respective powers of users in a Code
scheduling) solutions from a network MIMO point of viewpyision Multiple Access (CDMA) network.

([16],[4]). In order to design a viable network solution for The paper is structured as follows: In section II, we in-
OFDM systems, a key parameter that needs to be estimaiefiuce the multicell environment model. In section IlI, we
is the Signal to Interference plus Noise (SINR) ratio that igyiew classical methods used to derive SINR in OFDM envi-
the power of the base station dedicated to the terminal oyghments. In section IV, we provide the algorithm to detexeni
the cumulated power of the interfering base stations and tfg per-cell SNR. A discussion on the gains and limitatiohs o
background noise power. Ideally, one needs to access {fg novel method is then carried out in section V, before we

respective Signal to Noise Ratio of every cell, defined agow the simulation results that sustain the theoreticaing.
SNRy, for base statiork (the ratio between the power of theFinaIIy, in section VII we draw our conclusions.

signal received by the terminal that originated from traittem

k and the noise lever?). Usually, this difficult problem of Il. DOWNLINK MODEL

source separation is treated with respect to the signal statistics In the following, boldface symbols represent vectorsX-

[13],[24],[15] (through second order statistics and cmaists type characters are used for matrickg (s the identity matrix

on the input signal), with a hypothesis of a high number aff size N) with Hermitian transposé-)’. diag(x) turns the

received snapshots. However, in practice, this hypothesis vector x into a diagonal matrix.C* is used for binomial

never be met due to the high mobility of the users. coefficients.try(-) will be used for the normalized trace of
In this paper, using results on free deconvolution, we sham N x - matrix andE[-] is the expectation symbol.

that, in a downlink OFDM environment, one can have accessLet us consider, as depicted in figure Il, a set\of base

to the powerP; of every base stations € [1, M], where stations and one UE (User equipment) with = 1 receiving



antenna working under a siZé FFT OFDM modulation. Let N =256, P ={P, P, P3} = {4,2,1}
us also fix an integef/ meant to count all the base statiorrs

(ideally Nz < M). In the following, we shall actually only L EstimatedP [our algorithm] P —P|2
deal with M and forget aboufVz, considering then that we 512 {6.24,2.3,-1.5} [{4.14,1.73,1.16}] 11.33
have M base stations, some of which could be of null power.1024 | {5.08,2.56,-0.7} [{3.99,2.02,1.02}] 4.44
The link between the UE and the base stations a fast- 2048 | {4.52,2.69,-0.2} [{4.11,1.89,1.03}] 2.2
fading complex Gaussian channel vedigrof size N coupled 4096 | {4.2,2.65,0.18} [{3.98,1.95,1.03}] 1.13
with a slow-fading path los¢,, = 1/P; with P, the power 8192 {4.1,2.28,0.58} [{4.1,1.8,1.11}] 0.27
received at the UE from data of base statioriThe UE also 16384 | {3.97,2.42,0.89} [{4.06,1.81,1.35}] 0.19
suffers Additive White Gaussian Noise (AWGN) of power32768 | {4.07,1.95,0.99} [{3.93,1.88,1.16}] 0.01

o2. The base statiok sends at timg the OFDM symbol Fig. 2. Classical moment-based method
s,(f) = (sgl,z, s s§$k)T that we suppose standard Gaussian (ie,
with zero mean and unit variance) under AWGN naisel?),
with n® = (n{" ... n{))T also a standard Gaussian vectowhen the ratioN/L tends to zero when bottV and L go
Therefore, the received signal vectpt!) = (y\", ... 4{))7 to infinity. Indeed, wherZ grows, (1YY" — o”Iy)* tends
at time instant reads to IE[(HPHH)’“], which is related to the power expression
i needed.
~ 1 As a consequence, one can retrieve the values oPife
y = Z PiDys; +on® (1) (as will be proved in section 1V) directly from the normalize
k=0 traces of + (YY" — o%Iy)* when L is large compared
with Dy, = diag(hy) = diag([hs1 . .. hen])- with V. However, in practice, this case is rarely met due to
This summation over thé/ cells can be rewritten mobility of the UE. In fact, we wishN to be fairly large
o _ La(l) ! (such that the ratio between thé-subcarrier bandwidth over
Y =HP6% +on® ) the coherence bandwidth is large) whileis limited by the
with 8, the sizeA/ N vector9®) = (sgl)7 e ,s%})T channel coherence time. Therefore, even ifV and L are large,
H is the concatenated matrix of sizZ€ x MN of the the problem fall in a situation where the ratig/L is non
matricesDy, k € [1, M] trivial (ie, not close to 0) so that expectation-based mesho

are far from accurate. In this context, the previous classic

fag e 00 a0 method does not work since the expectation taken for lérge
H=|: -~ . : (3) is no more valid wherV grows along withZ. This is shown in
0 -+ hoy --- 0 oo hun table (2) that uses the same algorithm as described in Bectio

(IV-A) based on the moments (%(YYH — 0?lIy) (instead

of the moments o%HPHH for which comparative results,

P =diag([P1P---Py]) ® Iy (4) based on the algorithm of section IV, are presented between
brackets).

For a deeper analysis of those classical techniques, please
refer to [17]. In this contribution, we shall also use monsent
based techniques but in the light of the recent worlRandom
Matrix Theory (RMT) [6] and Free Deconvolution [5], that are
briefly introduced in the following.

and P the diagonal matrix of widthV M

where the symbok stands for the Kronecker product.

Let us now assume that thd channels are slowly varying,
so that we can concatenatesamplesy”) (L = 1,..., L) into
anN x L matrixY = [y(!) ... y®] and have the more general
matrix product

Y = HP20® + oN (5) IV. APPLICATION OFFREEDECONVOLUTION TO

where agair® andN are respectively tha/ N x L and N x L MULTIPLE SNRDETECTION

concatenation matrices of tHesampling time instants ‘" In order to recover theP; values, as suggested in the
andn®) and the entries ol are fixed over thel, channels Previous section, one needs to have access to the entries
uses. of HPH'. As shall be shown later, one needs only to

This then imposes the minimum of a@lf channel coherence have access to the eigenvalue distributionH)PHH. This

times to be greater thah7, with 7, the OFDM symbol distribution is called in the RMT context thempirical dis-
period. tribution of the matrix HPH” and is denoteqigypgx. For

those distributions, we associdtee moments M, of orderk
1. CLASSICAL POWER DETECTION defined as\f;, = E[try (HPH)¥]. When anV x N random
Usual power detectors consider the second and higher ordeatrix A is a standard Wishart matrix, which can be written
statistics of the received signals. This consists in comguhe A = %XXH with X an N x L standard Gaussian random
following empirical moments(%YYH)’“. These techniques matrix (that is a matrix with standard iid Gaussian entries)
work well when L, the number of samples, go to infinitythen its empirical distribution is the Marchenko-Pastuv [8]
while N, the size of the observation vector is finite or at leaghat we denotq,., with ¢ = N/L. Those Wishart matrices



have a generalized version in which the column entries obnvolution, deconvolution...), the ensemble of the fikst
X are correlated through a covariance matFix. Recent moments of the operation result can be exactly recovered fro
work on Free Probability [7] and RMT [5], [9] have provided the ensemble of thi first moments of the operands (and vice-
several tools to derive the empirical distributions of thuens versa). This substancially reduces the computationatteffo
product... of random matrices. In particular, when the matr The details of how to recover the momentis from the

at hand is of thanformation plus noise type (those random momentsm,;, as well as fundamentals of Random Matrix
matrices are deeply studied in [5]), then it is possible weas Theory and Free Deconvolution are provided in [17].

the empirical distribution of the information signal givéme Our interest though is to find the diagonal value®ofQuite
empirical distribution of the received information plusise remarkably, it turns out that the matrBliPHY is diagonal.
signal. This is the main result that we use in this work, whichherefore, for largg N, L) couples, we can easily derive all
enters the general framework fske deconvolution. We shall the theoreticafree moments d;. of the distributionugpgrs [6]
use in the following the symbo, B, X and respectively since all the(HPH)” are diagonal matrices df, j) entry

to retrieve the empirical distribution of the sum, diffecen

product and inverse of two random matrices. For instance {(HPHH } (Z Pylhys |2> (12)
HA+B = pa B s (6)
pe = pa N uB (7) and then thep!” order momentd, = E[trN(HPHH)p] of

o :
with C such thatA — CB. HPH" can then be approximated for largé by

In our problem, described in the form of model (5), it turns
out that theN x N matrix +YY* is aninformation plus dp = 57 > <Z thkj|2> 13)
noise matrix with N a Gaussian random matrix (th(%rN N# ’
is a Wishart matrix). Therefore, for largeV, L) values, one At this point, thed,’s expression (13) contains too many
can derive the empirical distribution gfHP2©@"P>H"  ynknowns since, in addition to th&s, also theh,; are
(€ 1) ypioenpipn) TOM 4L yys. This requires to know unknown. In fact, as is discussed in section (V), these are
the noise leveb? and reads [5] those very unknowrk,; that allow for the multiple SNR re-
covery provided that the channeherence bandwidth (ie, the
e B ((M%YYH N pin.) B 502) Xy, (8)  frequency range in which the channel frequency responses ar
i _ _ o correlated) is short compared to the system bandwidth.dn th
wherec = N/L since the noise matrix i&/ x L. following we therefore discuss the frequency selectiveade

_ Also, the matrix® in equation (5) was made such thaj,jer the hypothesis that the ratioherence bandwidth over
its random entries are standard Gaussian and mdependgy bandwidith is short.

Therefore L P> HHP>©0" is a generalized Wshart ma-
trix with covarianceP> H7HP?3. A. Finding the P;’s

As such, g1 o.,.o1 can  be recovered from To deduce the cell power values from the momeds
Py phunapieen when the couple (N,L) is large we need to derive independant equations from thfse in

with a constant ratia’ — MN/L (M is constant) [5] the variables{ P,k € [1, M]}. Again, as will be discussed
in section (V), the channels’ (associated to every emitting
Ppiunppt ~ Hipiunupleer Ny ©)  base station) frequency diversity is the key to provide ¢hos

guations. Let us then start by deriving, for large the
omentsd,, as in (13), which, fop € [1, M], forms a system
of M equatlons in the\, unknowns{ P, k € [1, M]}.

Note that the left expression of equation (8) is slightl
different from the desired expression in the right part
equation (9). Still, thanks to the trace property, we hawe t

trivial link [6] In this case, sincéV is large, (13) can be approximated by
p
1 2
Hipturupieer ~ Jr/inpieerpinn + (1 M) d En (; PRy ) = dp (14)
(10) -
Finally, we similarly connect the left part of equation (8) t whereE;, denotes the expectation over the varialdigs
pippe through With NV as we chose (ie, much larger than the typical

1 1 coherence bandwidth size), we then have a high confidenpe
Pplyngph = jpHHEPHN + <1 — M> 0o (11) that the channel correlations do not have a strong impact in
the final results and then, based on the classical moments of
As a consequence, we have shown that, thanks to the lihke Rayleigh-distributed variablesy;|, we can derivel, as
between their associated empirical distributions, the fre- X e
mentsd;, = E[try (HPH)*] can be retrieved from the free _ - i
momentsmy, = E[try(+YY)*]. Quite surprisingly, it is dp = 2217 z:kwl_[l{z k —k: 1)2 }P (15)

shown [8] that for any of the free classical operations (tali z ki=p 0



the proof of formula (15) and further details about the “&rc C‘;” Poweithzezﬂoﬂ—_zgz,\lsRT_l—%gG ChLen=N/g
N” hyptothesis are provided in [17]. ent Powers = [1 2 4], N=2048, L=4096, ChLen=

Therefore the system of equations formed by (15) f Ave‘raged ‘Over 1900 re‘allsatlc‘)ns

p € [1,M] is constituted of multivariate polynomials in j:
Py, ..., Py. This homogenous symmetric multivariate poly- A A
nomial system can be rewritten 2 T
M % 35
> PP =Qyldy,...,dy) (1) £
k=1 &) 25
for polynomial functionsQy € R|dy,...,d;] to be deter- 220
mined. g 15
System (16) is then easier to solve. Its solution, the vec 10f
of powers(Px, ..., Py), is unique and corresponds to thé 5t
roots (counted with their multiplicities) of the polynorhia oL
X of degreeM ! 15 * pomer @
XM I x M T, X M2 (DM, (A7)

Fig. 3. Cell power detectionN = 512, L = 1024, Averaged over 1000

where the elementH,, are related to thgj Pj through the ;516

Newton-Girard formula [10]
k M
(71)1@ka +Z(71)k+i ZP;‘ M, =0 (18) V1. SIMULATION AND RESULTS
C 7 c—1 T
i=1 j=1 In the following, we use the results that were previously
A thorough and clear study of the particulsf = 3 case is derived in the case of a three-cell network that the UE wishes

derived in [17], as well as the complete derivations thatl led0 track. The set of cells studied along this part are of redat

to find the Q) polynomials. powersPy =4, Py =2, Py = 1. .
In a first simulation, in order to increase the performance

V. DiscussioN accuracy, we shall average the estimatidvalues on 1000

A few points are worth being discussed in the light of thehannel realizations that are exponential decaying OFDM
previous study. channels of length varying from to N/4 symbols of an

First, as already mentioned in the previous sections, eur @FDM symbol.
gorithm simplifies to a mere power detector when the number|n figure (3), we took matrices oV = 512 FFT size and
of sampling periods. available is rather large compared toy, — 1024 sampling periods and a Rayleigh channel of length
the FFT sizeN. This would be valid either whed is fairly /8. A hundred realisations of this process are run. The SNR
larger thanV but this imposes very long accumulations, whicls 10dB. Histogram (3) shows thaP,, P,, P3) is clearly
is no longer valid for the typical coherence time encourtergyel| recovered.
in OFDM or whenN is limited to a very few elements but The next experiment consists in estimating the noise level
then ones looses much of the provided information, which wilnpact on the cell recovery. This is obtained by comparirgy th
heavily degrade the performance. SNR = 30dB case to theSNR = —10dB scenario. Figure

A second item is the channel aspect that is of prior im5) provides the results (with 1000 accumulations over 100
portance. Indeed, if only one simulation shot is run (Withials) and shows that, surprisingly, whatever the noiselle
sufficiently large N and L), and if the channel is typically (even if it actually perfectly matches one specific cell powe
very short, then the channel frequency response will beerathhe cell power recovery is substancially the same wienL)
flat over the whole bandwidth. is |arge enough_

This implies that all the moments dHPH* will form Also, we need to test the robustness of our algorithm
a correlated system of equations and (16) cannot be deri‘@jhinst practical channels and not only theoretical expiale
since equation (15) does not stand anymore. The best we gaRaying channels. This is done in figure (4) that proposes a
figure out from this situation is the approximated total PoW&omparison between the ideal long channel situation and the

received from all cells. _ . 3GPP-Long Term Evolution (LTE) [2] standardized Extended
This is why a short coherence bandwidth (with respect {@hjcular A (EVA) and Extended Typical Urban (ETU) chan-
the total bandwidth) is desired, so to keep (15) true. nels with characteristics

If this short coherence bandwidth is not provided, then the
scheme can be extended to use multiple antennaes to ingrodu
independent channel realizations. Then, intead of usiny an EVA 357n.s N/27
LY matrix at the reception, we can easily extend the schem ETU 991ns N/13
to use anV N,. x L data matrix withV,. the number of receive  We considered here a mobile handset situation provided
antennaes at the UE. with 2 antennae®/,, = 2, working under a sizé&V = 256-FFT,

Channel Typel RMS Delay Spread Channel Length




Cell Power Detection - SNR=-10dB Cell Power Detection - SNR=30dB

Cell Power Detection — SNR=10dB - CDF Sent Powers = [1 2 4], N=512, L=1024, ChLen=N/8 Sent Powers = [1 2 4], N=512, L=1024, ChLen=N/8
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VIl. CONCLUSION

In this contribution, we demonstrated a practical way to
blindly detect neighboring cells in a distributed OFDM net-
work. Assuming constant transmission of those cells on a
fairly large bandwidth (large enough to ensure that the sbhn
coherence bandwidth is small in comparison), we showed that
one can blindly determine the individual SNR of every cell.
This is particularly suitable to next generation OFDM sysée



